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Based on summarizing and analyzing the typical applications of energy storage, the study
established a model for an active distribution network, and analyzed the technical and
economic benefits of its access to the distribution network. In addition, considering the
economic and technical requirements of multiple types of energy, ensure the stable and
continuous operation of multiple types of energy, and build an optimal configuration model
for multiple types of energy. To achieve a reliable solution to the model, a non-Pareto
genetic algorithm (NSGA-II) is designed to obtain the optimal Pareto solution set for multi-
type energy location and volume schemes. The proposed solution algorithm has a rich
individual update mechanism and an advanced Pareto solution set storage and screening
mechanism, which can effectively solve the problem. Furthermore, idea point decision
making (IPDM) has been designed to select the best compromise solution in Pareto non-
dominated solution set. Finally, based on the IEEE-33 node standard test system, the input
source-load uncertainty scenario set is used to construct the distribution network
operation scenario, and the configuration model is solved. The results show that
NSGA-II can obtain a Pareto front with better solution quality and a more uniform
distribution. After accessing the battery energy storage systems (BESS), the annual
total power fluctuation and peak-valley difference of daily maximum load have been
reduced by 19.25% and 11.8% respectively.

Keywords: energy storage, multi-type energy resources, multi-objective optimization, non-Pareto genetic
algorithm, Pareto front

1 INTRODUCTION

Today, the energy structure has ushered in profound changes, and the energy industry urgently needs
to seek new development space (Sepulveda Rangel et al., 2018). Facing the dual pressure of resources
and environment, renewable energy with the advantages of rich reserves, and low carbon provides
new opportunities for the transformation of energy structure (Yu et al., 2016; Liu et al., 2020; Peng
et al., 2020; Sun et al., 2020). Therefore, promoting new energy is an important measure to promote
the adjustment of global energy structure and the transformation of clean and low-carbon
consumption side. However, the key to the high-quality development of new energy industry is
to fully absorb it and ensure the safe, stable and efficient operation of power grid.

In addition, the role of energy storage in regulating the power grid and supporting new energy
depends largely on the construction address and configuration capacity of large-scale energy storage,
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that is, the reasonable optimal configuration can not only reduce
the cost but also maximize the role of multi-type energy storage
systems (Wang et al., 2014). On the contrary, improper access
location may cause voltage out of limit, line loss increases, and
other problems, and even affect the safety of power grid operation
(Kerdphol et al., 2016a). At the same time, the efficiency and
service life of multi-type energy storage system components will
be reduced due to the long-term insufficient charging state (Zhou
et al., 2021). In addition, if the capacity allocation is too small, it
cannot effectively absorb excess wind and photovoltaic power
resources, and even affect voltage and frequency regulation (Gan
et al., 2019). Therefore, the optimal allocation technology of BESS
is to be solved in the design (Kerdphol et al., 2016b). With the
continuous increase in new energy grid-connected capacity, the
uncertainty of BESS operation is becoming more and more
prominent (Hlal et al., 2019). At present, in the energy storage
allocation model of the distribution network, some only consider
a single economic index, and the technical index is often
considered in the constraints (Chong et al., 2016). For
example, Chong et al., 2018) established a two-stage energy
storage location and volume optimization model for the whole
life cycle, which reduced the investment cost.

Furthermore, many studies use multi-objective optimization
methods to objectively select the weight, so as to achieve the best
compromise between economic and technical objectives (Jia
et al., 2017; Wu et al., 2019). In particular, we can make a trade-
off between technology and economy, so as to make the final
energy storage allocation scheme more reasonable (He et al.,
2015). At present, there are mainly analytical methods,
numerical methods, heuristic algorithms, neural
network–based methods, and so on (He et al., 2021).
However, most research models are single-objective models,
which cannot reasonably coordinate the economy of energy
storage and power grid stability. Meng et al. (2021) proposed a
two-layer BESS planning scheme considering the uncertainty of
new energy and load. However, they did not mention the
screening scheme of Pareto’s non-dominated solution and
did not consider the influence of access to the BESS on
power grid stability. Wu et al. (2014) established a multi-
objective optimization model based on the minimum voltage
fluctuation and load fluctuation of nodes and the total capacity
of BESS. However, this model does not consider the cost of
investment operation and maintenance of BESS and lacks
practical engineering application. Liu et al. (2021) took BESS
economic benefit and voltage quality as optimization objectives
and established a multi-objective optimal allocation model.
However, voltage quality cannot fully reflect the real
operation of the power grid after access to the BESS.

