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The development of both microgrids and electric vehicles has become an

important part of the current energy scenario. Useful complementary

advantages can be formed between electric vehicles and microgrids, the

consumers of which can utilize renewable energy and narrow the

peak–valley differences of the net load curve while ensuring their own

pecuniary interests. Based on the idea of the Stackelberg game, an optimal

dispatch model of a microgrid with electric vehicles is proposed herein, where

the benefits of the state of charge are taken into account. In the upper layer of

the model, the charging and discharging behaviors of electric vehicles are

guided by the goal of minimizing the operating cost of the microgrid. In the

lower layer of the model, electric vehicle users adjust the charging and

discharging strategies with the goal of maximizing their individual interests.

The study results demonstrate that the proposed model not only reflects the

benefits of both the master and slave but also reduces the peak–valley

differences of the microgrid load. Further, the charging and discharging

times of electric vehicles are reduced, and their state of charge is

maintained at a high level.
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Introduction

Microgrids have rapidly gained popularity and are being increasingly applied in recent

years. There is good complementarity between the energy structure characteristics of

microgrids using renewable energy and the use of electric vehicles. The ability of an

electric vehicle to gain access to a microgrid will become one of the important

considerations in microgrid and electric vehicle applications (Cecati et al., 2011;

Dagdougui et al., 2019; Ma et al., 2021a). However, because of the randomness of

renewable energy availability and electric vehicle charging behaviors, there are some

uncertain factors in the microgrid dispatch optimization process. Therefore, research on

microgrid dispatching related to electric vehicles must consider the corresponding

stochastic dispatch optimization method and establish energy dispatch models for
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uncertain environments to improve the economy and stability of

the microgrid dispatch optimization scheme (Sortomme et al.,

2011; Li Z. et al., 2019; Teng et al., 2020; Ma et al., 2021b). At the

same time, in the interactions between microgrids and electric

vehicle users, different interests are expressed by both sides.

Electric vehicle users hope to participate in microgrid dispatch

without affecting their normal use to obtain maximal benefits.

Microgrid users hope to reduce their electricity costs and

improve the operating environments through the charging

and discharging behaviors of electric vehicles (Fu et al., 2021;

Ma et al., 2021c). Although the interests and benefit objectives of

the two sides are different, there are certain conflicts of interest;

this can result either in a win-win situation for both sides through

cooperation or in competition between both sides to maximize

their own profits. Therefore, when studying the interaction

behaviors between microgrids and electric vehicle users, it is very

important to choose a reasonable strategy that conforms to the

actual behavioral characteristics of both parties and to establish an

optimal scheduling model that meets the interests of both parties

(Tushar et al., 2012; Yang et al., 2019; Ma et al., 2021d).

At present, neither the grid operators nor electric vehicle

users engage in organized orderly charging of electric vehicles, so

disorderly charging is still the dominant behavior (Gong and Li,

2021; Zheng and Yao, 2021). However, the influence of the

disorderly charging of electric vehicles on the power grid

cannot be ignored (Wolsink, 2012; Kakran and Chanana,

2018; Muhtadi et al., 2021). The charging conditions of

electric vehicles are analyzed from the perspectives of energy

consumption and use. The charging load of an electric vehicle

increases the running burden on the transmission and

distribution networks, and the increase in line load rate

increases equipment losses. Generally speaking, the influence

of electric vehicles on the power grid can be examined from three

aspects, namely power grid reliability, power quality, and

operational economy (Wang et al., 2018; Ma et al., 2019; Zhu

et al., 2019; Zhang et al., 2021). When considering the spatial

distribution of electric vehicles as the research objective, the

charging locations of the vehicles must be guided in an orderly

manner. The utilization rates of the charging facilities and

electricity balance rates of different regions can be improved

by preventing high charging loads in certain regions (Richardson

et al., 2012; Shafiee et al., 2013; Li F. et al., 2019). Temporally, the

goal involves reducing the load fluctuation variance and

peak–valley differences; spatially, the goal is minimizing the

charging cost of the user. At the same time, the scheduling of

the charging load has been considered from the perspectives of

both time and space (Wan et al., 2018; Yang et al., 2020; Wang

et al., 2021). The abovementioned works examine only the

charging behavior control of electric vehicle users; therefore,

electric vehicles are regarded as electrical equipment that can

only reduce and translate loads, and the control methods and

achieved effects are not flexible enough as they usually achieve

only the load filling function.

