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Accurately predicting the remaining useful cycle life of a lithium-ion battery is

essential for health management of battery systems. Aiming at the time-varying

and nonlinear problems of lithium-ion batteries, a remaining useful cycle life

estimation method based on Takagi-Sugeno fuzzy model is proposed, which

not only reduces the amount of data calculation, but also reduces massive data

and has high accuracy. First, collect the rate of change of working voltage in the

charging process, and analyze the relationship between the position of voltage

rate curve and the number of cycles. Second, in order to reduce the amount of

historical data, the interval with obvious mapping relationship is selected, and

the recursive least squaremethod is used to fit the curve off-line, which reduces

the amount of data calculation and is easy to achieve in battery management

system engineering. And then, the Takagi-Sugeno fuzzy model is applied to

establish the remaining useful cycle life method based on Takagi-Sugeno fuzzy

model. Finally, battery management system application shows that the

proposed method can achieve high prediction accuracy and also provides a

new perspective for remaining useful cycle life prediction.
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1 Introduction

Many studies have been conducted on cycle-life prediction of lithium-ions in related

fields (Liu et al., 2013; Dong et al., 2014; Zheng and Fang, 2015; Chang et al., 2017; Song

et al., 2017; Dong et al., 2018; Guha and Patra, 2018; Song et al., 2018; Wang and Tsui,

2018; Zhang et al., 2018). In terms of research methods, remaining-useful-life (RUL)

prediction methods can be roughly divided into three categories (as shown in Figure 1): 1)

RUL prediction methods based on model-based method, such as physical chemistry or

experience of the predicted object; 2) data-driven RUL prediction methods, which require

no specific systemmechanismmodel and are completely based on historical characteristic

data; and 3) the hybrid method, in which multiple RUL prediction methods are fused in

different ways.
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1) The model-based method uses professional knowledge and

experience to establish a mathematical model of battery life

degradation, such as the physical model or electrochemical

equation of the internal structure of the battery. Based on the

internal structure of the battery, the mathematical mechanism

and degradation law are deeply discussed. InWu et al. (2021), the

paper proposes an improved reduced-order electrochemical

model (iROEM) with guaranteed observability, and the

constant current and dynamic conditions are applied to

evaluate the proposed battery model. The results demonstrate

that the iROEM with guaranteed observability has high model

fidelity and less computational complexity, which contributes to

the resultant estimators for the lithium-ion battery

electrochemical model. In Jiao et al. (2020), a PF (particle

filter) framework and weight strategy based on a conditional

variational autoencoder is used to predict the limiting range of

batteries. The results show that, compared with traditional

prediction methods, the new method has better prediction

performance. In Pan et al. (2021) and Kim et al. (2021), a

particle-wave algorithm was adopted and optimization is

conducted based on the degradation data of lithium-ion

batteries to improve the accuracy of prediction. In Sadabadi

et al. (2021), a RUL prediction algorithm based on parameter

estimation of an improved single-particle model is developed,

which is realized using vehicle charging data, and the evolution

of the state of health (SOH)metric was used to predict RUL. This

method has the advantages of stable performance and high

prediction accuracy, but its disadvantage is that it needs to know

the exact physical action equation of electrochemical cell, and it is

not suitable for off-line detection.

2) The data-driven method collects failure data related to battery

life degradation and uses algorithms to mine data implicit

information and potential connections between data. With

the support of statistical analysis, regression, artificial

intelligence and other methods, an approximate model of

battery life degradation was established, and then the model

was extrapolated to predict battery RUL. In Camargos et al.

(2020), the paper proposes a novel Error Based Evolving Takagi-

Sugeno Fuzzy Model (EBeTS) and a new data-driven approach

to fault prognostics based on that fuzzy model. The experiments

indicate that the proposed EBeTS-based prognostics approach

can take advantage of both historical and new online data to

estimate the Remaining Useful Life (RUL) and its uncertainties.

