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The power detection of the distribution network is essential for reliable and

secure distribution. In this paper, a flexible dual-threshold SVDD fault warning

algorithm with fault samples is proposed to deal with problems concerning

complex network topology, accessible data, andmissing fault data in the power

grid. For the problems of complicated network topology and a wide variety of

signal types, we propose to combine wavelet packet energy features with

Spearman to extract electric signal features, and finally achieve accurate

feature extraction of multiple signal types. In the case of the problems of

untimely judgement and low accuracy of the original SVDD, a relaxed SVDD

fault warning algorithmwith fault samples is correspondingly proposed.We turn

the original SVDD boundary into a double-layer boundary, and divides the

hypersphere space into three regions to increase the sensitivity to the fault

samples and lessen the risk of missed detection. Besides, an adaptive update

strategy is developed, which reduces the computational effort of themodel and

is proven more applicable to the distribution. Finally, the method is applied to

numerical examples and fault detection experiments, and the experimental

results in turn verified its effectiveness and superiority.
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1 Introduction

The distribution, the last link of the power system, is directly responsible for meeting

the responsibilities proposed by users for stability, safety, quality, and economy of electric

energy, and reliable fault warning is necessary for the safe of the distribution network,

making rapid fault warning of the distribution network necessarily important. The fault

warning algorithms and methods introduced so far can be categorized as follows.

• Analysis based on expertise and prior knowledge

• Analysis based on artificial neural network

• Analysis based on data-driven

Expert system-based fault information analysis is applicable to some cases where the

information obtained is incomplete (Yi and Etemadi, 2017; Wang X. et al., 2018; Peng
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et al., 2018). However, in recent years, the introduction of large

amounts of distributed generation and loads have contributed to

the exponential growth of the complexity of power systems in

size and coupling. The coupling between these subsystems and

components is still in the research phase and has not yet been

clarified, make it difficult for this method to keep up with the

exponentially growing network complexity and its applicability

may be worse. Moreover, this method takes a long time to build

the database and has less redundancy for errors, perfectly

presenting its advantages over expert systems for fault warning.

The fault diagnosis method is based on the artificial neural

network by keep simulating the human nervous transmission

and processing of information (Gopakumar et al., 2015; Yansong

et al., 2018; Fei et al., 2019; Guomin et al., 2019; Saizhao et al.,

2019; Han et al., 2022). The literature (Saizhao et al., 2019)

proposes an artificial neural network-based rapid diagnosis

method for production line electricity for the existing fault

detection methods with the problems of difficult threshold

selection, low accuracy, and long detection time; A new

method of fault detection and fault location is proposed in the

literature (Gopakumar et al., 2015), which can achieve a better

classification of fault types and a fast location of fault locations.

Although the artificial neural network for equipment power fault

processing speed also has good fault redundancy, it is subject to

certain limits brought by the need for much data support.

However, the production equipment power consumption

information is limited and fault data to be collected is

missing, which severely limit its application.

Instead of exploring the faults or fault models, the data-

driven analysis approach analyzes the characteristics of the

received signals and correlates them with fault states. Many

algorithms have been proposed, such as principle component

analysis, model analysis, etc (Feng and Zuo, 2013; Gritli et al.,

2013; Joksimovi et al., 2013; Clemente-Alarcon et al., 2014; Hong

and Dhupia, 2014; Lu et al., 2017). There have been some

literature exploring data-driven methods for power system

fault detection. The most commonly adopted schemes are

various machine learning based classifiers, e.g. the Decision

tree-based classifiers (Chouder and Silvestre, 2010) and the

Support Vector Machine (SVM)-based classifiers (Zheng et al.,

2018). Among them, Support Vector Data Description (SVDD)

is widely used in the field of fault warning. SVDD can be

established with a few samples and only normal samples,

making it a new hot spot in the field of fault diagnoses such

as real-timemonitoring and fault warning. The existing problems

of conventional SVDD and the ways to improve them are as

follows. 1) For faulty samples, many current online SVDD

algorithms choose to discard (Lei, 2009) or treat them as

normal samples (Davy et al., 2006) and continue to use them,

which can lead to great data waste and computational errors. The

literature (Tax and Duin, 2004) points out that fault samples are

rich invaluable, and the SVDDmodel can effectively improve the

diagnosis accuracy by adding a few fault samples in the training.

