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In order to help achieve the goal of carbon peak and carbon neutrality, the

large-scale development and application of clean renewable energy, like wind

generation and solar power, will become an important power source in the

future. Large-scale clean renewable energy generation has the uncertain

characteristics of intermittency, randomness, and volatility, which brings

great challenges to the balance regulation and flexible operation of the

power system. In addition, the rapid development of renewable energy has

led to strong fluctuations in electricity prices in the powermarket. To ensure the

safe, reliable, and economic operation of the power system, how to improve the

power system flexibility in an uncertain environment has become a research

hotspot. Considering the uncertainties, this article analyzes and summarizes the

research progress related to power system flexibility from the perspective of

power system planning, operation, and the electricity market. Aiming at the

modeling technology of uncertainty, the related modeling methods including

stochastic programming, robust optimization, and distributionally robust

optimization are summarized from the perspective of mathematics, and the

application of these methods in power system flexibility is discussed.
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1 Introduction

In order to deal with energy depletion and environmental problems, many countries

have formulated carbon emission strategies. On 22 September 2020, Chairman Xi

announced to the world that China will strive to achieve peak carbon dioxide

emissions before 2030 and carbon neutrality by 2060. The United States and the

European Union have proposed a Zero Carbon Action Plan (ZCAP) and a net zero

emission target for 2050, respectively. Canada is expected to commit to a net zero

emission target by 2050 and develop a legally binding 5-year carbon budget. Sweden set a

net zero emission target in 2017. According to the Paris Agreement, it promised to achieve

carbon neutrality by 2045, with at least 85% of the emission reduction to be achieved

through domestic policies and the rest to be made up by international emission reduction.

Germany promises to “pursue” greenhouse gas neutrality by 2050. Singapore avoided

promising a clear decarbonization date but made it the ultimate goal of the long-term
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strategy submitted to the United Nations in March 2020. By

2040, diesel locomotives will be phased out and replaced by

electric vehicles. Therefore, a high proportion of renewable

energy power generation has become a future power system

scenario of widespread concern around the world. Under the new

scenario, the characteristics of the power system have changed

significantly. The randomly fluctuating wind and solar energy

have become the main power sources, the “base load” power

plants have been basically cancelled, the conventional thermal

power units are started and stopped within a day, and the

stochastic volatility of renewable energy is complemented

through the flexible resource regulation of hydropower plants,

gas-fired power plants, energy storage, etc.; flexibility has become

the core issue of planning and operation.

In China, guided by the goal of carbon peaking and carbon

neutrality, China has put forward the development strategy of

building a new power system with new energy as the main body.

The goal of “carbon peak and carbon neutrality” is a systematic

project, and the power industry shoulders an important historical

mission. According to the statistics of the International Energy

Agency (IEA) in 2019, the total carbon emission in China was

11.3 billion tons, and the carbon emission in the energy field was

9.8 billion tons, accounting for 87% of the national total. Among

them, the carbon emission in the power industry was 4.2 billion

tons, accounting for 37% of the national total (United Nations

Environment Programme, 2019). At present, China’s energy

consumption and carbon dioxide emissions per unit of GDP

have been reduced by 13.5 and 18%, respectively, which has been

written into the main objectives of economic and social

development during the 14th Five-Year Plan (Xinhuanet,

2021). According to EIA data, the carbon emission of the

United States in 2019 was 6.558 billion tons, down 11.96%

from 2007. In 2020, renewable energy accounted for 12.49%

of primary energy consumption in the United States. Biomass

energy accounts for the highest proportion of renewable energy,

accounting for 39%, followed by wind energy (26%), hydropower

(22%), light energy (11%), and geothermal energy (2%). In 2020,

the carbon emission of the EU was 2.551 billion tons, a decrease

of 32.05% compared with 1990.

Therefore, to achieve the goal of carbon peak and carbon

neutrality, the power industry has the heaviest task and the

greatest responsibility and will play an important role of the

main force. Therefore, the intermittent renewable energy power

generation represented by wind power and solar energy will enter

the fast lane of large-scale development and gradually form a

clean and sustainable power supply mode dominated by

renewable energy power generation. Also, the power system

will change from a high-carbon power system to a deep low-

carbon or zero-carbon power system.

However, due to the strong uncertainty and strong

fluctuation characteristics of intermittent renewable energy

power generation, realizing the status of the power subject

and responsibility subject of renewable energy power

generation faces complex technical challenges and needs a

long-term development process. In addition to continuing to

pay attention to safety, reliability, and economy, the flexibility of

the power system has become a new focus. Under this

background, it has become an urgent problem to explore the

flexibility mechanism, planning, and operation theory and

method of the new power system in a complex environment

and multi-space–time interaction (Xu et al., 2020).

