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The electricity grid is facing the dual pressure of a high percentage of renewable

energy generation and increasing load-side spike load. The participation of

demand-side resources in grid interaction is an effective solution to this

problem. To address this issue, a demand-side guidance method based on

time-of-use pricing and coupon is proposed to increase the revenue of power

retailers and reduce peak-valley difference. First, a guidance mechanism

combining time-of-use pricing and coupon is proposed, and an adjustment

load prediction model based on Attention-LSTM network is constructed to

predict the adjustment load of electricity customers under different coupon

coefficients. Based on this, a power purchase-sale optimization decision model

in multi-level electricity market with the goal of maximizing the revenue of

power retailers is established to set a suitable coupon strategy to guide

electricity customers to participate in the interaction more precisely. Finally,

the effectiveness of the proposed method is demonstrated by arithmetic

examples.
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Introduction

With the rapid development of the social economy and technology, especially the

popularity of smart devices such as intelligent home appliances, demand-side electricity

consumption has increased significantly and it has a substantial adjustable potential (Ying

et al., 2016). The participation of demand-side resources in grid interaction can facilitate

the transformation from a supply-side dominated grid to an interactive grid with

demand-side participation, effectively improving the stability and economy of grid

operation (Shan et al., 2015). Power retailers can guide the demand side to adjust

their electricity consumption and participate in the grid interaction by releasing

information about tariff concessions or incentives.

Electricity customers’ electricity consumption behavior is uncontrolled and can only

be guided to participate in grid interactions using tariff offers or incentive messages. There

have been many studies on guidance methods in the literature. For example, Muthuselvi
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and Saravanan (2021) proposed a time-of-use pricing dynamic

pricing scheme to curb peak demand during peak periods by

guiding customer load shifting through time-of-use pricing.

Meanwhile, Yang et al. (2018) and Zhang et al. (2022)

proposed price-based demand response mechanisms to direct

customers to increase or decrease their loads in different

scenarios through pricing. Lu et al. (2020) used points as an

incentive and design a residential real-time point package

mechanism to promote peak reduction and valley filling. In

addition, En et al. (2020), Yun et al. (2021), and Zhi et al.

(2021) used power sales packages as incentives, combined

with a customer choice model, to guide customers to actively

participate in grid interactions. Finally, Zhong et al. (2013), Xin

et al. (2016), and Jun and Qi (2019) provided coupon incentives

to retail customers through a near-real-time information

network to induce demand response over time in the future.

However, in reality, customers’ electricity consumption behavior

is not entirely rational. The degree of rationality of their electricity

consumption decisions is limited by available information, cognitive

limitations, and other factors with typically limited rationality

characteristics (Song et al., 2022). In electricity consumption

behavior, customers are satisfiers rather than maximizers (Liu

et al., 2017; Alfaverh et al., 2020), which means that demand-side

participation in grid interaction is more random and volatile. The

accuracy of these methods (Zhong et al., 2013; Xin et al., 2016; Yang

et al., 2018; Jun and Qi, 2019; En et al., 2020; Lu et al., 2020;

Muthuselvi and Saravanan, 2021; Yun et al., 2021; Zhi et al., 2021;

Zhang et al., 2022) for calculating the customer electricity

consumption adjustment amount is low. To improve the

accuracy of customer electricity consumption adjustment volume

prediction, Yuan et al. (2021) constructed a short-term load

forecasting model of RBF neural network considering demand

response factor, which reflects the change of load curve due to

the influence of demand response signal. Song et al. (2022) proposed

a deep reinforcement learning-based demand response optimization

method for electric water heaters. In addition, Alfaverh et al. (2020)

proposed a residential demand response energy management

system based on reinforcement learning and fuzzy inference. Liu

et al. (2017) introduced demand response influencing factors in the

traditional Elman neural network model to improve the short-term

electric load forecasting accuracy. Finally, Yu et al. (2018) estimated

consumers’ cost functions based on their noisy responses and used

linear regression to train the cost functions, based on which a joint

online learning demand response pricing algorithm was proposed.

From this analysis, it can be seen that most of the existing studies

on the amount of electricity adjustment for consumers use the

efficiency function to uniformly describe the electricity adjustment

characteristics of consumers. However, there is a lack of studies with

different adjustment characteristics for different consumers, as well as

a lack of studies on the guidance strategies for different consumers.