2) In the applications, the criteria that distinguish whether the

power system is faulty is fuzzy, the specific performance is that

when the SVDD is training, the incorrect samples near the

boundary have a great possibility to appear inside to become

the new support vectors, and similarly the samples inside the

model also have the probability to appear outside to become the

wrong samples. Therefore, the similarity of these misclassified

samples near the boundary in the applications will bring a certain

detection error (Guo et al., 2009). The literature (Lei, 2009)

proposes a dual threshold to distinguish misclassified samples

from support vectors. The literature (Mu and Nandi, 2009)

proposes a v _ SVDD algorithm to overcome the effect of

wild points and noise appearing on the SVDD boundary.

However, a comprehensive analysis of all available signal types,

that is, accurate feature extraction, is a condition and a crucial step

for implementing fault warning. To address this challenge, the

literature (Yilun et al., 2020) has studied the proposed point

estimation method to calculate the currents in the power and

extracted the electrical signal features by deep learning methods.

In the case of improving feature recognition, the deep learning

approach leads to large diagnostic model size and a long diagnostic

time. In the literature (Lu et al., 2021), a single switching quantity

information or electrical quantity information is used to judge the

faults of power grid, it is demonstrated that multiple signal features

can better improve the accuracy of grid fault detection. In the

literature (Liu et al., 2019), this paper proposes a multi-source log

comprehensive feature extraction method based on restricted

Boltzmann machine (RBM), the RBM fully exploits the valid

information in the grid signal to obtain more accurate signal

features. In the literature (Xin et al., 2021), for the problems of

low diagnostic accuracy and difficult feature extraction of microgrid,

the microgrid fault diagnosis method of wavelet feature extraction

and deep learning is proposed, and the final diagnostic accuracy was

improved, but the effect of feature reproduction for grid signal was

not obvious. Although the literature (Xiang et al., 2015) proposes a

combined feature fusion approach for online fault diagnosis, it is

limited to fusing only two features, which does not apply to scenarios

with many signal classes and complex feature coupling associations.

Only a single type of signal is used for feature extraction in

research methods and applications mentioned above. However,

in the power distribution, many variables of the electricity-using

network are measured and recorded, each containing some fault

characteristics. This means that fault characteristics are

irregularly distributed across multiple signals and that this

complex nonlinear relationship is difficult to analyze. This

requires a comprehensive analysis of all useful signals

collected using novel data correlation techniques.

Thus, this paper aims to provide a new fault warning scheme

for power systems. This method can be divided into two parts,

i.e., wavelet packet energy entropy feature extraction with

Spearman correlation analysis and a highly optimized resilient

dual-threshold SVDD classifier.Wavelet packet decomposition is

used to generate key feature combinations to lay the foundation
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for classifier construction; the elastic double-threshold SVDD

algorithm introduces the idea of relaxed boundaries to increase

the sensitivity to faulty samples.

The primary contributions of this paper can be summarized

as follows.

• A novel feature extraction method namely wavelet packet-

Spearman rank correlation feature extraction is proposed

to analyze and fully exploit the correlation between

different signal types., which is especially suitable for

power distribution with complex network structures and

coupling between signals;

• The flexible dual-threshold SVDD algorithm is proposed

to form a variable double-layer discriminant boundary by

introducing a relaxed boundary strategy, which effectively

increases the discrimination degree of the model for fault

samples and greatly reduces the diagnostic false alarm;

• An online adaptive update strategy over time is proposed,

which greatly reduces the computational effort of the

model and makes it widely applicable to fault warning

with various system signals delivering complex and

strongly coupled signals.

The rest of this paper is organized as follows. In Section 2, the

wavelet packets, Spearman correlation, and other related theories

are proposed. In Section 3, the WPDSR- SVDD framework and

technical details of the proposed paper are given. Section 4 partly

presents the comparative experiments and experimental results

of the proposed method and other methods. And Section 5

concludes the paper.

2 Feature extraction related work

Feature extraction is the basis for achieving fault warning.

Extracting the key and accurate features can directly affect the

performance and correctness of the fault warning model.

However, the topology of the power network is complex, and

the voltage and current signals collected by PMUs have problems

such as difficult processing, inconsistent magnitudes, and large

correlations, which require a comprehensive new data feature

extraction method. Therefore, the wavelet packet energy entropy

method is hereby proposed to solve the gauge nonuniformity

problem and combines it with Spearman correlation analysis to

fully exploit the effective information between different signal

types.