In Liu et al. (2021), advanced machine-learning technology is

applied to realize effective future capacity and RUL prediction of

lithium-ion batteries. The results show that this method still has

good adaptability for battery health diagnosis. In Lee et al. (2021),

a robust and reliable estimation method of the remaining service

life of lithium-ion batteries in electric vehicles based on a deep

neural network is proposed to predict the remaining service life

by monitoring the batteries’ internal resistance. A robust and

reliable method based on deep neural networks is proposed in

Chen et al. (2021) to estimate the RUL of lithium-ion batteries in

electric vehicles. Results show that this method performs

accurate adaptive detection of change points and has higher

robust prediction accuracy than existing methods. This article

(Afshari et al., 2022) focuses on batteries RUL early prediction

using data-driven methods. The differential capacity (dQ/dV)

and differential voltage (dV/dQ) curves can reveal the potential

capacity and voltage of a battery, respectively, and they are

known to be indicators of the battery’s degradation. The

presented method is generic and can be used for RUL early

prediction of different batteries. This method has the advantages

of strong nonlinear processing ability, adaptability and self-

learning ability, and shines in the battery life prediction

problem. However, problems such as slow training, excessive

resource consumption and weak generalization caused by

artificial neural network also appear slowly in the application

process.

3) The hybrid method gives full play to the advantages of various

methods by means of model and data-driven, data-driven and

data-driven hybrid methods, so as to better extract and use

information and data features in data, so as to obtain more

excellent network model robustness and prediction accuracy. Liu

et al. (2019) propose a deep learning ensembled prediction

approach based on BMA (Bayesian model averaging) and

LSTMNs (long short-term memory networks). We constructed

multiple LSTMNmodels with different sub datasets derived from

the degradation of training data. The results demonstrate the

effectiveness and reliability of our proposed ensemble prognostic

approach. In Ren et al. (2021), a lithium-ion battery RUL

prediction method based on an improved convolutional neural

FIGURE 1
RUCL prediction method.
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network (CNN) and long short-term memory (LSTM), namely,

auto-CNN-LSTM, is proposed, and results show that this method

is effective. The CNN-LSTM-particle-swarm-optimization

(CNN-LSTM-PSO) model, advanced by combining a hybrid

deep neural network with CNN-LSTM and a classical neural

network, is used in Kara, (2021) to realize multi-step advance

prediction. Experimental results show that the proposed CNN-

LSTM-PSO model has better results than other most advanced

machine-learning techniques and deep-learning methods. The

RUL prediction framework based on the stacked autoencoder and

Gaussian mixture regression (SAE-GMR) is proposed (Wei et al.,

2022). The method is established not only to improve accuracy of

RUL prediction, but also describe the reliability. Pugalenthi et al.

(2022) useNeural Networks (NN) as the predictionmodel and an

adaptive Bayesian learning approach to estimate the RUL of

electronic devices. The proposed prognostic approach functions

in two stages weight regularization using adaptive Bayesian

learning and prognosis using NN, and RMSE values and

execution time were used as metrics to evaluate the

performance. In Chen L. et al. (2022), a grey neural network

(GNN) model fused grey model (GM) and BPNN is proposed to

estimate the capacity online with the inputs of new health

indicators. The results indicate the proposed GNN algorithm

can effectively estimate degradation capacity with theMAE (mean

absolute error) is less than 2.2%, and the GNN-SGMPF had a

remarkable ability of transfer application, practicability, and

universality. Chen Z. et al. (2022) propose a sequence

decomposition and deep learning integrated prognostic

approach for the RUL prediction of LIBs. Complementary

ensemble empirical mode decomposition and principal

component analysis are applied to separate the local

fluctuations and the global degradation trend from the battery

aging data. The illustrative results demonstrate that the proposed

approach can achieve accurate, adaptive, and robust prediction for

both capacity trajectory and RUL. The hybrid method has many

problems such as large computation and large data demand,

which limit its application scope and generalization ability.