Based on this, this study first proposes a guidance mechanism

combining time-of-use pricing and coupon, and considers the

influence of social information, such as temperature, humidity,

customers’ limited rationality and behavioral habits. It then

establishes a prediction model that is based on Attention-LSTM

with temperature, humidity, tariff and historical load as input and

electricity load adjustment as output for predicting the adjustment of

customers’ electricity consumption after time-of-use pricing and

coupon. The model is then solved by a particle swarm algorithm

to obtain the optimal guiding strategy and power purchase strategy for

power retailers, and the feasibility and effectiveness of the proposed

method are verified through case studies.

The impact of time-of-use pricing
and coupons on demand side

Coupon design

There are two types of power purchases by power retailers:

the first is a medium-to long-term bilateral physical contract with

power producers, and the second is a purchase of power from the

day-ahead market. Among them, the medium- and long-term

bilateral contracts adopt load segmentation mode. The longer the

load duration, the lower the unit tariff in peak and valley hours,

and the medium- and long-term contract tariff is lower than the

day-ahead market clearing price. Therefore, this study proposes a

coupon strategy based on peak-valley time-sharing tariff. In

particular, we aim to obtain lower generation costs and reduce

power purchase costs by guiding customers to reduce their load

during peak hours and increase their load during valley hours to

consolidate customers’ load into load segments of longer

duration.

The coupon design needs to consider the following aspects:

1) Different customers have different load regulation

characteristics (i.e., different customers have different load

regulations under the same amount of coupon incentive), so

the coupon amount should be positively correlated with the

customer’s load regulation.

2) Considering the fairness factor, different customers should

have the same coupon coefficient.

3) The coupon amount should be adjusted within a reasonable

range and should not be extremely large or extremely small.

In summary, this study selects the form of a segmented linear

function to represent the relationship between the coupon

amount and the amount of customer load regulation. The

amount of load reduced by customers during peak hours is

positive, and the amount of load increased by customers

during valley hours is positive. The expression of coupon

denomination is as follows:

poi,t �
⎧⎪⎨
⎪⎩

0, ΔQi,t ≤ 0
wt · ΔQi,t, 0≤ΔQi,t ≤ΔQpomax

i,t

pomax
i,t , ΔQpomax

i,t ≤ΔQi,t ≤ΔQmax
i,t

(1)
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where poi,t is the coupon denomination that customer i can get at

time t; wt is the coupon coefficient at time t; ΔQi,t is the load

adjustment amount of customer i at time t; ΔQpomax
i,t is the load

adjustment amount that customer i needs to achieve to get the

maximum coupon denomination at time t; ΔQmax
i,t is the maximum

load adjustment amount of customer i at time t; and pomax
i,t is the

maximum coupon denomination that customer i can get at time t.

According to Equation 1, the expression of the relationship

between coupon denomination and customer load regulation is

shown in Figure 1.

From Figure 1, it can be seen that the coupon amount will

increase when the customer load adjustment amount increases

positively, so that the coupon proposed in this study can make

the actively adjusted customers get more benefits in each guidance

mechanism implementation. At the same time, with different values

of coupon coefficient kt, the coupon denomination ratio of

customers changes at different rates with the load adjustment

amount, and the amount of load adjustment required to reach

the maximum discount is also different. The larger the coupon

coefficient kt, the larger the coupons per unit of regulation, but the

coupon denomination can be stabilized between 0 and cpmax
i,t , so that

the customer’s cost of purchasing electricity can always be controlled

within a reasonable range regardless of the value kt. Different

coupon coefficients guide customers to adjust the load differently,

so that the coupon coefficient may be different for each time period.

The optimal coupon coefficients need to be optimized in

conjunction with power purchase-sale optimization decision

model of the power retailers.