2.1 Wavelet packet decomposition

In actual application, there are many signals reflecting the

information of equipment characteristics, such as voltage, current,

power, power factor, and other electrical signals, and these signals

have the problems of non-uniformity of magnitude and

correlation with each other. To extract uniform, comprehensive

and accurate features, more comprehensive and suitable methods

are needed. In recent years, wavelet packet analysis has a more

flexible time-frequency plane of the signal, and it also has a good

analysis effect on the high frequency part. After the wavelet packet

decomposition of the energy, entropy can also be clever to achieve

the purpose of scale unification. Therefore, this paper decomposes

many different types of signals using the wavelet packet analysis

method (WPD) and then a uniform magnitude is obtained by

extracting the energy entropy. WPD is specifically described as

follows (Rafiee et al., 2009).

X2n
i+1 � Xn

i pP(−2m) (1)
X2n+1

i+1 � Xn
i pQ(−2m) (2)

Where p denotes the convolution operator, Xn
i denotes the

wavelet packet coefficient, P(m) and represents a conjugate

filter. i and n represent the number of layers of decomposition

and the label with nodes. Assuming that the original signal is at

the maximum decomposition depth I, at the node (i, n), the main

areas of concentration of frequency bands are as follows.

F ∈ [n × Fs/2i+1, (n + 1) × Fs/2i+1]
1≤ i≤ I, 0≤ n≤ 2I − 1

(3)

Where Fs indicates the frequency of the original signal.

2.2 Spearman correlation

The above-proposed wavelet packet decomposition method,

although can effectively extract the features of a single class of

signals and achieve the purpose of unifying the magnitude by

extracting the energy entropy. However, this is not enough.

There are many types of signals reflecting the state of the

equipment mentioned earlier which means that the fault

features will be irregularly distributed in multiple signals, and

these signals will jointly affect the state of the system. Besides,

only feature extraction of a single signal type will lead to the loss

of correlation information in the extracted feature information,

which will affect the accuracy of the SVDD model. Therefore,

methods to fully exploit the correlation between different signal

types are also needed, and this paper proposes Spearman rank

correlation combined with wavelet packet energy to analyze and

extract the exact features.

Spearman correlation analysis is used to assess the

correlation between two variables. It requires the observations

of the two variables to be paired with rating information or rating

information obtained by transforming observations of

continuous variables, without considering the overall

distribution pattern of the two variables and the size of the

sample size. For every two vectors Ynx1, the Spearman rank

correlation can be calculated as
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ρ � cov(x, y)
σxσy

� E[(x − μx)(y − μy)]
σxσy

�
∑n
i�1
xiyi − n�x�y����������������������(∑n

i�1
x2i − �x2)(∑n

i�1
y2i − �y2)√ (4)

Where, x or y are the rank vectors of the raw vectors X and Y, μ

and σ represent the mean and variance, respectively. Since the

rank order is a continuous positive integer, the �x, �y, ∑n
i�1x2,∑n

i�1y
2, ∑n

i�1xiyi can be expressed as follows (Myers et al., 1995).

�x � �y � 1
n
(1 + 2 + ... + n) � n + 1

n
(5)

∑n
i�1
x2 � ∑n

i�1
y2 � 12 + 22 + ... + n2 � n(n + 1)(2n + 1)

6
(6)

∑n
i�1
xiyi � 1

2
∑n
i�1
[x2

i + y2
i − (xi − yi)2]

� n(n + 1)(2n + 1)
6

− 1
2
∑n
i�1
d2
i (7)

Where, di � xi − yi, thus Eq. 4 can also be written as follows.

ρ � 1 − 6∑d2
i

n(n2 − 1) (8)

2.3 Feature extraction

In summary, wavelet packet analysis can fully decompose the

collected signal, and it is also provided with the property of energy

conservation. Thus, it can not only achieve a uniform signal

magnitude, but also determine how much feature information

is contained by comparing the energy level after decomposition.

The higher the energy of the nodes means that the more feature

information contained, the more obvious the features.

Additionally, the application of Spearman rank correlation can

ensure the wavelet packet decomposition while analyzing the

correlation between different signal types, so that energy

features with more accurate and fuller feature information can

be extracted in the end. The specific implementation steps can be

expressed as follows following Perceval’s constant equation:

∫∞
−∞

∣∣∣∣f(x)∣∣∣∣2dx � ∑∣∣∣∣dj+1,2n
k

∣∣∣∣2 (9)

From the equation, it can be seen that the square of the

wavelet packet coefficients has a quantum of energy. Select

appropriate wavelet basis functions for J-layer wavelet packet

decomposition, and obtain the number of bands of M.