The traditional analysis methods and numerical methods are
difficult to solve accurately and quickly, and cannot guarantee the
global nature of the solution. Meta-heuristic algorithms are
popular because of their flexibility, model, and avoidance of
local optimization (Oudalov et al., 2007; Li et al., 2018; Pang
et al., 2019; Yang et al., 2020). However, the traditional meta-
heuristic algorithm has the problems of strong search
randomness, and low avoidance rate of local optimization, and
is only suitable for a single objective solution.

In the study, BESS considering both economic and technical
indicators is established. The main contributions are as follows:

1) A non-Pareto genetic algorithm (NSGA-II) with good
optimization performance is designed based on Pareto theory.

2) The application design of the algorithm is carried out to apply
the proposed algorithm to the solution of the battery energy
storage system (BESS) multi-objective optimization allocation
model. Different algorithms are used to solve the established
BESS multi-objective optimal configuration model. It is
verified that the proposed solution method can obtain the
Pareto Frontier with better solution quality and a more
uniform distribution.

3) Idea point decision making (IPDM) has been designed to
select the best compromise solution in the Pareto non-
dominated solution set.

The structure of this study is as follows: Section 2 develops the
location and capacity planning modeling of BESS. Section 3
introduces NSGA-II based on IPDM. Section 4 develops the case
studies. In Section 5, the content of this study is summarized and
the prospect of future research is proposed.

2 MODELING OF BESS LOCATION AND
CAPACITY PLANNING

In BESS planning, it is necessary to comprehensively consider
BESS investment cost-effectiveness and distribution network
operation reliability (Wong et al., 2019). Therefore, the
optimization model is as follows:

{min
X

F(X, x) � [F1(X, x),/, Fh(X, x)], h � 1, 2, 3,

s.t.G(X, x)≤ 0,
(1)

where Fh(X, x) is the hth objective function (Zakeri and Syri,
2015).

2.1 Objective Functions
In the planning of an energy storage power station, the investor
often makes investment planning based on the principle of the
minimum cost, while the operator optimizes the allocation based
on the principle of maximizing the comprehensive benefits
brought by the BESS (Harvey, 2020; Injeti and Thunuguntla,
2020).

Therefore, the total annual investment and operation cost of
the system considered in the outer objective function is described
as follows (Huang et al., 2020):

F1 � CTCC + COM + Ccha − Idis − Isub + Ccur + CPloss + CENV, (2)
where Ccur, CPloss, and CENV represent the annual wind and light
abandonment cost, network loss cost, and carbon emission cost
caused by conventional power peak shaving of the distribution
network, respectively. In addition, Ccha, Idis, and Isub represent
government subsidies for BESS’s annual power purchase
expenses, power sales revenue, and power sales, respectively.

For CTCC, it needs to satisfy the following equation.
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
CTCC � ⎡⎣Cinv ·NBESS + ∑NBESS

n�1
(a · PBESS,n + b · EBESS,n)⎤⎦ · μCRF,

μCRF �
y · (1 + y)x(1 + y)x − 1

,

(3)
where Cinv is the fixed investment and construction cost of an
energy storage power station (Fonseca and Fleming, 1993),
EBESS,n and PBESS,n represent the configured capacity and
power of the nth BESS, respectively, a and b are the unit
power and the unit capacity cost, respectively,μCRF is the
annual capital recovery rate, and x is the service life of BESS,
which is 10 years in this study (Zhang et al., 2017).

For CTCC is expressed as:

COM � ⎡⎣ ∑NBESS

n�1
(a · PBESS,n + b · EBESS,n)⎤⎦ · ρom, (4)

where ρom is the manipulation coefficient, which is taken as 5% in
Mirjalili et al. (2017).

For Ccha and Idis, it can be calculated by.

Ccha � ∑Md

m�1
Dm ·⎛⎝ ∑NBESS

n�1
∑T
t�1
[ρpur(t) · Pcha,n(t)]⎞⎠, (5)

Idis � ∑Md

m�1
Dm ·⎛⎝ ∑NBESS

n�1
∑T
t�1
[ρsell(t) · Pdis,n(t)]⎞⎠, (6)

where Md refers to the number of scenes, Dm is the number of
days corresponding to the mth scenario, ρpur(t) and ρsell(t)
represent the power purchase and sale price of BESS in t
period, respectively (Moscato, 1989),Pcha,n(t) and Pdis,n(t) are
the charging and discharging power of the nth BESS in t period,
respectively, and T is a scheduling cycle, that is, 24 h.