Analysis of the degree of influence of
social information on the customer’s
electricity load

Social information such as temperature, humidity,

electricity price, and consumption habits can affect

customer electricity load to some extent. To improve the

accuracy of load adjustment volume forecasting, it is

necessary to quantify the impact of each form of social

information on the customer’s electricity load. The

maximum information coefficient (MIC) can encapsulate

the correlation between two variables by drawing a grid on

the scatter plot of the two variables, and is independent of the

distribution of the variable pairs and the type of correlation

(Chowdhury et al., 2009). Therefore, in this study, the

maximum information coefficient is used to quantify the

degree of influence of social information on the customer’s

electricity load, with the following expression:

MIC(X1, X2) � max
nx1×nx2 ≤B(n,α)

⎧⎨
⎩
max
G

(IG(X1, X2))
log2 min(nx1, nx2)

⎫⎬
⎭ (2)

where X1 ∈ Rn,X2 ∈ Rn; nx1, nx2 are the number of x-axis and

y-axis grids respectively; G is the grid of nx1 × nx2; IG(X1, X2)
denotes the mutual information under grid G;

B(n, α) � nα (0< α< 1) is a function used to limit the

maximum number of grids; log2 min(nx1, nx2) is a

normalization term to ensure that MIC is in the range of 0–1;

and the greater the correlation of variables, the greater the MIC,

but MIC is in the range of 0–1.

In this study, we select the data from 1 January 2006 to

1 January 2011 in Australia, with a sampling time interval of

0.5 h, so the sample data volume is 87,648. The MIC of each

social information and customer load are calculated

separately, and the results are shown in Figure 2, so that

the impact of different social information on the customer’s

electricity load can be obtained. Because the historical

electricity load reflects the characteristics of customer load

according to the historical electricity price change, this study

uses the historical load to represent the customer’s electricity

consumption habit.

It can be seen that the degree of influence of each social

information on the customer’s electricity load is different.

Historical load has the greatest influence with MIC >0.5,
while temperature and humidity have less influence on the

FIGURE 1
Coupon and customer load adjustment correspondence.

FIGURE 2
Customer base data and customer load correlation.
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customer’s electricity load with MIC <0.1. Electricity price has a
greater influence on the customer’s electricity consumption, so

this study expects to guide the customer for reasonable electricity

consumption by issuing coupons.

To make the analysis more accurate, this study further

divides the historical load into the previous moment load

value Q (t-1), the previous two moments load value Q (t-2),

the previous day same moment load value Q (t-24), the previous

day previous moment load value Q (t-25), and calculates MIC to

analyze the impact of historical load on customers’ electricity

consumption load. The results are shown in Figure 3.

From the results, we can see that the impact of electricity

consumption habit (historical load) on its electricity

consumption load is larger, MIC >0.4. The impact of load

from the previous moment on its electricity consumption load

is larger than the impact of load from the previous two moments

on its electricity consumption load, which is larger than the

impact of load from the previous moment the day before on its

electricity consumption load. It can be seen that the further away

from the current moment time, the smaller the impact on the

current moment. The impact of load from the same moment the

day before on its electricity consumption load is only second to

the impact of the load of the previous moment on its electricity

consumption load, and the impact of the same moment is also

larger.

Attention-LSTM based load adjustment
volume prediction

The results of the maximum information coefficient

analysis show that different social information has different

degrees of influence on the customer’s electricity

consumption. Therefore, this study adopts the Attention

mechanism to highlight the more critical influence data by

assigning different weights to different social information

(i.e., the input features of the model) and constructs the

customer’s electricity consumption analysis function by

Attention-LSTM (Cao et al., 2021), with inputs of forecast

temperature at the prediction point moment T(t), forecast
humidity at the prediction point moment H(t), electricity
price at the prediction point moment l(t), coupon coefficient

at the prediction point moment w(t), the load at the moment

before the forecast point Qi(t − 1), the load at the two

moments before the forecast point Qi(t − 2), the load at the

same moment at the day before the forecast point Qi(t − 24),
the load at the moment before the day before the forecast point

Qi(t − 25), and the output is the customer electricity

consumption at the corresponding time period. The

expressions are as follows:

ΔQi,t � fi,t(xi,t) (3)

There is a functional relationship between the input vector x

and the output adjustment load of electricity customers in Eq. 3,

which is represented by the Attention-LSTM, and the input

vector is the input feature vector of the Attention-LSTM

model, and all the input feature vectors are represented in Eq. 4:

xi,t � [T(t), H(t), l(t), w(t), Qi(t − 1), Qi(t − 2), Qi(t − 24), Qi(t − 25)] (4)

where fi,t is the load adjustment volume prediction function; xi,t

is input feature vector; i is customer i; and t is moment t.