Security, reliability, economy, and flexibility are the internal

requirements of modern power systems and are important

indexes to measure whether the operation mode of the power

system is reasonable or not (Telukunta et al., 2017). There is an

extremely close relationship between them. In order to analyze

the power system flexibility, we briefly introduce the other three

research statuses. The security of the power system represents the

ability of the power system to maintain a continuous power

supply in case of an accident in a short time. From the perspective

of security, aiming at the rapid development of power systems,

Shu and Tang (2017) analyzed the main standards of power

system security in China and discussed the development

direction in the future. Shahidehpour et al. (2005) discussed

the important role of security in power system planning and

operation, studied the challenges and problems faced by security

in different time- and space scales, and put forward the

corresponding solutions. Yorino et al. (2018) proposed a bi-

level robust optimization model to solve the problem of reserve

margin under the environment of uncertain renewable energy

output to ensure the safe operation of the whole system. From the

economic viewpoint, Wang et al. (2017) described the scheduling

problem containing a large amount of random wind power as a

chance-constrained economic scheduling problem. The joint

probability density function of multiple wind farms was

established by using the Gaussian mixture model, and the

results verify that the system can achieve a better economy. In

order to solve the problem of excess wind power generation,

power-to-gas technology was introduced into the integrated

electricity and natural gas system, and a stochastic dynamic

economic dispatching model based on the conditional value at

risk method security risk constraints was established in Chen

(2019). From the reliability side, AmandaSteele et al. (2021)

discussed the impact of the growth of renewable energy on power

system reliability. In order to maintain the safe operation of the

system in the short and medium term, considering the

uncertainty of wind power, a multi-state model of hybrid

power generation and standby suppliers was proposed in Ding

et al. (2014), and a time-varying reliability evaluation technology

was used for system reliability evaluation.

Under the background of zero-carbon transformation of

energy structure, building a new power system with renewable

energy as the main body will become an important means to

achieve the goals of carbon peaking and carbon neutrality. A high

proportion of renewable energy has become the main feature of

the power system. Different from conventional thermal power,
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renewable energy power generation is affected by meteorological

conditions and environmental factors, and its output shows the

characteristics of intermittence and fluctuation, which makes the

power system change from a deterministic system to a strong

uncertain system. The random variation characteristics of high-

proportion renewable power will bring unprecedented challenges

to the power system. However, due to the lack of flexibility in the

power system, it is difficult to absorb renewable energy efficiently.

Enhancing flexibility and improving system regulation capacity

are inevitable requirements for realizing power zero-carbon

transformation. However, the problem of insufficient flexibility

in the power system restricting the consumption of renewable

energy has not been fundamentally solved. Flexibility has become

one of the indispensable indexes of the power system. At present,

researchers have made relevant research and summary on the

aspects of flexibility resources and flexibility evaluation methods

(Brunner et al., 2020; Michael et al., 2020; Semich et al., 2020). Li

et al. (2018) summarized the flexibility indicators and evaluation

methods. Mohandes et al. (2019) analyzed the concept, indexes,

and related economic technologies of power system flexibility in

high penetration of the renewable energy environment and

focused on the impact of uncertain renewable energy on

storage and reserve. Taking the impact of renewable energy

growth on power systems as the starting point, Alireza et al.

(2019) analyzed the role of various flexibility resources in system

flexibility from the point of timescales. The existing review on

power system flexibility research mainly focuses on the

definitions of power system flexibility, flexibility resources,

and power balance mechanism in an uncertain environment,

but there is no discussion on the application of the uncertainty

modeling method in power system flexibility research. On this

basis, this article further discusses the modeling technology of

uncertainty factors in detail. Therefore, aiming at the planning

flexibility, operation flexibility, and electricity market flexibility

of power systems in an uncertain environment, this article

summarizes the main modeling methods of uncertainties and

analyzes the advantages and disadvantages of various methods.

In the following, Section 2 presents the concept and the

characteristics of power system flexibility. Section 3 summarizes

the uncertainty modeling methods from the perspective of

mathematics. Section 4 summarizes the related research on

power system flexibility under an uncertainty environment,

and Section 5 narrates the concluding remarks.

2 Power system flexibility

2.1 Definition of power system flexibility

Flexibility is the ability of a power system to use all resources

to respond to changes in net demand in a certain environment

(Lannoye et al., 2012). At present, the research on power system

flexibility is still in its infancy. The North American Electric

Reliability Council (NERC) and International Energy Agency

(IEA) define flexibility from different perspectives as follows: the

NERC believes that power system flexibility is the ability to use

system resources to meet load changes, which is mainly reflected

in operation flexibility, and it focuses on the methods to improve

power system flexibility (Milligan et al., 2010). IEA believes the

power system flexibility means that, under its boundary

constraints, the power system can quickly respond to large

fluctuations in supply or load demand and can quickly

respond to predictable changes (International Energy Agency,

2014). Hence, some researchers have declared their views on the

definition of power system flexibility from different perspectives.

In terms of power capacity and ramp rate, power system

flexibility is described as the ability to increase energy

production with a certain rate and ramp duration, that is, the

ability to sustain ramping for a given duration (Dvorkin et al.,

2014). Zhao et al. (2016) defined flexibility as the maximum

uncertainty range that the power system can cope with. Generally

speaking, the research on power system flexibility focuses more

on the dynamic response and adequacy of the generation side

and demand side.

2.2 Characteristics of power system
flexibility

Power system flexibility has three characteristics: inherent

characteristics of the power system, directionality, and spatio-

temporal characteristics (Lu et al., 2018).

Flexibility is an inherent characteristic of a power system

(Denholm and Hand, 2011). For the power system, it has the

ability to resist a certain risk, that is, the power system has an

internal tolerance that allows the power system to deviate from

the preset operating point to a certain extent without any change.

This tolerance is considered as the inherent flexibility of the

power system. From the perspective of power system active

power balance, the climbing capacity, output range, and load

characteristics of units are the inherent characteristics of power

system flexibility.

Directionality (Lannoye et al., 2010): the power system is

affected by many uncertain factors. The intermittent power

sources have changed the traditional power structure and

increased the randomness and uncertainty of power system

operation from the power generation side, resulting in a

power imbalance in the power system in a short time. Under

different operating conditions, the power system flexibility is

different. In view of this characteristic of flexibility, it can be

considered that power system flexibility has two directions:

upward and downward, that is, the flexibility is directional.

