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Hydropower will become an important power source of China’s power grids

oriented to carbon neutral. In order to fully exploit the potential of water

resources and achieve low-carbon operation, this paper proposes an

approximate dynamic programming (ADP) algorithm for the unit-based

short-term small hydropower scheduling (STSHS) framework considering the

hydro unit commitment, which can accurately capture the physical and

operational characteristics of individual units. Both the non-convex and

non-linearization characteristics of the original STSHS model are retained

without any linearization to accurately describe the hydropower production

function and head effect, especially the dependence between the net head and

the water volume in the reservoir, thereby avoiding loss of the actual optimal

solution due to the large error introduced by the linearization process. An

approximate value function of the original problem is formulated via the

searching table model and approximate policy value iteration process to

address the “curse of dimensionally” in traditional dynamic programming,

which provides an approximate optimal strategy for the STSHS by

considering both algorithm accuracy and computational efficiency. The

model is then tested with a real-world instance of a hydropower plant with

three identical units to demonstrate the effectiveness of the proposed method.
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1 Introduction

With the high proportion of renewable energy penetration in power system,

hydropower is of great significance for achieving the “dual carbon” national goal as a

clean energy source with almost zero carbon emissions. Different from other countries’

energy structure, China has the richest hydropower resources in the world, which can be a

natural advantage to reduce the carbon dioxide emissions in daily operation of power grid.

Short-term hydropower scheduling (STHS), which aims to determine the optimal

hydropower generation strategy for each hydroelectric unit during a time horizon

from several minutes or hours to 1 day, plays an essential role in the daily or shorter
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operation of power systems to maximize the utilization of the

potential hydropower resources. STHS problems are generally

formulated for hydropower plants, i.e., aggregating all the

hydroelectric units in a plant and taking them as one

equivalent unit to significantly reduce the size of the STHS

problem (Zhao et al., 2021). However, these equivalent models

neglect the detailed characterization of the properties of the

hydroelectric units and thus are not suitable for the STSHS

problem, which requires a more accurate and detailed

representation of the nonlinear hydropower production

function (HPF) and head effect of each unit (Guisández and

Pérez-Díaz, 2021; Diniz and Maceira, 2008). Therefore, the

representation of more details, such as exact unit commitment

and nonconvex HPF, is needed to express the operating

characteristics of small hydropower in unit-based (“unit-

based” refers to “regarding each hydro-turbine generator unit

in a plant as an independent entity”) STSHS more accurately.

STHS considering hydro unit commitment (HUC) is a

combinatorial, non-convex and non-linear optimization

problem (Catalão et al., 2010; Postolov and Iliev, 2022; Wang

et al., 2022). The STHS problem has been extensively investigated

by researchers in recent years (Chen et al., 2016). For an

aggregated hydropower plant and a single hydropower unit,

the interior-point method (IPM) can effectively address non-

linear constraints in the STHS, but it cannot solve STHS

problems with 0–1 binary variables (Apostolopoulou and

McCulloch, 2019; Cheng et al., 2022). Mixed-integer linear

programming (MILP) is one of the most widespread methods

for STHS problems considering HUCs due to its modelling

flexibility, simple and efficient software environment, and

global search capability (Guedes et al., 2017). In (Cheng et al.,

2016), a MILP model for HUC is developed, and the unit

performance curves are discretized into a set of piecewise

curves based on a discretized net head such that the head

effect can be modelled. In (Zhao et al., 2021), a MILP-based

HUC framework is proposed to solve the irregular forbidden

zone-related constraints for very large hydropower plants. In

(Guisández and Pérez-Díaz, 2021), five MILP formulations for

piecewise linearization of the HPF equation are discussed: the

traditional method based on a single concave piecewise-linear

flow-power function (Conejo et al., 2002; Kong et al., 2020), the

rectangle method (Borghetti et al., 2008; D’Ambrosio et al.,

2010), the logarithmic independent branching 6-stencil

method (Huchette and Vielma, 2017), the quadrilateral

method (Keller and Karl, 2017), and the parallelogram

method (PAR) (Guisández and Pérez-Díaz, 2021). The above-

mentioned linearization methods can mitigate the computational

burden, and the errors caused by linearization can be accepted in

the economic dispatch of large hydropower stations with high

head-power dependency and large installed capacity (Shi et al.,

2017; Zhang et al., 2021). However, in the STHS of small

hydropower plants, the operating net head of hydroelectric

units is generally low, and the water volume of reservoirs and

the installed capacity of hydro plants are generally small;

therefore, the head effect is obvious. The effects of

linearization errors in both the net head and the output can

be ignored only if the breakpoints are sufficiently dense in the

piecewise linearization process (Skjelbred et al., 2020).