The structure of the Attention-LSTM model used in this

study is shown in Figure 4. The Attention-LSTM model consists

of two parts.

The first part is a 2-layer LSTM, and the above social

information is input into the first layer Pre-LSTM for pre-

training, and the output ht and the state st, the output result

of the first layer is input into the second layer LSTM model for

training. The LSTM is calculated as follows:

FIGURE 3
Impact of historical customer load on customer load.

FIGURE 4
Attention-LSTM model.
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ft � σ(φcFxt + τcF + φHFht−1 + τHF)
ct � σ(φccxt + τcc + φHcht−1 + τHc)
Gt � tanh(φcGxt + τcG + φHGht−1 + τHG)
Ot � σ(φcOxt + τcO + φHOht−1 + τHO)
St � St−1 ⊙ Ft + Gt ⊙ ct
Ht � Ot ⊙ tanh(St)

(5)

where ft、 it、 gt、 ot、 st、 and ht are the state matrices of

oblivion gate, input gate, input node, output gate, state unit and

intermediate output for time period t, respectively; φcF、 φHF、

φcc、 φHc、 φcG、 φHG、 φcO、 φHO、 τcF、 τHF、 τcc、

τHc、 τcG、 τHG、 τcO、 and τHO are the weights and bias

matrices of the corresponding gates multiplied by the input and

intermediate outputs, respectively; ⊙ is a bitwise multiplication of

the elements in the vector; σ is the sigmoid activation function;

and tanh is the hyperbolic tangent activation function.

The second part is the Attention layer, which assigns the

feature weights learned by the model to the input vectors in the

next time step, highlighting the influence of key features on the

predicted load. The final data are passed through the fully

connected layer and adjusted to the output specified vector

format. The final output layer is then obtained as the

customer load adjustment at the prediction moment. The

Attention is calculated as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

γkd �
exp(skd)

ΣTx
e�d exp(skd)

skd � ] tanh(Zhk + Ahd + ϖ)
C � ΣTx

d�1γkdhd

hk′ � H(C, hk, xk)

(6)

where γkd is the attention weight and hk′ the final eigenvector.

Power purchase-sale optimization
decision model in multi-level
electricity market

Purchase-sale structure of power retailers

At the present stage, the operation mode of electricity

sellers is to participate in power market transactions to

purchase electricity and sell it to downstream to customers

to earn the difference in price. The price of electricity

purchased by the electricity seller depends on the amount

of load purchased. Costs can be reduced and revenue can be

increased by guiding customers to make load adjustments.

Therefore, this study establishes an optimization decision

model to verify the effectiveness of the proposed steering

method. The relevant electricity seller purchase and sale

structure includes the electricity purchase and sale

methods, as shown in Figure 5.

1) Purchase methods of power retailers

The electricity market is the primary way for power retailers

to purchase electricity. The first type of physical contract is to

purchase electricity from the medium- and long-term demand

(Feng et al., 2018; Wang et al., 2020), where power retailers and

power generators sign medium- and long-term bilateral physical

contracts, and the bilateral physical contracts adopt the load

segmentation model, taking into account the characteristic that

the cost of power generation decreases with the increase of

continuous production time and the opportunity cost of units

participating in auxiliary service transactions, such as pre-listing

balancing at different times, and the bilateral physical contracts

are carried out according to the load duration. The second type of

physical contract is to purchase power from the day-ahead

market, so that the power seller can purchase power from the

day-ahead market for power adjustment when the deviation of

power is caused by uncertainties between the medium- and long-

term market purchases and the actual required load, thus

reducing the risk of power purchase. This reduces the risk of

power purchase. Therefore, the power purchase strategy of the

power seller can be equated with the optimal allocation of the

contracted power and the purchased power in the day-ahead

market for each load segment of the power seller.

2) Sale methods of power retailers

To solve the problem that the peak and valley tariff is not

strong enough to guide customers to reach the ideal load

adjustment amount, a coupon strategy is proposed, in which

the coupon amount received by customers is positively correlated

with the load adjustment amount to motivate customers to

FIGURE 5
Purchase-sale structure of power retailers considering
information guidance.
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actively adjust their load, thus guiding them to reach the

target load.