The upregulation ability and downregulation ability reflect the

flexibility of the system in different directions.

Spatio-temporal characteristic means the power system

flexibility needs to be described on a certain timescale
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(Thatte and Xie, 2016). The power change caused by uncertainty

in the power system rarely increases or decreases monotonically,

and the change duration is also different. Therefore, the

evaluation of power system flexibility is different in different

timescales. According to the timescales, it can be divided into the

flexibility of frequency modulation and unit climbing. On the

spatial scale, due to the influence of resource distribution and

transmission conditions, flexible resources cannot be dispatched

freely in the system (Chen et al., 2020).

2.3 Evaluation methods of power system
flexibility

In the research of power system flexibility, evaluation

methods are the key point (Semich et al., 2020). According to

the power system flexibility characteristics, many research

studies have put forward different flexibility evaluation

indexes. Velocity ramps (positive ramp and negative ramp)

and load duration (the duration of continuous maximum and

minimum loads) were presented as the evaluation indexes to

evaluate the flexibility of the system (Martin et al., 2019). From

the perspective of the attributes of the five flexible resources

(supply, demand, grid, storage, and markets), Papaefthymiou

et al. (2018) divided them into 14 flexibility index systems.

Similar to Papaefthymiou et al. (2018), the authors also adopt

the attribute classification method and put forward four

flexibility attribute indexes, namely: positive flexibility,

negative flexibility, production flexibility, and time-varying

flexibility in Zhou et al. (2021). Some other evaluation

indexes, such as upward and downward reserves (Ma et al.,

2013), optimal costs, time-dependent flexibility potentials, costs

of flexibility provision (Wanapinit et al., 2021), and flexibility

metrics (flexibility regulation range increase rate and flexibility

promotion cost) (Guo et al., 2020), were presented to evaluate

power system flexibility.

We briefly list several commonly used power system

flexibility evaluation indexes in Table 1.

3 Modeling methods of uncertainties

Renewable energy generation, load demand forecasting,

electricity price fluctuation, and other uncertain factors make

the power system in a strong uncertain environment. The

traditional deterministic method is no longer appropriate, and

it is necessary to consider the influence of uncertain factors. How

to optimize the problem under uncertainty becomes important.

To solve the problem of uncertainties in the power system, the

key is to accurately describe the impact of uncertain factors and

how to effectively use the information on uncertain variables to

provide theoretical data for power departments to make safe and

economic decision-making schemes.

For the traditional deterministic optimization problem, its

mathematical expression is generally as follows (Anthony Man,

2011):

minf(x)
s.t. h(x)≤ 0,

(1)

where x is the decision vector, f(x) is the objective function, and
h(x) is the constraint function. In model (1), the corresponding

parameters of both constraints and objective function are

determined.

However, due to the emergence of various uncertain factors,

the problems related to power systems have changed from

traditional certainty to uncertainty, and the general expression

of the uncertain optimization mathematical model is as

follows(Sun et al., 2022):

minf(x, ξ)
s.t. h(x, ξ)≤ 0
∀ξ ∈ U,

(2)

where ξ is an uncertain parameter, and U is an uncertain set.

According to the different modeling of uncertain factors, the

uncertain optimization methods mainly include stochastic

programming, robust optimization, and distributionally robust

optimization, and the comparisons of these methods are shown

in Appendix 1.

TABLE 1 Some power system flexibility evaluation indexes.

Evaluation object Directionality Probability index Expected index

Peak-shaving capacity shortage upward pt
UPCS,i Et

UPCS,i

downward pt
DPCS,i Et

DPCS,i

Ramp capacity shortage upward pt
URCS,i Et

URCS,i

downward pt
DRCS,i Et

DRCS,i

Flexibility shortage upward pt
UFS Et

UFS

downward pt
DFS Et

DFS
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3.1 Stochastic programming

In stochastic programming, random variables are often fitted

to obtain the probability density distribution through the

statistical analysis of historical data (Birge and Dempstert,

1996). The accurate acquisition of probability distribution and

the accuracy of sampling calculation optimal solution are the

main problems of stochastic programming methods (Jiang and

Li, 2021). At present, the common stochastic programming

methods mainly include the following.

3.1.1 Stochastic expectation model
In the stochastic expectation model, the distribution function

model of uncertain parameters is determined, and the uncertain

parameters are described by selecting a discrete or continuous

probability distribution function. The stochastic expectation

model is described as follows (Zhu et al., 2007):

{max E[f(x, ξ)],
s.t. E[g

j
(x, ξ)]≤ 0, j � 1, 2, . . . , p,

(3)

where ξ is an uncertain parameter, x is the decision vector,

f(x, ξ) is the objective function, and gj(x, ξ) is the constraint

condition function.

If there are random parameters in the objective function and

constraints, it is only necessary to take the expected value of the

corresponding function, and the uncertain model can be

transformed into a deterministic model and be solved.

3.1.2 Chance constrained
Chance constrained programming refers to the situation

where constraints contain random variables, and the decisions

must be made before the realization of random variables is

predicted. However, considering that the decision may not

meet the constraints when adverse circumstances occur, the

decision needs to meet the constraints to a certain extent, but

the decision should make the probability of the establishment of

the constraints not less than a certain confidence level (Guo et al.,

2021). The generalized chance-constrained programming model

is described as follows (Mohanty et al., 2020):

⎧⎪⎨⎪⎩
min �f
s.t. P{f(x, ξ)≥ �f}≥ β
P{gi(x, ξ)≤ 0, i � 1, 2,/, p}≥ αi,

(4)

where �f is the objective value, x is the decision variable, ξ is the

uncertain variable, P{·} is the probability of event occurrence, β is
the confidence level that the objective function is not lower than

the threshold �f, and αi is the ith constraint that satisfies the given

confidence level.