Etotal � ∑J�2n−1
J�1

����Aj

����2 + ∑J�2n−1
J�1

����Dj

����2 (10)

Where, AJ denotes the decomposed low-frequency component

coefficients, and Dj represents the decomposed high-frequency

component coefficients. The relative wavelet packet energy of

each wavelet node can be expressed as follows.

ρj �
Ej

Etotal
�

����Aj

����2∑J�2n−1
J�1

����Aj

����2 +∑J�2n−1
J�1

����Dj

����2 (11)

To extract more accurate and richer features, after first

wavelet packet decomposition and extracting the energy share

by Eq. 11, then applying Eq. 8 to the extracted energy features for

correlation analysis, and finally finding the exact energy

combination features. The result is shown in Eq. 12.

ρWPD � 1 − 6∑ρ2j
n(n2 − 1) (12)

The energy occupation ratio calculated by wavelet packet

decomposition is directly used as the feature set, and the results

are shown in Table 1.

As is shown in Table 1, the contribution of each signal as a

feature set is 20%, failing to reflect the influence of their

relationship on the energy features. Since the energy share

calculated after wavelet packet decomposition can only

characterize one signal type, the correlation between the

signals is explored to fully extract the signal features. The

analysis method of Spearman’s correlation is introduced to

analyze the correlation between each signal, and the

correlation between each signal is calculated according to Eq.

12, as is reflected by the change in the contribution of each signal

as a feature set, which is shown in Table 2.

As is shown in Table 2, Spearman correlation analysis can

characterize the correlation between the different signals, i.e., the

change in the characteristic contribution of each signal. The

change from Table 1 lies in the increased contribution of current

and power.

3 Proposed fault diagnosis method

In this paper, a novel flexible dual-threshold SVDD fault

warning algorithm with fault samples is proposed, which adds

the fault samples to the SVDD training and proposes a relaxation

boundary, and introduces an offset factor. The trained model

uses online power network signals for fault warning. The overall

flow of fault warnings is shown in Figure 1.

3.1 SVDD-related studies

Since in production, the power will always be in steady state,

with few or no fault states. Therefore, the data collected by

PMUs are mostly normal samples, and fault samples are

seriously missing. It also limits the application of other
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methods. For example, expert systems, artificial neural

networks, and other models require a large number of fault

samples for training.

Compared to other related works, SVDD shows

uniqueness about the lack of failure samples. Its essence of

SVDD is to map feature samples to a high-dimensional space

through a mapping relationship to find an optimal description

boundary that can contain all feature samples as much as

possible. The essence of constructing an optimal description

boundary is to solve a quadratic optimization problem, only if

all samples xi satisfy the following conditions of Karush-

Kuhn-Tucher (KKT). [α1, α2, ..., αn] is the optimal solution

to the problem. ⎧⎪⎨⎪⎩ αi � 00d2
i ≤R2

0< αi <C0d2
i � R2

αi � C0d2
i ≥R2

(13)

Where, d2i is the square of the distance from the sample xi to

the center of the sphere. Among these samples, those that

satisfy αi � 0 are located in the interior of the hypersphere

TABLE 1 Energy contribution.

Signal type Voltage (%) Current (%) Active power
(%)

Reactive power
(%)

Power factor
(%)

Proportion 20 20 20 20 20

TABLE 2 Sr energy contribution.

Signal type Voltage (%) Current (%) Active power
(%)

Reactive power
(%)

Power factor
(%)

Proportion 5 45 25 15 10

FIGURE 1
Overall flow chart of the fault warning.

FIGURE 2
Flexible double-threshold SVDD.
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boundary (including the hypersphere boundary), and those

satisfying 0< αi <C are on the outer of the hypersphere

(including the hypersphere boundary). Similarly, many

scholars have made efforts to improve the performance of

the SVDD model. To improve the robustness and accuracy of

SVDD, the literature proposed the SVDD algorithm with fault

samples (NSVDD) by adding fault samples to the model

training, and the SVDD with fault samples adds a small

number of fault samples to the basic SVDD model. The rest

of the solution is consistent with the standard SVDD algorithm

in terms of solution. This method improves the performance of

the SVDD model to some extent.