Multi-level market power purchase cost

1) Cost of power purchase for medium- and long-term bilateral

physical contracts

The current widely used time-sharing contract has the same

price with time and the same price at the same point of time, this

contract ignores the physical characteristics of continuous

production of electricity, and the time-varying price method

cannot accurately reflect the production cost of electricity (Wen

et al., 2019). Therefore, this study uses segmented contracts

(i.e., the load is divided into different durations according to

the characteristics of continuous production of electricity) and

each duration is divided into different contracts. Therefore, the

electricity seller enters into a medium- and long-term contract to

purchase electricity with the expression:

Y � ∑
r∈R

lyr Q
y
r (7)

where R is the number of medium- and long-term contracts

signed by the electricity seller; Qy
r is the amount of electricity

signed for medium- and long-term contracts r; and lyr is the price

of medium- and long-term contract r.

2) Cost of electricity purchased in the market before

Because there are deviations between the contracted

electricity and the actual electricity consumption of customers

in the medium- and long-term contracts signed by the power

seller, to reduce the deviation power penalty, the power seller

needs to make a short-term load forecast before the day. They

then purchase electricity in the day-ahead market to minimize

the deviation power penalty and reduce the risk of electricity

purchase according to the deviation between the contracted

electricity and the forecasted electricity. The cost of electricity

purchase by the power seller in the day-ahead market can be

expressed as follows:

D � ∑
t∈T

ldt Q
d
t (8)

where Qd
t denotes the electricity purchased in the day-ahead

market at moment t and ldt is the electricity price in the market at

time t before the day.

A statistical analysis based on actual data from the U.S. PJM

day-ahead market reveals an approximately linear relationship

between the day-ahead market and load levels within a specific

load range (Zhaoxia and Bin, 2006):

ldt � aQd
t + b (9)

where a and b are linear correlation parameters.

Power purchase-sale optimization
decision model

The revenue of the electricity seller is influenced by the

customers’ actual electricity consumption and the cost of

electricity purchase. The revenue of electricity sales is

determined by the load of customers, and the cost of

electricity purchase is determined by the method of

electricity purchase and the amount of electricity

purchased. The revenue model of the electricity seller is as

follows:

maxV � (Vsell − Vbuy − Vp − Vpo) (10)

where V is the total revenue from the sale of e-commerce; Vsell V

is the revenue from the sale of electricity; Vbuy is power purchase

expense; Vp is the deviated power settlement tariff paid by the

power sales company to the generation company; and Vpo is the

coupon cost.

The revenue from electricity salesVsell is expressed as follows:

Vsell � ∑
i∈I

∑
t∈T

ltQ
re
i,t (11)

Qre
i,t � Q0

i,t − ΔQi,t (12)

where I is a collection of customers; lt is the peak-to-valley tariff

for time period t; T is the whole day time collection; Qre
i,t is the

electricity consumption of customer i in time t after coupon

guidance; and Q0
i,t is the load of customer i in time period t when

the coupon coefficient is taken as 0.

The expression for the power purchase expense Vbuy is as

follows:

Vbuy � Y +D (13)

The expression for the deviated power settlement tariff paid

by the power seller to the power producer Vp is as follows:

Vp � ∑
t∈T

QP
t (β1lP+ + β2l

P
−) (14)

where QP
t is the bilateral contract deviation power of the power

seller in time period t; lP+ and lP− are the positive and negative

deviation electricity settlement prices of the power sales

company, respectively; β1 and β2 are 0/1 variables, When the

deviated power of the electricity sales company is positive β1 � 1,

β2 � 0, else β1 � 0, and β2 � 1.

The coupon cost Vpo is expressed as follows:

Vpo � ∑
i∈I

∑
t∈t

poi,t (15)

For electricity sellers, purchased and sold electricity should

satisfy the power balance constraint:
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QP
t � ∑

i∈I
Qre

i,t − Qd
t −∑

r∈R
Qy

r λ
y
r,t ∀t ∈ T (16)

where λyr,t is the power decomposition ratio of contract r in time

period t.