There are two main solutions to chance-constrained

programming. The first one is to transform the chance

constrained into deterministic programming and then solve it

by the theory of deterministic programming (Huo et al., 2021).

The second one is an intelligent algorithm. The optimal value of

the objective function and the optimal solution set of decision

variables are obtained by stochastic simulation technology and

solving them by intelligent algorithms, such as the simulated

annealing algorithm (Özcan, 2010), genetic algorithm (Shing

Chih and Fu, 2014), and random hill climbing algorithm (Kaur

and Dhillon, 2021). The main disadvantage of these intelligent

algorithms is their low efficiency.

3.1.3 Conditional value at risk
The theory of conditional value at risk (CVaR) is derived

from the value at risk (VaR), which refers to the maximum

expected loss at a given confidence level (Fernández, 2016;

Belhajjam et al., 2017). The mathematical description of the

VaR method is as follows (Crespi and Mastrogiacomo, 2020):

VaRβ(x) � min{ξ ∈ R
∣∣∣∣φ(x, ξ)≥ β}, (5)

where x is the decision variable, ξ is the uncertain variable,

φ(x, ξ) is the function of the random variable ξ, andβ is the value

of the confidence level. φ(x, ξ) can be obtained by the following

formula (Belhajjam et al., 2017):

φ(x, ξ) � ∫
h(x,ξ)≤ α

p(ξ)dξ, (6)

wherep(ξ) is the probability density function of a random

variable, h(x, ξ) is the lost function, and α is the threshold.

The VaR method considers the probability density

characteristics of random variables and can describe the

minimum value of loss under a given value. However, the

defects of VaR, such as lack of convexity and subadditivity,

limit its further application in practical optimization problems

(Khodabakhsh and Sirouspour, 2016).

In view of the fact that VaR cannot describe the tail risk,

CVaR, which reflects the expected value of loss exceeding the

VaR threshold at a given confidence level, as an alternative risk

measure, is presented to avoid the problems of VaR. The

mathematical description of CVaR is as follows (Crespi and

Mastrogiacomo, 2020):

CVaRβ(x) � E[f(x, ξ)∣∣∣∣f(x, ξ)≥VaRβ(x)]
� 1
1 − β

∫
f(x,ξ)≥VaRβ(x)

f(x, ξ)p(x)dξ. (7)

To calculate the value of CVaR, Rockafellar and Uryasev

(2000) established a linear programming model by using the

sample average approximation method to avoid the calculation

of the VaR and get the CvaR directly:

CVaRβ(x) � min
⎧⎨⎩z0 + 1

n(1 − β)∑
n

i�1
zi
⎫⎬⎭

s.t. zi ≥f(x, ξ i) − z0

zi ≥ 0, i � 1, 2,/n.

(8)

Frontiers in Energy Research frontiersin.org05

Yang et al. 10.3389/fenrg.2022.967220

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.967220


The CVaR method can describe the impact of random

variables from the perspective of risk, solve the problem that

the VaR method cannot accurately describe the tail risk, and

provide rich decision-making information for decision-makers

(Ang et al., 2021). This method can use the constraints in the

optimization model as the risk index to describe its risk, simplify

the constraints in the model, obtain the risk decision

information, and has the same good characteristics as the VaR

method in mathematics.

3.1.4 Dependent-chance programming
Dependent-chance programming is a programming method

generated when decision-makers face multiple events and want

to maximize the probability of meeting these events. Dependent-

chance programming is a stochastic optimization theory to

optimize the chance function of events in an uncertain

environment. The general model is given as follows (Liu, 1997):

{max P{h(xi, ξ)≤ 0}
s.t. gj(xi, ξ)≤ 0, j � 1, 2, . . . , p,

(9)

where xi is the decision variable, andξ is the uncertain variable.

The dependent-chance programming model can be expressed as

maximizing the probability of a random event h(xi, ξ)≤ 0 under
an uncertain environment gj(xi, ξ)≤ 0.

At present, the genetic algorithm is mainly used to solve

the dependent-chance programming model. In Zhang and

Song (2017), the author proposed a Sugeno measure space-

based algorithm to solve the dependent-chance programming

model.

3.2 Robust optimization

The stochastic programming method requires the accurate

distribution of random variables, but this is very unrealistic in

practice. For example, incomplete data may lead to an inaccurate

probability distribution, which may affect the decision-making

results (Yang et al., 2019). The robust optimization method is

different from stochastic programming. When facing uncertain

parameters, the robust optimization method does not need to

know its accurate distribution but only its uncertain space (Ben-

Tal and Nemirovski, 2002). Robust optimization assumed that

the range of uncertain parameters is a specific uncertain set.

Within the range of the uncertain set, the objective function or

constraints in the worst-case scenario are constructed, which can

generally be expressed as a min-max-min optimization problem

(Gabrel et al., 2014):

min max min
x∈R,ξ∈U

f(x, ξ)
s.t. gi(x, ξ)≤ 0
∀ξ ∈ U
i � 1, 2,/m,

(10)

where x is the decision variable, ξ is the uncertain variable, and U
is the uncertain set.