To address the spatiotemporal uncertainties of electric

vehicle operation, a robust optimal dispatch model has been

constructed by combining a data-driven algorithm with the risk

coefficient method (Wei et al., 2017). The intraday real-time

scheduling of electric vehicle charging and discharging has been

realized using deep learning without generation selection

calculation (Huang et al., 2017). The imbalance rate of the

microgrid is calculated from the real-time data of renewable

energy output and load. Then, the reasonable electricity price

information based on the imbalance rate is released to guide the

charging and discharging behaviors of electric vehicles and to

realize coordinated operations of electric vehicles and renewable

energy in the microgrid (Wu et al., 2017). However, the

aforementioned studies are concerned with centralized

management of electric vehicles in the microgrid without

considering user independence; users cannot respond to the

demand side depending on their situation, and the dispatch

center must perform extensive data processing and calculations.

The dispatching problem of connecting electric vehicles to

the microgrid is compared with the traditional scheduling

problem, and the randomness of both renewable energy and

load in the microgrid is considered in this study. By analyzing the

benefits of the microgrid and electric vehicle user participation in

dispatching based on the master–slave game theory, an optimal

dispatch strategy is proposed for the microgrid with electric

vehicles considering the state of charge (SOC). Further, a

microgrid scheduling model with electric vehicles is

established based on the master–slave theory, and the

existence of the equilibrium solution of the benefit function is

proven. Finally, the model is solved to obtain the real-time

electricity pricing scheme for optimal scheduling.

Distributed output modeling of the
microgrid considering prediction
error

Photovoltaic and wind powers are two of the commonly used

distributed power sources in a microgrid. However, as the

outputs of both photovoltaic and wind power generation are

greatly affected by environmental conditions, there may be errors

in their power forecast. The influences of these errors increase

with the increasing penetration of the two renewable energy

sources. Therefore, the optimal dispatch of the microgrid must be

modeled to improve the reliability of the dispatch results.

Photovoltaic output model considering
prediction error

The output from photovoltaic power generation is not only

affected by environmental factors but also related to the

characteristics of the system components, such as the
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photoelectric conversion efficiencies of materials and

series–parallel modes of the components. However, these

factors do not obviously influence the output forecast of the

photovoltaic system. The main factors affecting the photovoltaic

output prediction results are random and uncontrollable natural

environmental conditions, such as solar light intensity, cloud

layer position and thickness, and weather conditions. The output

power of the photovoltaic power generation equipment can be

represented by (1)

Ppv � e∑P
p�1

ηpSp (1)

where e is the incident light intensity, ηp is the photoelectric

conversion efficiency of the pth photovoltaic module, and Sp is

the area of the pth photovoltaic module. Owing to the influence of

the natural environment and other factors, the prediction error of

the photovoltaic equipment output is random. However, the

prediction and error data from historical records are sampled

and analyzed using probability and statistical theories. Combined

with actual data from the natural environment, it can be considered

that the short-term prediction error of the photovoltaic output is

normally distributed. For the expression εPV ~ N(0, σPV), the

probability density function is as shown in (2):

f(εPV) � 1���
2π

√
σPV

e
− ε2

PV
2σ2
PV (2)

where εPV is the photovoltaic output prediction error, and σPV is

the variance of the normally distributed photovoltaic output

prediction error.