In this paper, a hybrid method based on TS fuzzy model is

proposed, which not only reduces the amount of data calculation,

but also reduces massive data and has high accuracy. Firstly, the

change rate of working voltage in the charging process is collected,

and the relationship between the position of voltage change rate

curve and the number of cycles is analyzed. Second, in order to

reduce the amount of historical data, the interval with obvious

mapping relationship is selected, and the recursive least square

method is used to fit the curve off-line, which reduces the amount

of data calculation and is easy to achieve in BMS engineering. And

then, the TS fuzzy model is applied to establish the RUCL method

based on TS fuzzy model. Finally, the accuracy and advancement

of the method are verified by BMS application.

The objective of this study is to propose a new method for

predicting the RUCL of lithium-ion batteries and verify its

validity. Four original contributions are made herein.

1) A RUCL estimation method based on TS fuzzy model is

proposed, reduce the amount of historical data and its validity

is verified through engineering application of BMS.

2) The mapping relationship between the number of lithium-ion

battery cycles and the position of the working voltage change

rate curve is revealed.

3) The proposed method can achieve high prediction accuracy,

and the prediction error is less than 1.58%.

4) The recursive least square method is used to fit the curve off-

line, which reduces the amount of data calculation and is easy

to achieve in BMS engineering.

2 TS fuzzy model

The TS fuzzy model can be described as (Gao et al., 2008;

Baranyi, 2014; Zhang et al., 2015; Zheng et al., 2018; Li et al.,

2021; Li et al., 2022).

IF x1 isA
i
1, x2 isA

i
2, . . . , xm isAi

m

THEN yi � pi
0 + pi

1x1 + pi
2x2 +/ + pi

mxm
(1)

Given a generalized input variable (x1, x2,/, xm), the total
output of the system can be obtained by the weighted average of

the outputs yi(i � 1, 2,/, n) of the rules:

ŷ � ∑n
i�1μ

iyi

∑n
i�1μi

(2)

where, n is the number of fuzzy rules, yi the conclusion equation

from rule i, and μi represents the membership degree of rule i

corresponding to this generalized input vector, which can be

determined by the following formula:

μi � ∏m
j�1

Ai
j(xj) (3)

where Π is a fuzzy operator, which usually adopts the operation

of taking a small value or product.

The basic principle of the TS fuzzy model converts normal

fuzzy rules and their reasoning into a mathematical expression.

In essence, the global complex nonlinear system, through fuzzy

division, establishes a number of simple (nonlinear) relations,

and the output of multiple models in fuzzy reasoning and

decision-making can express complex nonlinear relations. The

TS fuzzy model is suitable for the method of predicting RUCL of

lithium-ion batteries proposed in this paper. And, through

intelligent fuzzy division, can effectively reduce the amount

of data.
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3 Prediction principle of RUCL

3.1 Experiment

The experimental environment and equipment are shown in

Figure 2.

1) Experimental conditions: temperature, 25°C, humidity,

60 ± 10%.

2) Cell model: 30Q (INR18650-30Q) and 50G (INR18650-50G)

(parameters are shown in Table 1).

3) Experimental equipment: BTS20(5V/4*300A/WD),

computer, thermostatic chamber.

4) Experimental process: charge cutoff voltage, 4.2 V, discharge

cutoff voltage, 2.5 V, charge-discharge current, 0.3 C

(capacity).

3.2 Data analysis

After charging and discharging cycle experiments with a

current of 0.3 C, the comparison table between the cycle times

and the actual capacity of the two batteries is shown in Table 2.

When the 30Q cell cycle reaches 600 times, the capacity attenuates

to 31%; when the 50G cell cycle reaches 500 times, the capacity

attenuates to 38%. Therefore, defined as the phase of obsolescence.

As can be seen from Table 2, the capacity and rated capacity of

this experiment are somewhat reduced. Mainly during the charging

process, constant-current mode is adopted in this experiment. To

save time for the experiment, constant-voltage mode is not adopted

at the end of charging, so the capacity is slightly less than the rated

capacity. The maximum charging capacity of the first cycle was used

as the reference capacity for the experiment.

3.3 Curve analysis

In Li et al. (2019) and Liu et al. (2015), the present remaining

discharge capacity can be estimated by the dV/dQ value, so that,

through analyzing the characteristics of terminal voltage

variation, ΔU is defined as the input variable of the system in

this paper, that is, the change rate of working voltage.