In addition, for Isub, it gives.

Isub � ∑Md

m�1
Dm ·⎛⎝ ∑NBESS

n�1
∑T
t�1
[λ · Pdis,n(t)]⎞⎠. (7)

For Ccur, it can be calculated by.

Ccur � ∑Md

m�1
Dm ·⎛⎝∑T

t�1
[Pwind(t) + PPV(t) + Pcha/dis(t) − Pload(t) − PPloss(t)]⎞⎠ · γ,

(8)
where PPloss(t) is the power of line loss andγ is a benefit subsidy
given by the government to the BESS to absorb new energy (Neri
and Cotta, 2012).

For CPloss, it needs to satisfy the following equation.

CPloss � ∑Md

m�1
Dm ·⎛⎝ ∑NBESS

n�1
∑T
t�1
[ρsell(t) · PPloss(t)]⎞⎠. (9)

For CENV, it gives.

CENV � ∑Md

m�1
Dm ·⎛⎝∑T

t�1
Pgrid(t) · ∑P

p�1
(Up · up)⎞⎠, s.t.Pgrid(t)> 0,

(10)

where Pgrid(t) refers to the quantity of electricity purchased by
the distribution network from the superior power grid in t period.
(Mirjalili et al., 2017).

2.2 Constraint Conditions
The constraints of the model include system operation
constraints, that is, node power balance constraints, node
voltage constraints, parallel node power constraints, and wind
and light rejection constraints. These constraints ensure the safety
and reliability of the operation state of the whole distribution
network, and promote consumption of new energy as much as
possible by meeting the wind and light rejection rate (Eusuff and
Lansey, 2003).

2.2.1 Node Voltage Constraints

Vi(t) �
�����������������������������������������������������(Vj(t) − (rij · Pij(t) + xij · Qij(t)))2 + (rij · Pij(t) + xij · Qij(t))2√

, (11)

where Pij(t) and Qij(t) are the reactive and active power flowing
through and between nodes, respectively, and rij represent the
resistance of the transmission line under the resistance (Coello
et al., 2004).

2.2.2 BESS Power and Capacity Constraints

{Emin
BESS ≤EBESS,n ≤Emax

BESS,
Pmin
BESS ≤PLgrid ≤Pmax

BESS,
(12)

where Emin
BESS, E

max
BESS, P

min
BESS, and Pmax

BESS represent the upper and
lower limits of the BESS configuration capacity and the upper and
lower limits of the configuration power, respectively, under the
conditions of installation site, grid-connected power, and total
load (Faramarzi et al., 2020). It should be noted that, in order to
ensure that the BESSs can meet the load demand of the
distribution network as much as possible without wasting
energy storage resources, this study sets the total installed
BESSs within the range of 10%–90% of the total system load
power to set the rated power of a single BESS. Upper and lower
limits.

2.2.3 BESS Installation Position Constraints

{ LBESS,n ∈ Nnodes, LBESS,n ≠ Lgrid,
LBESS,n ≠ LBESS,n+1,

(13)

where LBESS,n is the installation node of the nth BESS. It should be
noted that the BESS can be installed on any node except the
contact point, but not on the same node.

2.2.4 State of Charge of BESSs
The state of charge (SOC) of BESSs at any time is an important
parameter of charge–discharge operation, which is described
by capacity, charge–discharge power, charge–discharge
efficiency, and other variables. The BESS SOC is calculated
as follows:
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⎧⎨⎩ SOCi(t) � (1 − δ · Δt) · SOCi(t − 1) + (Pcha ,i(t) · ηcha, i) · Δt,
SOCi(t) � (1 − δ · Δt) · SOCi(t − 1) − (Pdis,i(t)/ηdis,i) · Δt,

(14)
where Pcha ,i(t) and Pdis,i(t) are the charging and discharging
power of the node in the period, respectively; ηcha, i and ηdis,i are
the charging and discharging efficiency of the node in the period,
respectively.

3 NON-DOMINATED SORTING GENETIC
ALGORITHM BASED ON PARETO
3.1 Non-Dominated Sorting Genetic
Algorithm
At present, the multi-objective optimization algorithm can be
divided into two types: based on the Pareto optimal solution and
non-Pareto optimal solution. The principle of the non-Pareto
method is a genetic algorithm based on vector evaluation, which
is easy to fall into local optimal solution, so this algorithm needs
to be improved. The elite strategy is added on the basis of the first-
generation non-dominated genetic algorithm. It is a more
practical multi-objective optimization algorithm.