The key factor affecting the accuracy of the model is the

shape of the optimal description boundary, and the key factor

determining this shape is the sample located on the hypersphere

boundary known as the support vector. Therefore, an accurate

judgment of whether it can be a support vector sample is

crucial. In the power distribution, there is the aging of the

power equipment, which leads to deviations between the

collected data and the original equipment data. In other

words, when the model works with samples that are located

outside the boundary but close to it, the traditional model

would consider them as faulty samples, which is actually not

entirely true. It would lead to a false alarm risk for the model.

Similarly, there is a great possibility the samples located inside

the hypersphere boundary close to the boundary are with fault

warnings, which can lead to the problem of missed detection in

the model.

3.2 Flexible double-threshold SVDD

As mentioned in the previous section, the conventional

SVDD directly compares the size of sample distance and

hypersphere radius, which will produce serious false alarms

and missed detections. To better divide the samples and

improve the discriminative accuracy of the hypersphere

boundary for the samples on both sides, this paper introduces

the idea of a relaxed boundary and proposes a ball boundary

offset discriminative criterion. First, define the ball boundary

offset factor.

η � (r − R)/r (14)

Where, r represents the distance from the sample to the center of

the sphere, and R represents the radius of the hypersphere.

Simultaneously, set two thresholds λ+ and λ−, where λ+ ≥ 0,

λ− ≥ 0. Thus, two new decision surfaces are obtained based on

the original decision surface, and the hypersphere space is

divided into three regions, i.e., A, B, and C, as shown in

Figure 2. Each regional sample satisfies η≤ − λ−, −λ− < η≤ λ+
and η> λ+.

The thresholds λ+ and λ− in the relaxation discriminant

criterion corresponds to the role of the relaxation variable C in

the SVDD model. When the traditional SVDD model is

trained, the slack variable C reflects the degree of fault

tolerance of the model to the fault points, weakening the

influence of normal samples far away from the boundary

(away from the sphere center direction) and faulty samples

(near the sphere center direction). After the training is

completed, the thresholds λ+ and λ− adjusts the SVDD

boundary so that the vast majority of samples

contaminated by working conditions and noise enter the B

region, which is used to balance the misclassification ratio of

the SVDD boundary. The λ+ controls the proportion of

normal samples entering region C (rejecting normal

samples, often called “false alarms”), the proportion is set

to μ+. The λ− controls the proportion of erroneous samples

entering region A (accepting faulty samples, often called

“misses”) and is set to μ−.
In production practice, missed inspection is more serious

than a false alarm, which will seriously endanger the safety of

equipment operation and bring greater losses. Therefore, the

FIGURE 3
Process for determining the threshold values λ+ and.λ−.
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upper limit of μ− should be very small, or even directly taken

as 0, to increase the sensitivity to the faulty samples and reduce

or avoid the risk caused by a missed detection. The upper limit

of μ+ should not be too large, depending on the size of the

sample. The threshold values λ+ and λ− are determined as in

Figure 3.

3.3 Adaptive update policy

The basic idea of model updating is to continuously add

newly-collected sample data while eliminating the same

number of original samples to form a new set of samples

for retraining the SVDD model. The introduction of this

update idea overcomes the disadvantages of frequent

updates and large computation of the SVDD model,

improves the algorithm efficiency, and makes it more

suitable for real-time online fault warning of the

distribution power. Samples entering area B cannot be

directly considered normal or faulty samples.

The ideal situation for fault warning is to enter test data

with normal samples located in area A and faulty samples

located in area C. Due to the complex working conditions of

the power system network equipment, a large amount of noise

is likely to be mixed in the signal, and several samples will

enter the B region. The method adopted in this paper is to

count and record the proportion of samples entering the B

region for the samples to be detected, and set the alarm

threshold θ. If it is higher than the threshold value, it is

considered that there is a potential danger, but there is no

trend of failure so that it can better give early warning signals

and reduce unnecessary losses caused by untimely

maintenance. Suppose that the sample is trained at moment

t-1, the support vector obtained is {SV1,t−1, ..., SVl,t−1}. Then
the detection is done, and the training samples and detection

model are updated according to the following law. The update

rule is as follows.

1) If ηx(t) > λ+, SV1,t−1 > 0, Then there is no need to update

the training sample and the SVDD model, and the sample

is directly considered as a faulty sample at that moment.

2) If ηx(t) > λ+, SV1,t−1 � 0, Same as (1).