Nevertheless, with an increase in the density of breakpoints,

the advantage of MILP in improving the solution efficiency is

often lost with the sharp increase in the time cost.

To solve the above-mentioned large-scale, discrete non-

convex and non-linear optimization problem of the unit-based

STSHS (Marchand et al., 2018), dynamic programming (DP) has

been applied effectively in the hydro scheduling field due to its

superior performance in handling discrete variables and non-

convex and non-linear constraints in STSHS problems (Morillo

et al., 2020). DP decomposes a multi-stage decision problem into

a number of single-stage sub-problems and can obtain the global

optimal solution in most cases. However, DP is difficult to solve

even for medium-sized scheduling problems because the

computational burden increases exponentially with the

dimensionality of the state space. To alleviate the problem of

the curse of dimensionality, several variants of DP have been

proposed in recent years. In (Flamm et al., 2021), a two-stage dual

dynamic programming method is proposed to reconstruct the

nonlinear problem; the approach is notable for its calculation

accuracy and solving efficiency. In (Feng et al., 2017), an

orthogonal discrete differential dynamic programming

(ODDDP) method is introduced. The orthogonal

experimental design can select some small but representative

state combinations, thereby alleviating the curse of

dimensionality. Although these improved DP methods have

achieved various degrees of success in terms of alleviating the

curse of dimensionality, the computational burden may still be

intolerable when the problem scale reaches a certain degree. In

addition, to ensure computational efficiency, the nonlinear

expression of HPF in the literature is usually not sufficiently

accurate, and the impacts of power generation on the water head

are also not considered, so it is not suitable for STSHS. Thus,

there is an urgent need to develop new efficient algorithms to

improve the computational efficiency and convergence accuracy

for STSHS.

Approximate dynamic programming (ADP) is an important

and powerful artificial intelligence optimal method (Zeng et al.,

2019) that has attracted considerable attention in the fields of

power system scheduling (Lin et al., 2019; Zhu et al., 2019; Lin

et al., 2020; Zhu et al., 2020). The theory of ADP was proposed by

Powell W.B. (Powell, 2011), and its core idea is to avoid the

traversal of all states to reduce the computational burden of value

function approximation (VFA) while ensuring approximate

accuracy. ADP has been successfully applied to power system

optimization. In (Xue et al., 2022), an ADP algorithm proposed

for the real-time schedule of an integrated heat and power system

established the mapping relationship between the battery and

heat storage tank to approximate the value function through a

Frontiers in Energy Research frontiersin.org02

Ji and Wei 10.3389/fenrg.2022.965669

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.965669


table function model, thereby achieving the approximation of the

optimal value function by traversing discrete values with fewer

state variables. In (Shuai et al., 2019), an ADP algorithm based on

a piecewise-linear approximation strategy was employed to

address the fluctuations in renewable energy generation and

electricity prices in the real-time dispatching of microgrids. In

(Shuai et al., 2020), a hybrid approximate dynamic programming

method was proposed by combining model predictive control

and ADP. The model was then applied to the real-time

scheduling of gas-electricity integrated energy systems,

successfully addressing the tight coupling between time

periods caused by the material balance equation of natural gas

systems. ADP inherits all the advantages of DP and can efficiently

address discrete or continuous, linear or nonlinear, deterministic

or stochastic problems (Qiu et al., 2020). However, to the best of

our knowledge, few published studies have been conducted on

solving the unit-based STSHS framework, especially when the

HUC problem is non-convex and the HPF is a bivariate quadratic

equation.

This paper formulates the unit-based STSHS optimization

problem considering HUC as a mixed-integer nonlinear

programming (MINLP) model, which includes the constraints

that can describe the HPF and head effect of hydroelectric units

accurately. We propose the ADP algorithm to solve the STSHS

model without any approximation treatment of the nonlinear

constraints.

The contributions of this paper are summarized as follows:

1) An ADP algorithm is proposed to solve the STSHS model.

The intractable MINLP problem is reformulated into a

solvable NLP problem by decomposing the multi-period

optimization into multiple single-period optimizations for

the sake of computational tractability. The non-linear

expression of HPF and the head effect is retained to

ensure the optimality of the schedule strategy.

2) A table function model is developed to establish the mapping

relationship between the discrete states of the water volume of

the reservoir and the value function; by such means, the high-

dimensional state variables are aggregated to approximate the

value function, and the optimal value function is

approximated by the value iteration method. Thus,

schedule strategy optimality and a computationally efficient

policy are achieved.

3) A state space compression strategy, according to the

operation characteristics of small hydropower plants, is

proposed for the consideration of both the effectiveness

and optimization ability. This compression strategy can

remove the redundant states from the search space by

analyzing the variation in available water in each period,

which does not reduce the number of discrete states. This

strategy not only ensures the optimization ability but also

greatly reduces the scale of the problem and further improves

the computational efficiency.