By choosing a different uncertain set to describe the

uncertainties, robust optimization models with different

modeling characteristics and solving difficulties can be

obtained. According to different selection types of uncertainty

sets, robust optimization methods can generally be divided into

the box robust optimization method, ellipsoid robust

optimization method, polyhedron robust optimization

method, and budget robust optimization method. There are

mainly the following types of robust sets to characterize

uncertain variables.

3.2.1 Box robust set
The box uncertainty set is the simplest uncertainty set, also

known as an interval set. Because robust optimization is an

optimization solution method considering the worst case, it is

possible for some models to optimize all uncertain parameters in

the upper and lower bounds of the interval set. The generalized

box robust optimization model is described as follows (Xiao et al.,

2013):

U � {ξ∣∣∣∣∣ξ0 + ξ̂, eT ξ̂ � 0, ξ
−
≤ ξ̂ ≤ ξ

−}, (11)

where e is the column vector with element 1, and ξ
−
and ξ

−
are the

upper and lower bounds of the given set, respectively.

However, in practice, the probability of this situation may not

happen. Therefore, the results are easy to be excessively

conservative (Gu et al., 2016).

3.2.2 Ellipsoidal robust set
To reduce the aggressive conservatism in Xiao et al. (2013),

the ellipsoidal robust optimization method is presented as

follows (Ben-Tal and Nemirovski, 1998):

U � {ξ∣∣∣∣∣ξ0 + Aξ̂, eTAξ̂ � 0,
�����ξ̂�����≤ 1}, (12)

where A is the control matrix of ellipsoidal size. Selecting

different matrices can effectively control the distribution of

uncertain parameters from the center of the sphere and the

radius from the center of the sphere. Different values of A can

realize the optimal decision of ellipsoid robust optimization with

the coordination of conservatism and optimality (Hanks et al.,

2017). Compared with the box robust optimization method, the

ellipsoidal robust optimization method can describe uncertain

parameters more accurately. However, the ellipsoidal robust

optimization method increases the complexity of problem-

solving, which limits the application of this method.

3.2.3 Polyhedral robust set
For robust uncertain optimization problems, not only the

robustness of the results needs to be considered but also the

trade-off between optimization performance and robustness. The

Frontiers in Energy Research frontiersin.org06

Yang et al. 10.3389/fenrg.2022.967220

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.967220


polyhedral robust optimization method can meet such

requirements at the same time. The generalized polyhedral

robust optimization model is described as follows (Jalilvand-

Nejad et al., 2016):

U � {ξ∣∣∣‖ξ‖1 ≤ Γ, |ξ|≤ e}. (13)

The polyhedral uncertain set can be regarded as a special

form of the ellipsoidal uncertain set. Although the polyhedral

uncertainty set is difficult to characterize the correlation between

uncertain parameters, they are widely favored in practical

engineering problems because of their linear structure and

easy-to-control uncertainty (Saric and Stankovic, 2008).

3.2.4 Budget robust set
The budget robust optimization method builds the

uncertainty set based on the relative value of the offset of

uncertain parameters, which can more accurately describe the

fluctuation of uncertainties and is described as follows (Goerigk

et al., 2020):

U �
⎧⎪⎪⎪⎨⎪⎪⎪⎩ξ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∑
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ξ i − ξ̂ i

ξ i
−

− ξ i
−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ Γ, |ξ|≤ e

⎫⎪⎪⎪⎬⎪⎪⎪⎭, (14)

where ξ̂i is the forecast value of an uncertain variable, and ξ
−
and ξ

−

are the upper and lower bounds of the given set, respectively.

3.2.5 Combined robust set
In addition to the aforementioned common uncertain sets, in

order to adapt to different situations and describe the

uncertainties more accurately, some researchers have also

derived many kinds of combined uncertain sets, such as the

“box + ellipsoidal” uncertain set and “box + polyhedral”

uncertain set (Papadimitriou and Fortz, 2015; Dong et al., 2020).

3.3 Distributionally robust optimization

In recent years, the distributionally robust optimization

(DRO) method has been proposed to overcome the

shortcomings of stochastic optimization and robust

optimization (Goh and Sim, 2010). Considering that in

practical problems, some statistical information of random

variables is often known, such as expectation and variance,

and historical sample data. By establishing the ambiguity set of

a random variable probability distribution based on some

statistical information, the DRO method seeks the minimum

expected value of system operation cost under the worst

probability distribution. Therefore, the DRO method not

only makes use of the statistical information of random

variables but also ensures the reliability of the scheduling

scheme to a certain extent (Wiesemann et al., 2014).

Constructing the ambiguity set is the basis and key of the

DRO method. At present, the ambiguous set construction

methods mainly include as followed.

3.3.1 Moment-determination ambiguity set
Although it is impossible to accurately obtain the distribution

of random variables through limited historical data, it can

determine the mean and variance of random variables.

Therefore, the DRO moment-determination method is

derived, and the ambiguity set is described as follows (Wei

et al., 2016):

D �
⎧⎪⎨⎪⎩P(ξ)

∣∣∣∣∣∣∣∣∣∣∣∣
P(ξ ∈ Ξ) � 1
E(ξ) � μ

E((ξ − μ)2) � σ2

⎫⎪⎬⎪⎭, (15)

where D is the ambiguity set, and μ and σ2 are the mean and

variance of random variables, respectively.

The uncertainty of the correlation moment is not considered

in the DRO moment-deterministic method, which has a great

impact on the decision results.