3) If ηx(t) ≤ − λ−, SV1,t−1 � 0, then update the training

sample {x1,t−1, ..., xl,t−1} � {x2,t−1, ..., xl,t−1, x(t)}, update

support vectors

{SV1,t−1, ..., SVl,t−1} � {SV2,t−1, ..., SVl,t−1, SV1,t−1}. The

samples at that moment are judged as normal samples

and can participate in the next training.

4) If ηx(t) ≤ − λ−, SV1,t−1 > 0, then update the training sample

{x1,t−1, ..., xl,t−1} � {x2,t−1, ..., xl,t−1, x(t)}, the support

vectors remain unchanged. The sample at that moment

FIGURE 4
Simulation model built in PSCAD/EMTDC.
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is judged as normal but does not participate in the next

training.

5) If −λ− ≤ ηx(t) ≤ λ+, SV1,t−1 > 0, Same as (4).

6) If −λ− ≤ ηx(t) ≤ λ+, SV1,t−1 � 0, Same as (4).

In summary, when the test sample is located in the C region,

i.e., ηx(t) > λ−, the system is judged to be working abnormally and

a warning signal is given in time. When both x1,t−1 and x(t) are
located in region A, x1,t−1 is removed from the sample set, x(t) is

FIGURE 5
Energy share of the five signals after decomposition.

FIGURE 6
Comparison of energy characteristics.
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added to the training sample set, and its corresponding support

vector is assigned a value of 0. When the test sample is located in

area B, both the model and threshold need to be updated, and the

percentage of entering area B over a while is counted and

recorded. When the leakage rate threshold is reached, a

warning is issued in time, and if there is a continuous

warning, the system is judged to be in a fault state.

4 Experiments

4.1 Simulation model and
parameterization

Wide area measurement system (WAMS) using PMUs has

been widely deployed worldwide in recent years. WAMS can

measure and transmit multiple signals according to the GPS

synchronized clock. PMUs can use GPS signals for

simultaneous voltage and current measurements to analyze and

provide information such as frequency, phase, and amplitude.

These signals are collected and transmitted to the master station at

each sampling moment. Therefore, the data can be synchronized

for grouping and storage. The standard IEEE 14-bus power system

is established using the PSCAD/EMTDC to verify effectiveness

and superiority of the proposed method. The network structure

and configuration of the simulation model is shown in Figure 4.

The frequency of this standard model is 60Hz, so the sampling

frequency is 6 kHz which is achievable because the PMUs can

sample ten thousand points per second. According to the Nyquist’s

sampling law, this sampling frequency is greater than the system

state. In addition, the generator power and the load power in this

experiment are also shown in Figure 6.

4.2 Wavelet packet -spielman feature
verification

The signals collected through PMUs are electrical signals

such as voltage, current, active power, reactive power, and power

factor, which possess different scales and therefore need to be

standardized. The wavelet packet energy decomposition is

applied to unify into energy features. The energy share of five

different signals after wavelet packet decomposition is shown in

Figure 5.

According to the energy conservation law, a fundamental

property of wavelet decomposition above, the larger the energy

share of the wavelet packet decomposition band is, the more

obvious the reflected characteristics will become. Therefore,

according to Figure 5, it is concluded the five different signals

all have the largest energy share at the first node after

decomposition. By extracting the maximum energy value and

calculating the energy share of each signal, the combined

characteristics of the uniform magnitude are obtained. As

TABLE 3 Feature comparison.

Energy features Diagnostic accuracy (%) Diagnosis time consumption
t/s

Independent Features 89 2.18

Portfolio Features 97 2.20

FIGURE 7
Comparison of three algorithms.

Frontiers in Energy Research frontiersin.org09

Chu et al. 10.3389/fenrg.2022.973794

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.973794


shown in Figure 5, it can be seen that the wavelet packet

decomposition yields eight nodes, and all five signal types are

the first node with the highest energy, so the first node energy value

is used as the combined feature. If each letter does not interfere

with each other and has independent features, the combined

energy features are assigned the same weights; however, under

operating conditions, there is a complex coupling between power

system power signals, so Spearman rank correlation is introduced

to calculate the coupling between each feature and recalculate the

weights to get a more accurate energy share. A comparison of the

energy characteristics after adding the Spearman rank correlation

is shown in Figure 6.