Once the probability distribution of the prediction error is

obtained, the predicted value of the photovoltaic equipment

output can be expressed as a superposition of the predicted

value and prediction error:

PPV
′ � PPV + εPV (3)

where PPV is the predicted photovoltaic output value, and PPV
′ is

the actual photovoltaic output value.

Wind power output model considering
prediction error

Similar to the factors affecting the output predictions of

photovoltaic equipment, the outputs of wind power

equipment are affected mainly by the wind speed. The

relationship between the unit output and wind speed can be

expressed by (4)

PPW(v) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 v< vin , v> vout
v − vin
vp − vin

vin ≤ v< vp

PPWp
vp ≤ v< vout

(4)

where vin is the cut-in wind speed, vout is the cut-out wind speed,

vp is the rated wind speed, v is the actual wind speed, and PPW(v)
is the functional relationship between the wind power generation

equipment output and actual wind speed.

From (4), it is observed that when the actual wind speed is

less than the cut-in or greater than the cut-out wind speeds, the

output of the equipment is 0. When the actual wind speed is

between the cut-in and cut-out wind speeds, the output of the

wind power equipment is directly proportional to the wind speed

as shown in Figure 1.

Similarly, from theoretical analysis of the probability and

statistics combined with historical data, the prediction error of

the wind power output can be described by a normal distribution

with a mean value of 0. Given that εPW ~ N(0, σPW), the

probability density expression is

f(εPW) � 1���
2π

√
σPW

e
− ε2

PW
2σ2

PW (5)

where εPW is the forecast error of the wind power output, and

σPW is the variance of the normally distributed wind power

output prediction error.

The wind power output forecast before today can also be

expressed as a superposition of the forecast value and forecast

error:

PPW
′ � PPW + εPW (6)

where PPW is the predicted wind power output value, and PPW
′ is

the actual wind power output value.

Load model considering forecasting error

Past research shows that the load power fluctuation can be

represented as a normal distribution with the predicted value as

the average. Thus, the actual load value can be decomposed into

the predicted load and predicted error values that are normally

distributed. The actual output expression of the load and

probability density expression of the prediction error are

shown in (7, 8):

P′
L � PL + εL (7)

f(εL) � 1���
2π

√
σL

e
− ε2

L
2σ2

L (8)

where PL is the predicted load power value, P′
L is the actual load

power value, εL is the load power prediction error, and σL is the

variance of the normally distributed load power prediction error.

Net load of the microgrid

In the established model, the microgrid itself is affected by

three variables: wind power, photovoltaic output, and load. In
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this study, the net load is used to represent the algebraic sum of

these three variables:

PNL � P′
L − PPV

′ − PPW
′ (9)

where PNL is the net load of the microgrid.

Optimal dispatch of the microgrid
with electric vehicles considering the
state of charge

Dispatch structure of the microgrid when
electric vehicles are connected

In the optimal dispatch of a microgrid with electric vehicles

under the Stackelberg game structure, the electric vehicles and

microgrid not only maintain electrical energy interactions

during the dispatch period but also sustain information

exchange during the scheduling plan. The electric vehicles

considered in this study are the working vehicles and private

cars of the microgrid users. The electric vehicle users in the

microgrid reported parameters such as the access times and

battery information of the electric vehicles to the microgrid

dispatch center a few days prior. Based on the information

reported by the users, forecast results are generated for the new

energy outputs and electricity loads in the microgrid as well as

the purchase and sale prices of its superior power grid. Then,

the charging and discharging prices are released to the electric

vehicle users to obtain responses. Next, based on the user

responses, the electricity price and amounts of electricity

purchased and sold by the superior power grid are adjusted.

To improve the consumption rate of new energy generation and

the economy of electricity consumption, unified dispatch of the

electrical energy in the microgrid is completed. Figure 2 shows a

schematic of the microgrid dispatch structure when electric

vehicles are connected.