3.3.2 Moment-uncertainty ambiguity set
In practice, due to many reasons such as limited data and

missing data, the moment-determination ambiguity set obtained

from historical data statistics is not completely accurate and has

certain uncertainty. Therefore, the DRO method considering

moment uncertainty is particularly important. The moment-

uncertainty ambiguity set can be expressed as follows (Chang

et al., 2019):

D �
⎧⎪⎪⎪⎨⎪⎪⎪⎩P ∈ Ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P(ξ ∈ Ξ) � 1(E[ξ] − μ0)Tσ−10 (E[ξ] − μ0)≤ γ1
E[(ξ − μ0)(ξ − μ0)T]≤ γ2σ0

γ1 ≥ 0, γ2 ≥ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭, (16)

where the second line assumes that the mean value of the random

variable is located in an ellipsoid with μ0 as the center and γ1 as

the size. The third line describes the possibility that the random

variable ξ is close to μ0 based on the correlation σ0. The

parameters γ1 and γ2 quantify the decision-making trust in μ0
and σ0, respectively.

3.3.3 Wasserstein distance-based ambiguity set
The Wasserstein distance-based method constructs the

initial empirical distribution based on the sampled data and

can make full use of the available historical data. Moreover,

this method uses the Wasserstein sphere to limit the

fluctuation range of probability distribution (Graf and

Luschgy, 2009; Zhou et al., 2020). The selection of sphere

radius has an important impact on the conservatism of

system decision-making results. The ambiguity set is defined

as a ball in the probability distribution space, which contains all

distributions close to the real distribution or the most likely

distribution in terms of probability distance. The decision-

maker can control the conservatism of the optimization
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problem by adjusting the radius of the ball. If the radius is zero,

the ambiguity set will be reduced to a single element set

containing only the real distribution. The Wasserstein

distance-based ambiguity set can be expressed as follows

(Zheng and Chen, 2020):

Mϵ(P~ S) � {P ∈ R(Ξ): W(P,P~ S)≤ ϵ}, (17)

where Mϵ(P
~

S) represents the Wasserstein ball with ϵ as the

radius and P
~

S as the center of the sphere.

The worst expectation of constructing an ambiguity set based

on first-order Wasserstein distance has the following form and

theorem (Mohajerin Esfahani and Kuhn, 2018):

Z(x) � maxPEP[Z(x, ξ)]. (18)

Through the strong duality theory, we can get the following

equation:

Z(x) � inf
λ∈R+ ϵλ +

1
I
∑
s∈S

supZ(x, ξ) − λd(ξ, ~ξ). (19)

Using Wasserstein distance to construct the ambiguity set

has two advantages: 1) the distribution constructed by this

method is more reasonable than that constructed by other

common methods; 2) the robust problem can be transformed

into finite convex programming or even linear programming,

which is easy to calculate (Duan et al., 2018).

3.3.4 Kullback–Leibler distance-based
ambiguity set

Different from the DRO method based on Wasserstein

distance, the DRO method based on the Kullback–Leibler

divergence assumes that the probability is discrete, and the

Kullback–Leibler divergence is defined as follows (Kullback,

1987):

DKL(p∣∣∣∣P0) � ∫
Ω
P(θ)log P(θ)

P0(θ) dθ, (20)

where p and p0 are probability distribution functions of the

random variable ξ, and DKL(p|P0) represents the

Kullback–Leibler divergence from p to p0.

The ambiguity set of a probability distribution based on

Kullback–Leibler divergence is as follows (Yang et al., 2019):

D : � {P ∈ D|DKL(p∣∣∣∣P0)≤ η}, (21)

where η is the divergence tolerance to control the size of the

ambiguity set.

This kind of model transforms the original problem through

simple dual derivation and the discrete probability scene value

technique, and the solution is relatively simple. However,

although the subproblem can be accelerated by solving each

discrete scene separately, the solution time of the whole model

is long.

4 Study on power system flexibility
considering uncertainties

Uncertainty affects the power system in many ways. The

current research mainly includes power system planning, power

system operation, electricity market, load forecasting, and

supply-demand balance.

The research on the uncertainty of power system load

forecasting is mainly divided into two aspects: probabilistic

load forecasting and the uncertainty of load forecasting

results. There are few studies on the uncertain supply-demand

balance of power systems, especially the system balance and

operation problems caused by renewable energy. From a certain

point of view, the purpose of power system load forecasting and

supply-demand balance is mainly to provide a scientific basis for

power system planning and operation. Therefore, aiming at the

problem of power system flexibility in an uncertain environment,

this study mainly summarizes the research progress of power

system planning, operation, and electricity market flexibility.

4.1 Planning flexibility

Generally, power system planning consists of generation

planning, capacity planning, and reserve planning (Dong and

Tong, 2020). In the uncertain environment, the uncertainties

increase the need for planning flexibility in electric power

systems, and great progress has been made in the research of

power system flexibility planning (Sun et al., 2021).

External flexibility resources, such as energy storage and

demand response, are exploited in generation expansion

planning for coping with renewable energy increases (Dai et al.,

2021).Duetovariablerenewableenergysourceintegration,apower-

based unit commitment generation expansion planningmodel was

presented to overcome the problem of overestimating the actual

flexibility of the system, and from the perspective of directional

characteristics, the indicators of insufficient flexibility of up- and

downregulation and their expression forms are defined (Tejada-

Arango et al., 2020). In Hua et al. (2018), from the viewpoint of

representing system flexibility, a unit commitment generation

expansion planning model was presented, and a convex

relaxation was used to solve the problem computationally

challenging of unit commitment, which is different from the

model in Tejada-Arango et al. (2020). Flexibility is rarely fully

considered in capacity planning models because of the

computational demands of including mixed integer unit

commitment within the capacity expansion; considering the

carbon emission constraints and the penetration of renewable

energy in power systems, the problems of generation of planning

flexibility (Palmintier and Webster, 2016) and capacity planning

flexibility (Hargreaves et al., 2015; Chen et al., 2018)were discussed,

respectively. Based on a computational efficient modeling

formulation, the chanced programming (Chen et al., 2018) and
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robust method (Hargreaves et al., 2015) were used to present the

uncertainty of the wind power output.