In Figure 3 X-axis represents SOC of each cycle, and Y-axis

represents ΔU (mV). As the number of cycles increases, the curve

has the following characteristics:

1) ΔU curve has three peaks and four troughs. The curve with

more cycles and the curve with less cycles cross each other. In

the scrap stage, the curve tends to be horizontal.

2) It can be seen from interval D that, at the end of charging, the

curve with fewer cycles is outward, while the curve with more

cycles is inward. With the increase of the number of cycles,

the curve has a tendency of adduction.

3) In the interval A, B, C and D, the number of cycles has an

obvious corresponding relationship with the position of the ΔU
curve. For example, in the interval B, the curve with fewer cycles

is on the top. With the increase of cycles, the curve drops once,

and the onewith themost cycles is located at the bottom. The cell

30Q and 50G have the same rule.

FIGURE 2
Experimental environment. (A) Charge-discharge experiment. (B) 30Q and 50G battery.

TABLE 1 Parameters of the battery.

Items Parameter Parameter

model name INR18650-30Q INR18650-50G

nominal discharge capacity 3 Ah 4.8 Ah

nominal voltage 3.6 V 3.6 V

working voltage 2.5–4.2 V 2.5–4.2 V

standard charging time 180 min/150-mA cutoff 180 min/243-mA cutoff

charging temperature 0–45°C 0–45°C

discharging temperature −20–60°C −20–60°C

cell weight 48.0 g max 69.5 g max
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3.4 Feasibility analysis

According to the experimental data and curve analysis, the

feasibility of this method is analyzed theoretically and technically.

1) It has very good identification in A, B, C and D. The

number of cycles has an obvious mapping relationship with the

position of ΔU curve. Curves at different positions can

represent the number of cycles of lithium battery, which

provides theoretical feasibility.

2) The charging current is 0.3 C, which belongs to the

common vehicle-mounted charging current. The voltage

and current data can be collected and obtained directly

through BMS, which provides the feasibility of technical

application.

3) The current is very stable during the charging process in

interval A, B and C. Interval D is at the end of charging, and the

charging current changes greatly. Therefore, interval A, B and C

are selected.

4) The charging process lasts 3–4 h, and the amount of data

collected is not large, which is convenient for calculation and

processing.

5) The method directly collects the working voltage and

calculates the change rate, independent of the mechanism model

of lithium-ion battery.

To sum up, this paper selected A, B and C interval locations

to carry out RUCL prediction research.

4 RUCL prediction model

RUCL prediction method establishment process is shown in

Figure 4.

Step 1: Data acquisition;

Step 2: A, B, and C interval selection;

Step 3: ΔU, curve identification;

Step 4: TS fuzzy model is established and RUCL prediction

is made.

TABLE 2 Number of cycles vs capacity.

No. of cycles 30Q 50G

Capacity of charge SOH (%) Capacity of charge SOH (%)

(0.3 C) (Ah) (0.3 C) (Ah)

1 2.6272 100 4.2679 100

50 2.5428 97 4.2286 99

100 2.455 93 4.1744 98

150 2.400 91 4.0891 96

200 2.3665 90 4.0113 94

250 2.3126 88 3.9346 92

300 2.2711 86 3.7252 87

350 2.2085 84 3.618 85

400 2.0446 78 3.4032 80

450 1.7985 68 2.6421 62

500 1.6012 61 1.636 38

550 1.3195 50

600 0.8187 31

FIGURE 3
ΔU and cycle number curve of (A) 30Q and (B) 50G cell at
different SOCs.
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4.1 Data acquisition

According to the experimental method in Section 3.1,

charge and discharge cycle experiments are conducted on

INR18650-30Q and INR18650-50G cells, charging working

voltage data are collected, and voltage change rate data

are calculated. Some experimental data are shown in

Table 3 and Table 4. The first behavior cycle number; The

first column is the value of SOC; The data in the table is the

change rate of working voltage, in mV for different cycles

and SOC.