Optimal dispatch model of the microgrid
based on the Stackelberg game

Under the framework of the master–slave game theory, the

microgrid as the leader has the initiative in the game, with

priority being assigned to the electric vehicle users to release

the electricity pricing scheme. As the followers, the electric

vehicle users respond to the microgrid dispatch by

comprehensively considering their own SOC and the

economic benefits derived from electrical energy exchange

with the microgrid; these responses are returned to the

charging and discharging power scheme. The electricity

pricing scheme of the microgrid is then adjusted according to

the user return strategy. Finally, the Nash equilibrium scheme of

the Stackelberg game is obtained.

By issuing an appropriate electricity pricing scheme, the

electric vehicle users can be guided to provide certain charge

and discharge powers within an appropriate time period. This

can improve the consumption rate of new energy output in the

microgrid while reducing the cost of electricity. The electricity

cost objective function of the microgrid is as follows:

Cmg � ∑T
t�1
[(PL,t − PP,t − PW,t + PEV,t) · cg,t − PEV,t · cm,t] (10)

where Cmg is the electricity cost of the microgrid in an optimal

dispatch cycle; PL,t, PP,t, PW,t, and PEV,t are the microgrid load

power, photovoltaic power, wind power, and electric vehicle

charging and discharging powers in period t, respectively; cg,t
is the time-of-use electricity price of the superior power grid in

period t; and cm,t is the transaction price between the microgrid

and electric vehicle users in period t.

a) Power balance constraint

This constraint ensures that the electric vehicles absorb the

wind and light outputs from the microgrid maximally and allow

full utilization of the energy storage characteristics of batteries.

The microgrid structure proposed in this study does not contain

any energy storage equipment, and any electricity shortage or

excess electricity in the microgrid is traded directly with the

superior grid.

Pr{|PG,t − PL,t − PEV,t + PP,t + PW,t

∣∣∣∣≤ σ}≥ α (11)

where α is the confidence level of the power balance constraint,

and σ is a relaxation variable that is a small positive number.

Considering that the conventional power balance is an equality

constraint, this variable is introduced for facilitating a solution to

the model and representing probability.

FIGURE 1
Relationship between wind power and wind speed.

Frontiers in Energy Research frontiersin.org04

Bo et al. 10.3389/fenrg.2022.974282

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.974282


b) Electric vehicle trading price constraint

C m,min ≤Cm,t ≤Cm,max (12)
where cm,max and cm,min are the upper and lower limits of the

microgrid price scheme, respectively.

c) Interactive power constraint of the microgrid

PG,min ≤PG,t ≤PG,max (13)
where PG,max and PG,min are the upper and lower limits of the

interactive power between the microgrid and its superior grid.

d) Constraints of electric vehicle users

SOCmin ≤ SOCn(t)≤ SOCmax t � 1, 2, 3/T (14)

where SOCmin and SOCmax are the lower and upper limits of the

battery SOC, respectively.

SOCn(T)≥ SOCn,E (15)
where SOCn,E is the expected SOC level of the nth user after

scheduling.

Pev,dc,max ≤ SOCn(t) − SOCn(t − 1)≤Pev,c,max (16)

where Pev,dc,max and Pev,c,max are the charging and discharging

power ranges of electric vehicles.

As the followers in the Stackelberg game, electric vehicle

users need to respond to the microgrid scheduling with the goal

of maximizing their own benefits once the electricity pricing plan

is issued. Under the principles of game theory, electric vehicle

users should be rational and self-interested. When considering

only the economic benefits, electric vehicle users will choose to

discharge during high price periods and charge during low price

periods as much as possible. This strategy may produce a new

peak in the load curve of the microgrid or further improve the

peak–valley difference. This phenomenon is particularly obvious

when fast charging is adopted. Considering that changes in the

SOC are of great significance to the convenience of electric

vehicles and battery losses, the SOC may be regarded as an

important benefit that the electric vehicle users must consider

when formulating charging and discharging strategies. The

benefit function of the electric vehicle users, that is, the

objective function, is as shown in (17):

Un � ∑T
t�1
kn,t · SOCn(t)0.5 + cm,t · (SOCn(t − 1) − SOCn(t))

kn > 0
(17)

where kn is the SOC preference coefficient for the nth electric

vehicle user, and SOCn(t) is the SOC level of the nth electric

vehicle user in time period t. The utility value is given by

knSOCn(t)0.5 to the SOCs of the electric vehicles, and the

economic benefits are given by cm,t(SOCn(t − 1) − SOCn(t))
for electric vehicle users trading with a microgrid.