A flexible power system should have sufficient ramp capacity

and reserve capacity to meet the occurrence of uncertain

conditions. Therefore, traditional reserve planning is deemed

impeding to the system’s flexibility (Khoshjahan et al., 2019).

The concept of flexibility envelopes, which can capture reserve

requirements, was presented as an alternative approach to the

traditional reserve scheduling method (Nosair and Bouffard,

2015a; Nosair and Bouffard, 2015b). In Ghaemi and Salehi

(2021) and Yang and Sun (2022), flexibility constraints were

considered as a limit to reduce costs of the system, and MILP

expansion planningwas proposed, where an interval optimization

hasbeenutilized to address uncertainties due to the computational

efficiency. In Dehghan et al. (2020), (2020), and Pourahmadi et al.

(2020a), the problem of generation expansion planning was

studied by the robust method, stochastic method, and

distributionally robust method, respectively. Through different

uncertaintymodeling techniques, these literature reports analyzed

the flexibility improvement methods from different viewpoints,

and the flexibility of the system is evaluated from the time scale.

From the perspective of power system planning flexibility, the

aforementionedresearchconsiders theuncertain factors including

wind, transmission lines, and loaddemandbut rarely considers the

correlation between wind power. For power system planning, this

is an important factor worthy of consideration. Whether it can

effectively improve flexibility is worth discussing.

4.2 Operation flexibility

Compared with the problem of power system planning

flexibility, the problem of power system operational flexibility in

an uncertain environment, such as unit commitment and

economic dispatch, has changed more obviously (Li et al.,

2021). Operation flexibility is an important characteristic of the

power system. It is an importantmeans to reduce thepower supply

interruption caused by uncertainties in the power system.

Improving the availability of renewable energy is one of the

methods to meet the requirements of operational flexibility in

power systems (Huo et al., 2020). It is the most important link to

accurately model the uncertainties and describe their

characteristics with corresponding mathematical methods

(Pourahmadi et al., 2019; Pourahmadi et al., 2020b). The robust

method, as a mature uncertainty modeling technology, has been

widely used. To discuss the flexible unit commitment problem,

box-based, ellipsoidal-based and polyhedral-based approaches as

the uncertainties’ modeling have been used in Li et al. (2015),

Angulo Cárdenas et al. (2016), and Cho et al. (2019) to model the

uncertainty of renewable power and load demand, and the results

showed that a flexible scheduling strategy was obtained which

balances the economic and efficiency. From the perspective of the

model solving efficiency, these threemodelingmethods have good

performance. Demand response, as a flexible resource, its

uncertainty is characterized by the stochastic method, and the

role of improving system flexibility in multi-energy systems and

unit commitment problems was studied in Good andMancarella,

(2019) and Saeed Poorvaezi et al. (2019). In the research, the

difficult solution form of the problem is simplified by applying

methods such as random scene reduction.

In thepower system,with the rapiddevelopmentofdistributed

generation, user-side management has become an important way

to improve system flexibility (Rashidizadeh-Kermani et al., 2020).

To assess the operational flexibility capacity of the system, a fixed

robust uncertainty set and an adjustable uncertainty set were

constructed; the wind power model based on a two-stage robust

unit commitmentwas introduced inPourahmadi et al. (2022), and

the author adopts the improved method based on the CCG

algorithm to solve the adjustable robust model. Considering

energy storage and reserves, Zhang et al. (2016) presented a

flexibility-oriented unified scheduling model to study the

features required for flexibility assessment.

With the development of energy storage technology, much

attention has been paid to the research of power system reserve

flexibility from the perspective of the economy (Krad et al., 2017).

Flexibility reserve, both with the function of supplying the energy

imbalance in real-time operation and determining flexible

ramping requirements (Khatami et al., 2020), and a

continuous-time stochastic multi-fidelity model for co-

optimization of energy and flexibility reserve were proposed

by Khatami and Parvania (2020). Compared with these two

similar stochastic modeling forms, the solution is more

difficult and less efficient when considering the time scale.

4.3 Electricity market flexibility

Flexibilityisthekeytotheoperationofahighproportionrenewable

energy electricity market. Large power abandonment, frequent

occurrence of negative electricity prices, and price fluctuation are all

manifestations of inflexibility after the power system is connected to a

highproportionofrenewableenergy(Bistline,2019;Mamounakisetal.,

2019; Ordoudis et al., 2020; Zhang et al., 2020). In the uncertain

environment, how to improve the flexibility of the power market is

worthy of attention for the realization of a new power system and the

goal of dual carbon (Muñoz et al., 2021).