4.2 Determination of A, B, and C intervals

Through data analysis and curve comparison, the intervals of

A, B, and C ware selected.

1) Section A interval selection

The central SOC is 20%, the X-axis coordinates are 18–22%,

and the interval span is 4% (as shown in Figure 3). Through

comparative analysis of ΔU and cycle numbers (Table 3 and

Table 4), the value of this interval curve is close, with high

similarity and obvious consistency. Therefore, the curve interval

of segment SOC_A is 18–22%.

2) Section B interval selection

The central SOC is 37%, the X-axis coordinates are 33–41%,

and the interval span is 8% (as shown in Figure 3). Through

comparative analysis of ΔU and cycle numbers (Table 3 and

Table 4), the value of this interval curve is close, with high

similarity and obvious consistency. Therefore, the curve interval

of segment SOC_B is 33–41%.

FIGURE 4
RUCL predicted graph.

TABLE 3 Working voltage change rate of INR18650-30Q (mV).

No.
SOC

1 50 100 150 200 250 300 350 400 450 500

18% 12.3 12.7 12.7 12.6 12.5 12.3 12.2 11.9 11.4 9.9 6.7

19% 12.3 12.8 12.8 12.6 12.5 12.3 12.1 11.7 11.1 9.6 6.5

20% 11.9 12.6 12.7 12.5 12.1 12.1 11.9 11.5 10.9 9.2 6.4

21% 11.3 12.0 12.0 11.5 11.6 11.5 11.4 11.1 10.3 8.7 6.5

22% 12.6 11.4 11.3 11.4 10.9 11.1 11.2 10.7 10.0 8.3 6.3

33% 7.3 7.2 7.0 6.9 6.8 6.4 6.4 6.4 6.2 6.2 6.1

34% 7.5 7.2 7.0 7.0 6.9 6.8 6.7 6.4 6.2 6.1 6.3

35% 7.9 7.3 7.3 7.1 7.0 6.7 6.7 6.4 6.4 6.4 6.2

36% 8.0 7.5 7.4 7.3 7.1 6.8 6.8 6.8 6.6 6.4 6.1

37% 8.1 7.8 7.6 7.5 7.4 7.3 6.9 6.9 6.8 6.4 6.3

38% 8.4 8.0 7.8 7.6 7.6 7.2 7.4 7.0 7.0 6.7 6.1

39% 8.5 8.1 7.9 7.9 7.8 7.4 7.4 7.2 7.0 7.0 6.2

40% 8.7 8.3 8.2 8.0 8.0 7.7 7.7 7.4 7.3 7.0 6.3

41% 8.8 8.5 8.3 8.2 7.9 7.9 7.6 7.5 7.4 6.9 6.3

78% 9.9 10.0 10.1 10.2 10.1 10.0 9.9 9.8 9.3 8.4 6.8

79% 10.1 10.1 10.2 10.0 10.0 10.1 10.1 9.8 9.4 8.6 6.8

80% 9.7 10.1 10.0 10.1 10.0 10.2 10.2 9.8 9.7 8.7 6.8

81% 9.9 9.7 10.0 9.7 9.8 10.0 10.0 10 9.5 8.7 7.4

82% 9.4 9.4 9.2 9.5 9.4 9.6 9.6 9.9 9.7 9.0 7.5
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3) Section C interval selection

The central SOC is 80%, the X-axis coordinates are 78–82%,

and the interval span is 4% (as shown in Figure 3). Through

comparative analysis of ΔU and cycle numbers (Table 3 and

Table 4), the value of this interval curve is close, with high

similarity and obvious consistency. Therefore, the curve interval

of segment SOC_C is 78–82%.

The interval curves of A, B, and C are close in value

with high similarity and obvious consistency. In order to

reduce the amount of calculation and facilitate the

realization of BMS, the average value of ΔU in the

three intervals is selected to perform curve fitting with the

data of cycle times, with ΔU as the input variable and cycle

times as the output variable, and the curve equation is

obtained.

4.3 Recursive least square data fitting

The least square method in regression model is mainly to

optimize the fitting function, so that the fitting function can

better express the data. In this paper, recursive least square

method is used to fit the curve off-line to reduce the amount

of data calculation.