In the optimal scheduling model, a nondecreasing convex

function is generally chosen as the benefit function of the users’

experiences. In addition to considering the economic benefits

afforded by the users’ electrical energy exchange, (17) increases

the benefits derived from the SOC. This can mitigate the benefits

obtained by frequent as well as deep charging and discharging of

the batteries due to fluctuations in the electricity pricing.

Proof of existence of master–slave
equilibrium solution in game

To optimize the dispatch of the microgrid with electric

vehicles, a Stackelberg game model is established in this work,

FIGURE 2
Optimal dispatch structure of the microgrid.
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with the microgrid as the leader and electric vehicle users as the

followers. The strategy set of the Stackelberg game model can be

expressed by (18); when the leader and followers of the

Stackelberg game choose strategies as given in (19, 20), the

game can attain the Nash equilibrium solution.

Γ � {(N ∪ {MG}), {Sn}n ∈ N, {Un}n∈N, pm, C} (18)
Cmg(Sp, cpm)≤Cmg(Sp, cm) (19)
Un(Sp, cpm)≥Un(Sn, Sp−n, cpm)

∀n ∈ N,∀Sn ∈ S
(20)

where N is the number of electric vehicles that the microgrid can

dispatch, Sn is the charging and discharging strategy selected by

the nth electric vehicle user, and S−n is the Nash equilibrium

strategy set except for the strategy of the nth user. The electricity

price is cpm at the Nash equilibrium solution.

In the noncooperative Stackelberg game, a unique Nash

equilibrium solution is obtained only when the utility

functions of the leader and follower are convex and

concave functions, respectively. The following proves that

the utility function of the electric vehicle users is a concave

function. The utility function of the electric vehicle users is

differentiated with respect to SOC as the variable. When

the transaction price is cm, the surplus electricity that

allows the electric vehicle users to obtain the highest

benefit is as follows:

SOC � ( kn
2 · cm)

2

(21)

When kn#2cm, the optimal solution of the SOC is in the range of

[0,1]. The second derivative of Un then gives

d2Un

d2SOC
� −0.25 · kn · SOC−0.15 kn ≥ 0 (22)

The utility function of the electric vehicle users in (22),

i.e., the second derivative of Un, is always less than 0 under

the condition that kn is not less than 0. Thus, it can be proved that

(10) is always a concave function in the range of [0,1] when

conditions kn#2cm and kn ≥ 0 are satisfied.

The process of proving that the utility function of the

microgrid is convex is as follows. Combining (13) and (21)

and taking the second derivative of (10) with respect to the

variable cm, we have

d2Cmg

d2Cm

� − k2

C−3
m

+ 3
2
· cg · k

2

C−4
m

(23)

When cm and cg are both greater than 0, the second

derivative of Cmg in (23) is always greater than 0, which

proves that (13) is always a concave function. These prove

that there is a unique Nash equilibrium solution between the

utility function of the microgrid and electric vehicle users given

the condition that parameters kn#2cm, kn ≥ 0 in the utility

function and cg > 0 are established simultaneously.

Considering the characteristics of the Stackelberg game

model, the bilevel optimization method is chosen in this study

to solve the model. The upper model considers the transaction

price of the microgrid and electric vehicle users as the variables.

The charging and discharging power scheme of the electric

vehicle returned by the lower model is a known quantity to

optimize the electricity cost of the microgrid. The utility model of

the lower electric vehicle users considers the transaction price as a

known quantity and its own SOC as a variable for maximizing

benefits. To solve the bilevel optimization model, the upper

model uses particle swarm optimization. Because the utility

TABLE 1 Piecewise linear fitting results.