The customer’s load adjustment should be between zero and

the maximum adjustable load:

0≤ΔQi,t ≤ΔQmax
i,t (17)

The customer should receive a coupon value between zero

and the maximum value:

0≤poi,t ≤pomax
i,t (18)

Solving power purchase-sale
optimization decision model

This study solves the above electricity seller purchase and sale

optimization decision model based on particle swarm algorithm

and CPLEX solver. For customers, the Attention-LSTM model is

used to predict the customer load adjustment for a given coupon

factor, and feeds back to the electricity seller’s electricity purchase

and sale decision model. For the electricity seller, the particle

swarm algorithm is used to solve the optimal coupon coefficient

in the iterative process with the interest of the electricity seller as

the fitness function, and the CPLEX is used to solve the optimal

electricity purchase for each market of the electricity seller

according to the customer load adjustment amount to

maximize the revenue of the electricity purchase and sale of

the electricity seller.

The model solving process is shown in Figure 6 and is

described as follows:

1) First, the number of particles and the maximum number of

iterations are set, and the coupon parameter particles are

randomly initialized.

2) Call the customer electricity consumption behavior analysis

program to solve the electricity consumption of each

customer at each time based on Attention-LSTM.

3) Call the electricity seller optimization subroutine to solve the

electricity purchase strategy of the electricity seller based on

the CPLEX solver with the maximum benefit as the objective

function.

4) Then calculate the fitness value of each particle, update the

velocity and position of the particle-based on the updated

learning factor and inertia weight, update the coupon

coefficient and the fitness function of the particle, and

update the local optimum of each particle and the global

optimum of the particle population.

5) Determine whether the iteration termination condition is

satisfied (i.e., whether the maximum number of iterations

is reached).

Case study

In this study, simulation analysis is performed with real data

from Australia in 2006. The required data include input data:

temperature, humidity, coupon coefficient, historical load and

electricity price, and the corresponding output data load

adjustment volume. The first 80% of the data is used to train

the Attention-LSTM model, and the second 20% is used for

testing, and the peak and valley tariffs are shown in Table 1, and

the maximum adjustable electricity consumption in both peak

and valley periods is taken as 20% of the historical average

electricity consumption in the corresponding period. The

linear correlation coefficients between the standard market

clearing tariff and the load level were taken as a = 0.4 and

b = 235. The load was divided into three contract periods of 4, 8,

and 24 h, with six contract periods of 4 h, three contract periods

of 8 h and one contract period of 24 h, and each contract tariff is

shown in Table 2.

Based on these data, this study carries out simulation

programming in MATLAB environment. Taking 1h as a

period, 00:00–01:00 will be taken as period 1, 01:00–02:00 will

be taken as period 2, and so on, we can get a total of 24 periods in

a day. As we can see from the mid- and long-term market

FIGURE 6
Solution flow of power purchase-sale optimization decision
model.
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contract tariffs and the day-ahead market tariffs, the mid- and

long-term market contract tariffs are lower than the day-ahead

market tariffs, and the 24-h contract tariffs are the lowest. In this

study, assuming that the customer load reduction is positive and

the increase is negative, the optimal coupon coefficients

developed by the electricity seller and the guided customer

load change are shown in Figure 7.

It can be seen from Figure 7 that the change in customer load

is also more significant in time periods 2 and 21, when the

coupon coefficient is smaller, while in time periods 12, 14, and 15,

when the coupon coefficient is larger, the customer load this

variable is also smaller and less than the change in time periods

2 and 21. This happens because customer load is affected not only

TABLE 1 Time-of-use pricing.

Type Start-stop time Electricity prices/[RMB/(kW·h)]

Peak Time 06:00–10:00, 17:00–22:00 1.07

Valley Time 10:00–17:00, 22:00—next day 06:00 0.56

TABLE 2 Medium- and long-term bilateral contracts.

Type Start-stop time Electricity prices/[RMB/(kW·h)]

24h_a 00:00–24:00 0.52

8h_a 00:00–08:00 0.43

8h_b 08:00–16:00 0.52

8h_c 16:00–24:00 0.61

4h_a 22:00—next day 02:00 0.52

4h_b 02:00–06:00 0.49

4h_c 06:00–10:00 0.73

4h_d 10:00–14:00 0.61

4h_e 14:00–18:00 0.67

4h_f 18:00–22:00 0.85

FIGURE 7
Optimal coupon coefficient and customer load adjustment.