3.1.1 Construction Method
Setting the population to P, nP, and SP, these are the parameters
that the algorithm needs to calculate for each individual
population, where nP individuals dominate the number of
individuals P in the population and SP is the set of individuals
in the individual population P. When traversing the entire
population, the total computational complexity of these two
parameters is 0 (Tian et al., 2019).

3.1.2 Methods to Maintain the Distribution and
Diversity of Solution Groups
Among them, there are two sub targets f1 and f2, and P[i]distance
distance is the aggregation distance, and then the distance of
individual i is.

P[i]distance � (f1P[i + 1] − f1P[i − 1] + f2P[i + 1])
− f2P[i − 1]. (15)

In order to make the solution more uniform in the target
space, the crowding degree (nd) is the following formula.

nd � (fmP[i + 1] − fm P[i − 1])/(fmax
m − fmin

m ). (16)

3.1.3 Crowding Distance
NSGA-II maintains population diversity by calculating the
crowding distance. Crowding distance describes a group
(Schott, 1995; Wang et al., 2010; Long et al., 2022). First, let
the individual i be represented by d, and set di � 0. In addition, let
fm be the objective function, m � 1, 2, . . .M. The maximum
value of the function value is set to d1 � dL � ∞. In particular, the
calculation method of non-boundary individual i congestion
distance is as follows:

di � ∑M

m�1

∣∣∣∣fm(i − 1) − fm(i + 1)∣∣∣∣
fmax
m − fmin

m

. (17)

3.2 Pareto Solution Set Storage and Filtering
The Pareto solution set will be updated continuously during
NSGA-II iteration. After obtaining a new solution set in each
iteration, NSGA-II must compare it with the Pareto optimal
solution set in the storage pool one by one, so as to judge whether
the new solution set dominates the solution in the storage pool,
and then update the storage pool. NSGA-II will eliminate some
optimal solutions by the following formula.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣∣∣∣∣Fm(xi) − Fm(xj)<Dh

∣∣∣∣∣, m � 1, 2, 3,

Dm � Fmax
m − Fmin

m

Nr
,

(18)

where Fm(xi) is themth objective function, and Dm is the Pareto
leading edge distance threshold of the mth objective function
value. In addition, the flowchart of NSGA-II is shown in Figure 1.

FIGURE 1 | Flowchart of NSGA-II for the optimal location and size of
BESSs.
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4 CASE STUDIES

In this section, in order to verify the effectiveness and superiority
of the BESS optimal configuration model and its solution method
proposed in this study, it is necessary to conduct simulation
analysis based on the distribution network standard test system.

Therefore, this study takes the power system IEEE-33 system as
the basic simulation model, connects some nodes of the test
system to new energy sources, and simulates the distribution
network operating environment with source load uncertainty.
NSGA-II is used to solve the BESS double-layer multi-objective
optimal configuration model, and different optimal configuration

FIGURE 2 | Extended IEEE-33 node system topology.

TABLE 1 | Relevant parameters of BESSs.

Parameter Symbol Value

Fixed investment cost Cap 1,000,000 (yuan/per BESS)
Unit power cost a 1,370,000 (yuan/MW)
Power generation online subsidy λ 0.1yuan/kW·h
Operation and maintenance cost coefficient ρom 5%
Discount rate r 6.33%
Charging efficiency ηcha 95%
Discharge efficiency ηdis 95%
Self-discharge rate δ 1%

FIGURE 3 | Typical daily curves. (A) hourly load curve. (B) wind and photovoltaic power curve.
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schemes are compared to verify the superiority of the algorithm in
this study.

The grid structure is shown in Figure 2, in which the public
coupling point is connected with the superior power grid and
node one to realize the power exchange between the superior
network and the distribution network.

The example in this study assumes that two BESSs are
configured in the extended IEEE-33 node distribution
network, the allowable installation position of each BESS is
node (Moscato, 1989; Liu et al., 2020), and the installation
positions of the two BESSs are mutually exclusive. In addition,
the configured rated capacity range is (Sepulveda Rangel et al.,
2018; Zhou et al., 2021) MW·h; the range of rated power is
[0.25,2] MW, and the range of BESS charge and discharge power
is [−2,2] MW. The lithium battery with mature technology and

wide application is selected as the energy storage element of
BESS. The relevant parameters of lithium battery are shown in
Table 1.

Typical daily curves of (a) hourly load curves and (b) wind
and photovoltaic power curves are shown in Figure 3. In
addition, set the population size of the NSGA-II to 100, and
the maximum number of iterations to 500. In particular, the
multi-objective optimization and the size of the repository are
chosen to be 100.