For a given set of data

xi, yi, (i � 1, 2, 3, . . . , m, is the number of arrays).
Suppose the fitting formula is:

TABLE 4 Working voltage change rate of INR18650-50G (mV).

No.
SOC

1 50 100 150 200 250 300 350 400 450 500 550 600

18% 11.7 11.8 11.5 11.3 11.1 11.0 11.0 10.5 10.0 9.3 8.4 7.3 4.5

19% 11.9 12.1 11.8 11.7 11.5 11.4 11.3 10.8 10.1 9.4 8.5 7.2 4.6

20% 11.7 12.3 12.2 11.9 11.6 11.5 11.2 10.9 10.3 9.1 8.2 7.1 4.8

21% 11.5 11.9 11.9 11.7 11.7 11.5 11.3 11.1 10.2 8.9 8.0 6.7 5.1

22% 10.9 11.5 11.7 11.3 11.4 11.2 10.9 10.8 10.0 8.7 7.6 6.5 5.2

33% 7.3 6.9 6.7 6.4 6.3 6.2 5.9 6.0 5.8 5.4 5.1 4.9 5.6

34% 7.4 6.8 6.5 6.4 6.3 6.1 6.0 5.9 5.7 5.3 5.0 4.8 5.3

35% 7.7 7.1 6.7 6.5 6.2 6.1 6.0 5.8 5.7 5.2 5.0 4.9 5.3

36% 7.8 7.1 6.9 6.4 6.4 6.1 6.0 5.8 5.4 5.3 4.9 4.7 5.3

37% 8.3 7.4 6.9 6.7 6.4 6.2 6.1 5.7 5.6 5.2 5.0 4.7 5.4

38% 8.3 7.5 7.1 6.7 6.5 6.5 6.3 6.0 5.6 5.4 4.9 4.9 5.2

39% 8.4 7.7 7.3 7.0 6.8 6.5 6.5 6.1 5.7 5.2 5.1 4.7 5.4

40% 8.5 7.9 7.5 7.2 6.9 6.8 6.5 6.2 5.8 5.5 4.9 5.0 5.2

41% 8.7 8.0 7.6 7.3 7.1 6.9 6.7 6.5 6.0 5.5 5.0 4.9 5.1

78% 10.4 10.4 10.4 10.1 9.8 9.5 9.3 9.3 8.5 8.3 8.5 8.0 6.6

79% 10.6 10.0 9.8 9.6 9.6 9.4 9.2 9.0 8.8 8.5 8.6 8.4 7.0

80% 10.3 9.5 9.5 9.3 9.4 9.2 9.0 9.0 8.8 8.5 8.6 8.7 7.0

81% 9.7 9.1 9.4 9.2 9.2 9.1 9.0 9.1 8.9 8.9 8.7 8.8 7.3

82% 9.2 9.0 9.1 9.2 9.1 9.2 9.3 9.2 9.3 8.9 8.9 8.7 7.6

TABLE 5 Coefficient of fitting equation.

Coefficient of fitting
equation

a0 a1 a2 a3

30Q-A 2390.3715 −747.8607 100.0321 −4.4834

30Q-B −6154.4326 3615.3456 −622.2841 33.3176

30Q-C −70530.39 24812.8867 −2837.2226 106.1226

50G-A 9248.8356 −3075.2534 351.9481 −13.227

50G-B −37505.0847 16459.2076 −2337.0794 108.2382

50G-C 140902.0784 −50630.5325 6036.3332 −238.203

Frontiers in Energy Research frontiersin.org07

Hou et al. 10.3389/fenrg.2022.973487

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.973487


y � f(x) � a0 + a1x + a2x
2 + . . . + anx

n, (n<m, n is the order)
(4)

To minimize the sum of squares of deviations for identifying

parameters. That is:

min∑m
i�1
e2i � min∑m

i�1
[f(xi) − yi]2 (5)

min∑m
i�1
(a0 + a1x + a2x

2 + . . . + anx
n − yi)2

� minF(a0, a1, . . . , an) (6)