FIGURE 8
Electricity purchased by power retailers through various
contracts in mid- and long-term markets.

FIGURE 9
Analysis of load balance after time-of-use pricing and
coupon guidance.
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by coupons but also by environmental factors such as historical

load, temperature, and humidity, resulting in a positive

correlation between this variable of customer load and coupon

coefficient. In addition, the customer load decreases in the valley

moments and increases in the peak moments, which is consistent

with the expected results.

As can be seen from Figure 8, the power seller mainly signs

contract 1 (i.e., 24-h) load, and the load that is less than 24 h is

made up by other contracts, so other hourly contracts also have a

small amount of purchasing power, and the part of the load that

is not long enough for 4 h is purchased from the day-ahead

market, thus ensuring the balance of supply and demand to

maximize the revenue of the power seller, and the balance of

supply and demand is shown in Figure 9.

As can be seen from Figure 9, the power purchased in the

medium- and long-term market can meet the demand of

customers’ electricity load by decomposing the power of each

contract into various time periods and the power purchased in

the day-ahead market. The power purchased in time periods

2 and 3 is greater than the customer load, which is due to the fact

that the power purchased in the medium- and long-term market

is the shortest 4h, so there will be excess power purchased in these

two time periods when the power demand of other time periods

is met. However, the discount obtained from purchasing

contracted power than the power purchased in the day-ahead

market is greater than the deviation penalty cost, so the results

are in line with expectations.

From Figure 10, it can be seen that after using the coupon

strategy, electricity sellers can increase their revenue by 1.33% per

day. It can be seen from Figure 11 that the customer load curve is

flatter after the coupon information is released by the electricity

seller, among which the coupon is more effective in increasing

the electricity consumption of customers during the valley hours,

and the coupon guidance is relatively less effective because the

customers habitually use more electricity during the peak hours.

In summary, the demand-side resource participation method

based on time-of-use pricing and coupon guidance that is

proposed in this study can effectively guide customers to

adjust electricity consumption, reduce electricity consumption

during peak hours, and increase electricity consumption during

valley hours, which not only reduces the electricity purchase cost

of electricity sellers but also achieves the effect of peak reduction

and valley filling, and improves grid security.

Conclusion

In response to the problem of high proportion of renewable

energy generation and increasing peak load on the load side, this

study proposes a demand-side resource participation grid

interaction method based on time-of-use pricing and coupon

guidance. It also introduces coupons as guidance information on

the basis of time-of-use pricing and uses Attention-LSTM model to

predict the adjustment amount of customer electricity load after the

implementation of different coupon strategies, which overcomes the

problem of lack of historical customer load data before and after the

coupon effect. This study also fully explores the influence of social

information such as coupons on customer electricity load. The

problem of lack of historical load data before and after the

coupon effect is overcome, and the impact of coupons and other

social information on customer load is fully explored. On this basis,

this study establishes a multi-level market power purchase and sale

model for electricity sellers based on the influence of social

information, combined the prediction algorithm with the

optimization problem, and it obtains the optimal coupon strategy

FIGURE 10
Comparison of the revenue of power retailers before and
after guidance strategy.

FIGURE 11
Load before and after guidance strategy.

Frontiers in Energy Research frontiersin.org09

Wang et al. 10.3389/fenrg.2022.968567

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.968567


and multi-level market power purchase allocation strategy using

particle swarm algorithm and CPLEX solver.

It is verified that the demand-side resource participation

method based on time-of-use pricing and coupons can

effectively guide customers to reduce electricity consumption

in peak hours and increase electricity consumption in valley

hours, and increase electricity consumption in the 24 h load

section, thus reducing the cost of electricity purchase,

increasing the interest of electricity sellers, and reducing

peaks and filling valleys. This study also analyzes and

verifies that the bootstrap method is realistic and feasible,

using coupons and time-of-use pricing as examples,

combined with the electricity purchase model of electricity

sellers. In future research, the bootstrap method can also be

applied to other areas outside of electricity sales.
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