The flexibility of the electricity market can be improved by

strengthening transmission investment and improving generation

side flexibility and mechanism innovation (Papadaskalopoulos

and Strbac, 2013; Chen and Jing, 2022; Tu, 2022). In addition,

flexible rampingproducts, suchas traditional thermalpowerunits,

electric vehicles, energy storage, electricity-gas combined system,

and demand response, have made great progress as a method to

improvesystemflexibility inanuncertainenvironment (Wangand

Hodge, 2017;Wang et al., 2021). Considering the spatio-temporal

correlations of wind power and demand uncertainties, a

Frontiers in Energy Research frontiersin.org09

Yang et al. 10.3389/fenrg.2022.967220

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.967220


distributionally robust chance constrained multi-interval model

was proposed to solve the deliverability issues of flexible ramping

products (Fang et al., 2020), and the Wasserstein distance

ambiguity set was transformed into a MILP problem. By

aggregating demand-side flexibility resources, Di Somma et al.

(2019) formulated a stochastic MILP problem, and the

uncertainties of day-ahead market price and intermittent

renewable energy generation were modeled through a set of

scenarios to improve the flexibility operation of the electricity

market. For the sameMILPmodel, the difference between the two

modeling methods leads to different difficulties and efficiency of

the solution. Due to a large number of random scenes, the solution

time is obviously long (Di Somma et al., 2019; Fang et al., 2020).

With the increasing proportion of renewable energy, energy

storage, and natural gas, the main body of electricity market

transactions is both an energy producer and energy consumer

(Iria et al., 2019). At the same time, a large number of uncertain

factors have challenged the effectiveness of various traditional

operation measures. In the multi-energy environment, how to

improve the flexibility of operation of the electricity market

under uncertainties has attracted great attention (Baringo et al.,

2019;Qin et al., 2021; Sayedet al., 2021; Yanget al., 2021). Byusinga

set of inexact distributions based on historical data to portray the

volatile market price, an electricity and heat market self-scheduling

model was modeled as a distributionally robust problem, and the

results validated that a more flexible electricity market can be

obtained by this method (Li et al., 2022). For market flexibility,

price and load demand are two major sources of uncertainty. The

robust method (Velloso et al., 2020; Liu et al., 2022) and stochastic

method(HartwigandKockar,2016;Dvorkin,2020;Jiangetal.,2022)

were used todescribe theuncertaintyofmarketprice and renewable

energygeneration, respectively.Numerical results showedthat these

methods have good performance in improving the flexibility of the

electricity market in an uncertain environment.

5 Conclusion

This article reviews the concepts and characteristics of power

system flexibility. Aiming at the problem of power system

flexibility in an uncertain environment, the uncertainty

modeling methods, including the robust method, stochastic

method, and distributionally robust method, are summarized,

and the corresponding mathematical modeling expressions are

given. From the perspective of economy and conservatism, the

advantages and disadvantages of these methods are compared

and analyzed. Furthermore, from the perspective of planning,

operation, and electricity market flexibility, the existing literature

reports are summarized and analyzed in detail, and the following

conclusions are obtained as follows:

1) Deepening the reform of the power system and building a new

power system with renewable energy as the main body are

important measures to achieve the goal of dual carbon. In this

context, various uncertain factors, such as the output

randomness and price instability of new energy, have a

great impact on the power system flexibility.

2) Theresearchonpowersystemflexibilityconsideringuncertainty

factors and the research on using stochastic programming and

robust optimization methods to solve such uncertain problems

are mature at present. The application of constrained

programming, value at risk method, conditional value at risk

method, and robust optimization method in the power system

will have further development. The newmethod combining the

characteristics of stochastic programming and the robust

optimization method can also be a way for subsequent related

research.Thedistributionallyrobustmethodisthemainresearch

field of power system operation and planning flexibility,

considering uncertainties, but there is little application

research in electricity market flexibility. In addition, the

random variable modeling method of distributionally robust

optimization can be deeply studied to describe the uncertainty

more accurately.

In recent years,with the improvementof computer computing

power and the development of artificial intelligence technology,

which has been gradually applied to power system uncertainty

modeling, combining probability prediction technology with the

optimal method, a decision-making method based on probability

predictionhasbeen constructed frommathematical theory so as to

improve the flexibility ability of the power system to deal with the

actual uncertainty factors in the future. For the research of power

systemflexibility in anuncertainty environment, the innovationof

themodelingmethod, the efficiency of the solution algorithm, and

the accurate combination of application scenarios are worth

considering.
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Appendix 1: Comparison of
uncertainty modeling methods

Characteristics of
uncertainty modeling

Modeling
method

Solution
transformation
method

Advantage Disadvantage

Stochastic method Describing uncertain information
based on accurate probability
distribution

Stochastic
expectation

Analog sampling There are many constraint
functions, which are
difficult to solve

Long solution time

Chance
constrained

Equivalent transformation Good performance Multiple random variable
model is difficult to be
solved

Conditional value
at risk

It is generally equivalent to a
linear problem

The constraint conditions
are simplified and easy to
solve

Difficult to characterize
the random correlation

Robust method The uncertainty set is used to
represent its variation range

Box robust Dual method transformation
and solved by decomposition
or CCG

The modeling method is
simple and easy to be
transformed

The results were
conservativeEllipsoidal robust

Polyhedral robust

Budget robust

Distributionally
robust method

The ambiguity set of the
probability distribution is
established based on the data to
describe the uncertainties

Moment-based Linear decision rule and dual
theory transformation, solved
by decomposition or CCG

The statistical moment is
easy to obtain

Underutilization of data
statistics, and the results
are slightly conservative

Wasserstein
distance

Make full use of statistical
information and can
generally be transformed
into a linear problem

The scale of the problem
increases with the increase
of the amount of data

Kullback–Leibler
divergence

Low requirements for data
information, and the
performance outside the
sample is good

Cannot be used to model
continuous random
variables
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