Take the partial derivative,

zF(a0, a1, . . . , an)
zaj

� z∑m
i�1(a0 + a1x + a2x2 + . . . + anxn − yi)2

zaj

� 0, j � 0, 1, . . . , n

(7)

⎛⎝∑m
i�1
xj
i
⎞⎠a0 +⎛⎝∑m

i�1
xj+1
i

⎞⎠a1 + ... +⎛⎝∑m
i�1
xj+n
i

⎞⎠an � ∑m
i�1
xj
i yi, j

� 1, 2, . . . , n (8)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝∑m
i�1
xj
i
⎞⎠a0 +⎛⎝∑m

i�1
x1
i
⎞⎠a1 +⎛⎝∑m

i�1
x2
i
⎞⎠a1 + ... +⎛⎝∑m

i�1
xn
i
⎞⎠an � ∑m

i�1
x0
i yi

⎛⎝∑m
i�1
xj
i
⎞⎠a0 +⎛⎝∑m

i�1
x2
i
⎞⎠a1 +⎛⎝∑m

i�1
x3
i
⎞⎠a1 + ... +⎛⎝∑m

i�1
x1+n
i

⎞⎠an � ∑m
i�1
x1
i yi

⎛⎝∑m
i�1
xj
i
⎞⎠a0 +⎛⎝∑m

i�1
x3
i
⎞⎠a1 +⎛⎝∑m

i�1
x4
i
⎞⎠a1 + ... +⎛⎝∑m

i�1
x2+n
i

⎞⎠an � ∑m
i�1
x2
i yi

·
.
.

⎛⎝∑m
i�1
xj
i
⎞⎠a0 +⎛⎝∑m

i�1
xn+1
i

⎞⎠a1 +⎛⎝∑m
i�1
xn+2
i

⎞⎠a1 + ... +⎛⎝∑m
i�1
xn+n
i

⎞⎠an � ∑m
i�1
xn
i yi

(9)

Solve for a0, a1, . . . , an.

After fitting, the function is:

F(x) � a0 + a1x + a2x
2 + . . . + anx

n (10)

In this paper, n = 3, coefficients of the fitting equation are

shown in Table 5.

4.4 Prediction of RUCL based on TS fuzzy
model

From the above sections, according to the mapping

relationship between the position of ΔU curve and the

number of cycles, interval A, B and C are selected to conform

to the “IF” statement of TS fuzzy model. The curve of each

interval can be expressed in linear or nonlinear way, which

conforms to the “THEN” statement of TS fuzzy model.

Therefore, TS fuzzy model is adopted.

1) Establishment of fuzzy inference

SOC_Voltage indicates the value of SOC.

SOC_Voltage theory domain: [0 100].

SOC_Voltage fuzzy language variables: SOC_A, SOC_B,

SOC_C.

SOC_Voltage membership function expression:

μA � exp( − (s − 20)2
2p22

) (11)

μB � exp( − (s − 37)2
2p42

) (12)

μC � exp( − (s − 80)2
2p22

) (13)

where s is the current SOC value, which is SOC_Voltage.

FIGURE 5
Membership function of SOC_Voltage.

FIGURE 6
RUCL predicted graph.
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The membership function of SOC_Voltage is shown in

Figure 5.

2) Establishment of model export

According to formula (2):

ŷ � ∑16
i�1μ

iyi

∑16
i�1μi

(14)

where n � 16 is the number of fuzzy rules, yi is the conclusion

equation from rule i, and μi represents the membership degree of

rule i corresponding to this generalized input vector.

5 Verification

5.1 Validate method

The validation method uses two tests: laboratory test and

engineering test. The laboratory test is carried out through the

charge and discharge cycle experiment of BT20 experimental device,

and the actual RUCL data were obtained. The engineering test is to

transplant the above RUCL predictionmodel into BMS and conduct

charge-discharge cycle experiments through chargers and electronic

loads to obtain RUCL estimation data. And then verify the advanced

and innovative analysis through comparison. The verification

method block diagram is shown in Figure 6.