Segmented interval Results
of linear fitting

0.1–0.2 y � 1.295x + 0.1952

0.2–0.4 y � 0.8976x + 0.3024

0.4–0.6 y � 0.6928x + 0.2749

0.6–1 y � 0.6042x + 0.3987

FIGURE 3
Model solving process.
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function in the lower model has a nonlinear term SOC(t)0.5, it
cannot be solved directly. To linearize the model, in this work, the

nonlinear parts are fitted by the piecewise linear method, which

results in a mixed integer model that can be solved directly using

the solver. The nonlinear part of the lower model is fitted in its

domain [0.1,1], and the processing results are shown in Table 1.

The specific process of the model solution is shown in Figure 3.

Results and discussion

The power variation curves of the load, photovoltaic output,

and wind power output of the microgrid in this study are shown

in Figure 4. Table 2 shows the electricity price information for

each time period of the superior power grid. To encourage the

microgrid to absorb its own renewable energy output as much as

possible, the transaction price of the electricity purchased from

the microgrid by the superior grid is set to 0.6 times the price

value. To prevent electric vehicle users from consuming too

much electricity, the upper limit of the transaction prices of

the electric vehicles and microgrid in each period is set to the

price of the superior grid corresponding to that period, and the

lower limit is 0.5 times that of the superior grid for the

corresponding period. The dispatch period of the microgrid is

from 8:00 to 23:00. The number of electric vehicles that can be

dispatched is 200, the SOC preference coefficient k is set to 0.9,

and the SOC is set to 0.6, with the average battery capacity of the

electric vehicles being 40 kW h. The initial SOC obeys a uniform

distribution in the range of 0.2–0.4, and the maximum,

minimum, and expected SOCs are set to 1, 0.1, and 0.6,

respectively. The limit of the charging and discharging power

is 20 kW. The confidence level of the power balance constraint is

set to 0.95, and the prediction errors of the photovoltaic and wind

power outputs are normally distributed with a mean of 0 and a

variance of 0.05. The load forecasting error is also normally

distributed with a mean of 0 and a variance of 0.1.

To verify the feasibility and effectiveness of the proposed

model, the simulation results of three models are compared in

this work. Plan 1: Aiming at the lowest electricity cost of the

microgrid, electric vehicle users accept the centralized and

unified optimal dispatch scheme. Plan 2: Based on the

Stackelberg game model, with electricity consumption and

minimal cost as the objective functions for the microgrid and

electric vehicle users, bilevel optimal scheduling is performed.

Plan 3: The Stackelberg game optimal scheduling model that

considers the SOC approach proposed here is adopted. Figure 5

shows the optimization simulation results of these three models.

By analyzing the load curves of the three optimal scheduling

plans in Figure 5, we observe the following. In plan 1, the wind

and light outputs of the microgrid are obviously absorbed;

however, new peak and valley periods appear in the load

curve owing to the influence of the time-of-use electricity

pricing of the superior power grid and the expected SOC

FIGURE 4
Load, wind power output, and light output curves of the
microgrid.

TABLE 2 Time-of-use electricity price of superior power grid.

Period of time Peak/valley
type

Electricity rate

1: 00 to 8: 00 Valley 0.5 yuan/kW·h
18: 00 to 23: 00 Peak 1 yuan/kW·h
8: 00 to 18: 00 and 23: 00 to 24: 00 Plane 0.69 yuan/kW·h

FIGURE 5
Comparison of the load curves of the three optimal dispatch
plans.
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constraint on the electric vehicles; further, the load curve

characteristics are not improved. In plan 2, a new peak–valley

period of the load is generated, in addition to an increase in the

peak–valley difference of the load curve; this is because both the

master and slave of the game only pursue their own economic

interests, and the game does not allow win-win results for either

party. In plan 3, the charging and discharging power of the

electric vehicles can be changed smoothly because the charging

states of the electric vehicles benefit the users; there is no new

peak–valley period or peak–valley difference in the load curve,

and the load curve of the microgrid is improved obviously.