4.1 Simulation Results
Figures 4, 5 show the three-objective Pareto front and the
approximate ideal Pareto optimal front after five independent
operations, respectively. In addition, the Pareto non-dominated
solution set obtained by NSGA-II proposed in this study is

FIGURE 4 | Three-objective Pareto front results.

FIGURE 5 | Schematic diagram of IPDM based on NSGA-II.
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excellent under the same number of iterations, population
number, and external archive set size.

In addition, Table 2 presents the scheme for the BESS
assignment of the two algorithms, and gives the objective
function value. NSGA-II in the optimal positioning of BESS
and the determined multi-objective optimization model.

In addition, the peak-to-valley difference of the equivalent
load of the distribution network increases significantly, and the
load fluctuation intensifies. Figure 6 shows that the load
regulation demand of the distribution network increases,
and the power fluctuation of the tie-line increases
accordingly. In particular, after the rational configuration of
BESS, the peak-to-valley of the distribution network has been
reduced, and the power fluctuation has also been improved.
Compared with the scenario before the BESS configuration, the
total tie-line power fluctuation for the whole year decreased
from 14.75 to 11.91MW, with an improvement rate of 19.25%;
the daily maximum load peak-to-valley difference also
decreased from 1.61 to 1.42MW, with an improvement rate
of 11.8%.

Therefore, the BESS can reduce the pressure of power grid
peak regulation and the investment of backup units in the
distribution network and the expansion of substation
equipment, and make more efficient use of electric energy. At
the same time, the BESS with its fast power regulation ability
stabilizes the load fluctuation to a certain extent, improves the

power stability of the power grid, and improves the power supply
quality.

5 CONCLUSION

Focusing on the optimal configuration of BESS in the distribution
network, this study researches source-load uncertainty analysis,
the establishment of an optimal configuration model, and model
solving algorithm design. A multi-objective optimization
configuration model and a multi-objective optimization
algorithm with excellent performance are designed to solve the
BESS configuration scheme that can take into account the
demands of various stakeholders. The main research work and
contributions are as follows:

1) This study comprehensively introduced the application
scenarios of energy storage, summarized the parameter
characteristics, advantages and disadvantages, and
application scope of various energy storage technologies,
expounded on the structure, circuit, and operation
mechanism of BESS, and then analyzed the energy storage
from the perspective of the distribution network;

2) NSGA-II with good optimization performance is adopted, and
according to the Pareto multi-objective optimization theory
and the roulette method based on crowding distance sorting,

TABLE 2 | Results of NSGA2.

The best compromise allocation scheme of BESS Objective function values under the best compromise allocation
scheme

Weights of
objective function

Bus location Energy capacity
(kWh)

Power capacity
(kW)

Investment cost
($/year)

Loss cost
($/year)

Tie-line power
fluctuation (MW/year)

(ω1, ω2,
ω3)

(13, 18) (384, 396.7) (69.5, 92) 1.701e + 05 1.283e + 05 11.91 (0.138,0.708,0.154)

FIGURE 6 | Annual average load curve of the distribution network before and after BESS allocation.
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the original GA is improved. The Pareto solution set storage
and screeningmechanism based on the crowding distance also
enables the algorithm to more effectively approach high-
quality optimal solutions and obtain uniform distribution;

3) The results show that the NSGA-II method with equilibrium
indicators can provide decision-makers with a more scientific
and effective decision-making scheme, and realize the best
trade-off and ideal decision-making among the system.

4) The analysis of the optimization results of the distribution
network also proves that the optimal configuration scheme of
the BESS can be reasonably charged and discharged, while
ensuring its economical operation, effectively improving the
voltage quality.

5) The simulation result shows that the annual total power
fluctuation and the daily maximum load peak-to-valley
difference have been reduced by 19.25% and 11.8%,
respectively.

In particular, the benefits of the conventional power supply
side, the grid side, and the new energy side have been
quantitatively analyzed and included in the total system
investment and operation cost, it is not comprehensive and
cannot accurately reflect the benefits that BESS brings to the
entire power system. Second, the cost and benefit of BESS in the
whole life cycle should be calculated, and its economic benefit
evaluation index should be further improved in the follow up. In

addition, the outer multi-objective optimization model mainly
considers two reliability indicators of distribution network
voltage fluctuation and load fluctuation. Other factors can be
considered in future research to further study the influence and
impact of BESS on the distribution network.
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