FIGURE 7
Predicted number of cycles and error curve.

TABLE 6 Validation data.

Actual no. of
cycle

INR18650-30Q battery
estimated
no. of cycle

INR18650-30Q battery
estimated
no. of error

INR18650-50G battery
estimated
no. of cycle

INR18650-50G battery
estimated
no. of error

1 7.15 6.15 5.12 4.12

50 54.09 4.09 56.21 6.21

100 96.11 −3.89 107.60 7.60

150 152.22 2.22 153.55 3.55

200 194.99 −5.01 194.92 -5.08

250 245.41 −4.59 257.89 7.89

300 296.10 −3.90 304.55 4.55

350 353.60 3.60 351.67 1.67

400 407.70 7.70 393.12 −6.88

450 454.94 4.94 455.99 5.99

500 507.71 7.71 498.82 −1.18

550 544.34 −5.66

600 600.40 0.40

FIGURE 8
ΔU, and cycle number curve of 30Q cell at different SOCs in
1C charging.
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5.2 Validation and analysis

According to the RUCL prediction model above, INR18650-

30Q and INR18650-50G cell experimental data are used for

experimental verification.

The estimated no. of cycle and estimated no. of error are

shown in Figure 7, and the specific verification results of

predicted RUCL values and errors are shown in Table 6.

According to Figure 7 and Table 6, the predicted cycle times

and the actual cycle times are compared and analyzed. For

INR18650-30Q cell, the maximum number of positive error

cycles is 7.71, the maximum number of negative error cycles is

5.66, and the error is less than 1.29%. For INR18650-50G cell, the

maximum number of positive error cycles is 7.89, the maximum

number of negative error cycles is 6.88, and the error is less than

1.58%. Therefore, the method is feasible and accurate.

As can be seen from Figure 7 and Table 6, the error curve is

relatively smooth and fluctuates less before the lithium electronic

battery is retired, that is, when the capacity is greater than 80% or the

number of cycles is less than 350 times.When the capacity of lithium-

ion battery is less than 80%, or the cycle times is more than 350 times,

the error curve fluctuates greatly. At this time, lithium-ion battery is

prone to danger, and the current should be lowered to improve safety.

6 Conclusions and discussion

In this article, two kinds of lithium-ion batteries are selected to

conduct charging-discharge cycle experiments respectively to study

the new remaining useful cycle life prediction method. Firstly, the

relationship between the number of lithium battery cycles and the

position of ΔU curve in the charging process is analyzed, and the

interval A, B and C with obvious mapping relationship is selected.

Then, Takagi-Sugeno fuzzy model is used to predict between regions,

which reduces a lot of calculation. Finally, the prediction method of

remaining useful cycle life based on Takagi-Sugeno fuzzy model is

established. Battery management system application shows that the

proposed method can achieve high prediction accuracy and also

provides a new perspective for remaining useful cycle life prediction.

30Q cell in 1 C (3A) charging process, ΔU curve and cycle

times also have similar correspondence, as shown in Figure 8.

1) The curve with more cycles and the curve with less cycles

cross each other. In the scrap stage, the curve tends to be

horizontal.

2) At the end of charging, the curve with fewer cycles is outward,

while the curve withmore cycles is inward.With the increase of

the number of cycles, the curve has a tendency of adduction.

3) In the SOC range from 25 to 41%, the number of cycles has an

obvious corresponding relationship with the position of the

ΔU curve, the curve with fewer cycles is on the top. With the

increase of cycles, the curve drops once, and the one with the

most cycles is located at the bottom.

Therefore, the method in this paper has research value and

provides an important reference for the prediction of remaining

useful cycle life.

However, the proposed method has several shortcomings

that are the direction of future efforts as follows:

1) In this article, the SOC was estimated to be in the 1%

range. In follow-up work, the ΔU value could be collected and

calculated in 2 or 3 s to improve real-time estimation

performance.

2) The charging-process data were collected, and the

charging temperature was found to generally be in the range

of 5–45°C. Although temperature has little influence on the ΔU
value, further research is needed.
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