By analyzing the information in Table 3, it is observed that

the electric vehicle users in plan 2 have the lowest electricity cost.

However, the electricity cost of the microgrid increases,

indicating the self-interests of the users in the game. In plan

3, although the user’s electricity cost is higher than that in plan 2,

the interests of both the master and slave of the game are taken

into account better; simultaneously, there is no deep charge and

discharge, which enables a good balance of the optimal

scheduling scheme. The charging and discharging power

curves of the electric vehicles for the three plans are analyzed

in Figure 6. Plan 3 not only improves the load curve

characteristics of the microgrid but also effectively avoids

frequent and deep charging and discharging of the electric

vehicle batteries compared to the other two plans; this can

prolong the service life of the battery and slow its losses. At

the same time, it can be better applied to the users’ daily-use

scenarios, can better meet users’ convenience needs, and can cope

with uncertainties in the users’ travel situations.

The user’s SOC preference coefficient is set to kn in this work.

By analyzing the simulation results in Figures 7, 8, when the users

TABLE 3 Comparison of scheduling results optimized by different methods.

Electricity cost of
the microgrid (yuan)

Charging and discharging
costs of electric
vehicle users (yuan)

Peak–valley difference of
microgrid load curve
(kW·h)

Plan 1 1780.4 1429.7 1542

Plan 2 2986.1 896.5 2569

Plan 3 1394.5 1136.2 765

FIGURE 6
Changes in the charging and discharging curves of the three
plans.

FIGURE 7
Influence of kn change on transaction price.

FIGURE 8
Influence of kn change on SOC.
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choose higher preference coefficients, the electric vehicles

provide less charging and discharging powers for participation

in the scheduling. At the same time, the microgrid needs to set a

higher transaction price to mobilize the users to participate in

dispatching. As the expected SOC also increases with an increase

in the coefficient value, the overall schedulable capacity of users

participating in scheduling also increases. Therefore, when

kn � 1.2, the electricity cost of the microgrid decreases.

Considering the usage characteristics of different users and

the development of related communication and control

technologies, the microgrid dispatching center can work out

point-to-point dispatch transaction agreements with each of

its users to meet the needs of disconnected users.

Conclusion

In the present research, microgrid and electric vehicle users

are considered as two different stakeholders. To cope with the

fact that electric vehicle users only respond to microgrid control

through the electricity prices, there will be new peak–valley

differences in the load curves. Based on the idea of the

Stackelberg game, an optimal dispatch model of the microgrid

with electric vehicles is proposed by considering the SOC. From

comparisons of the different optimal scheduling schemes, the

following conclusions are obtained.

a) The established model guides electric vehicle users to charge

and discharge based on electricity prices instead of the objective

function, where the users only consider charge and discharge

costs. After optimization, the proposed objective function

considering the SOC not only reduces the peak–valley

difference of the microgrid load curve as well as the

electricity costs of the master and slave effectively but also

prevents new peak values or increase in the peak–valley

difference owing to the influence of the electricity price.

b) By analyzing the electrical energy interaction mode between

the microgrid and electric vehicle users, it is shown that both

parties interact in the form of a noncooperative Stackelberg

game. The existence of the Nash equilibrium solution of the

proposed master–slave game strategy is proved

mathematically. When solving the model, bilevel

programming is adopted, and the nonlinear terms of the

model are linearized by piecewise fitting.

c) For electric vehicle users, frequent and deep discharging of

the vehicle batteries can be avoided, which can reduce battery

losses from dispatching. At the same time, because the battery

SOC is maintained at a high level, the uncertain travel needs

of users can be met. The proposed method thus ensures the

greatest extent of autonomy of electric vehicle users for

participation in microgrid dispatching.
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