As shown in Figure 6, the proportion of energy

characteristics has changed significantly after adding

Spearman’s rank correlation, from approximately the same

role of each signal, i.e., the signals are independent of each

other, to the dominant role of the current, which forms a

mutual “constraint” relationship with other signals. This also

confirms that in industrial production power systems, the

complexity of the environment leads to strong coupling

between signals, so the direct use of energy features as a

feature set is not sufficient and will affect the diagnostic

accuracy of the early warning model. To investigate the

effectiveness of the proposed method, the original energy

features with the addition of Spearman rank correlation are

input into the SVDD model. The diagnostic accuracy, and the

diagnostic elapsed time of the twomethods, are shown in Table 3.

In Table 3, without considering the coupling between features,

the diagnostic accuracy is significantly lower than that of the feature

combinations with the addition of Spearman’s rank correlation.

Besides, there is almost no loss in diagnostic elapsed time, which

further verifies the effectiveness of the improved feature extraction

method proposed in this paper, and improves the diagnostic

accuracy while ensuring the diagnostic elapsed time.

4.3 Verification of WPDSR- SVDD

To fully validate the performance of the proposed method

in this paper, three levels of experiments are conducted

separately, starting with the combined energy features

extracted above as the feature dataset. Fault warning is

performed on PMUs acquired signals using raw SVDD-

based, SVDD-based with fault samples, and WPDSR-SVDD-

based, respectively. The number of normal samples and faulty

samples are set as n+ � 90, n− � 10, The range of penalty factors

C for the two types of samples is set as C = [0.2–0.9], the hyper-

parameter a is set to σ � 0.3. Through cross-validation, the

upper limits of μ+ and μ− are set as 0.04 and 0.001, and the alarm
cap is set as 0.6 and gives a warning signal when there are three

consecutive alarms. The combined energy features extracted

above are used as the feature sample set to train the SVDD

model, and then input to the test set for fault warning. The

results are shown in Figure 7 (the vertical coordinates in the

figure are the state category labels, one represents normal,

-1 represents the presence of an abnormality, and

0 represents warning) Figure 7 (1) to (3) correspond to the

original SVDD algorithm, SVDD with fault samples, and the

WPDSR-SVDD algorithm proposed in this paper, respectively.

Comparing Figure 7 (1) to (3), it is obvious that the original

SVDD has serious false alarms and missed detections. Although

the SVDD algorithm with fault samples can improve the

diagnosis accuracy to a certain extent, it still cannot solve the

problem of false alarms and missed detections, resulting in the

diagnosis accuracy is still not high. The proposed method in this

paper, however, can effectively warn the faults that appear in the

power system and gives early warning signals in the pre-fault

stage. It shows that the WPDSR-SVDD algorithm can improve

the early warning accuracy while effectively avoiding false alarms

and missed detections in the diagnosis process. Then, the

diagnostic accuracy of the three algorithms has been modeling

time-consuming as shown in Table 4. From the table, it is obvious

that the proposed method in this paper has high effectiveness.

5 Conclusion

In this paper, a new generalized resilient dual-threshold fault

warning method with fault samples named WPDSR-SVDD is

proposed for complex system networks, especially distribution

power networks. The use of fault samples, the division of real-

time samples, and the optimization and updating of the training

model are successfully applied to practical production. The

experimental results show that WPDSR-SVDD can provide

accurate and fast fault warnings even in the case of

insufficient data, and the main conclusions are as follows.

TABLE 4 Diagnosis efficiency.

Algorithm Diagnostic accuracy (%) Diagnosis time consumption
t/s

Original SVDD 85 3.43

SVDD with Fault Sample 91 3.24

WPDSR-SVDD 96 3.05
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1) Energy feature extraction is introduced to unify the

magnitudes of different kinds of signals to form combined

features, and Spearman rank correlation is introduced to solve

the problem of mutual coupling between signals, which finally

improves the diagnostic accuracy.

2) The relaxed boundary criterion is proposed for the traditional

SVDD, and the offset factor is introduced to change the original

SVDD from an exact judgment to a fuzzy judgment, which in

turn improves the robustness of the diagnosis system.

3) A model capable of online adaptive updating is proposed that

can reduce the risk of false alarms andmissed detections while

satisfying real-time online faults.

Moreover, there are still something need to improve of the

proposed approach. For example, since its modeling is an

unsupervised learning process, online updating of models is

extremely challenging. And the proposed method can only be

used for early fault warning of the distribution system. That also

means the approach cannot analyze the fault type, because the

model is trained with only normal data. That may be the

direction of further research.
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