The rest of this paper is organized as follows: Section 2

describes the STSHS framework, including the start-up and

shutdown of each hydro unit. Section 3 proposes the ADP

algorithm for the HUC, which is the main contribution of

this paper. In Section 4, we test the proposed ADP algorithm

on a realistic instance of a hydropower station with three

identical units to verify the effectiveness of our method.

Finally, Section 5 presents conclusions.

2 Description of short-term small
hydropower scheduling framework
considering hydro unit commitment

2.1 Objective function

The objective of the optimal operation of the STSHS is to find

the maximum power generation of all the small hydropower

units in the entire scheduling horizon, which can be expressed as

maxFp � ∑T
t�1
∑m
i�1
di,t · pi,t · Δt (1)

The output power pi,t is defined by the HPF, and it can

generally be expressed as

pi,t � G · ηGeni,t (pi,t) · ηTurbi,t (hi,t, qi,t) · hi,t · qi,t (2)

The hydro turbine efficiency ηTurbi,t is associated with

converting the water head potential energy in the reservoir

into mechanical energy in the hydro turbine; therefore, it

primarily depends on the water head and turbine flow. ηTurbi,t

decreases as turbine flow increases after reaching the optimum

efficiency point. Similarly, the hydropower generation efficiency

ηGeni,t is related to the conversion of mechanical energy into

electrical energy in the generator, which is usually higher than

95%, and it increases monotonically as the output power of the

generator increases.

Since the mathematical expression of the hydro unit

efficiency function is considerably complicated, a fixed

constant is typically used to replace the efficiency function

irrespective of the characteristics of the HPF, which will lead

to larger errors. To describe the input–output relationship of the

efficiency function implicitly in the HPF more accurately, this

paper conducts a polynomial fitting of the water head and water

flow in the HPF based on the Hill diagram of the hydropower

unit (Zhang et al., 2021; Zhao et al., 2021), which can be

expressed as

pi,t � aih
2
i,t + biq

2
i,t + cihi,tqi,t + dihi,t + eiqi,t + fi (3)

where ai, bi, ci, di, ei and fi are the quadratic fitting coefficients of

the HPF, which models the relationship between the power

output of hydroelectric unit i and the water discharge and

net head.
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2.2 Constraints

The STSHS problem is subject to a variety of constraints,

including water balance, water level, water head, and other

operating limits.

2.2.1 Water balance constraint
The volume change of the reservoir is affected by the inflow,

water discharge and spillage of the reservoir. The water balance

equation is denoted as

rt+1 � rt −⎛⎝∑m
i�1
qi,t + st − jt⎞⎠Δt (4)

2.2.2 Water volume constraints
As the water volume of the reservoir at the end of the last

period is the initial volume of the next dispatch horizon, to

ensure the normal operation of the reservoir in the next dispatch

horizon, the water volume of the reservoir at the beginning and

the end of the dispatch horizon should be restricted as

{ r0 � rinit

rT � rfinal
(5)

2.2.3 Limit constraints of water volume

rmin ≤ rt ≤ rmax (6)

2.2.4 Net head balance constraint

ht � hupt − hdwt (7)

2.2.5 Net head effect constraints
The head effect has a direct impact on the unit’s efficiency

and operating limits, which is the crucial part of the formulation

of the STSHS problem. For a fixed-head hydropower plant, the

net head is relatively high; thus, the effect of water level changes

in the forebay and tailrace caused by power generation can be

ignored. However, for a low-head hydropower plant, the changes

in the water levels of the forebay and tailrace have relatively

obvious impacts on the net head. Therefore, the relationship

between the forebay level and the water volume, as well as the

tailrace level and the outflow, can be expressed as

hupt � aupr2t + buprt + cup (8)

hdwt � adw⎛⎝∑m
i�1
qi,t + st⎞⎠

2

+ bdw⎛⎝∑m
i�1
qi,t + st⎞⎠ + cdw (9)

where aup, bup and cup are the fitting coefficients of the relationship

between the forebay level and water volume. adw, bdw and cdw are

the fitting coefficients of the relationship between the tailrace level

and the total outflow of the hydropower plant, respectively.

2.2.6 Limits of net head

hmin ≤ ht ≤ hmax (10)

2.2.7 Output limits

di,tp
min
i ≤pi,t ≤di,tp

max
i (11)

2.2.8 Constraints of water discharge

di,tq
min
i ≤ qi,t ≤ di,tq

max
i (12)

3 Approximate dynamic
programming

3.1 Process of approximate dynamic
programming

ADP is an excellent method proposed by Powell to solve the

curse of dimensionality problem of dynamic programming (Xue

et al., 2022). A diagram of the use of ADP to solve the STSHS

problem is illustrated in Figure 1, in which the system state St
includes the reservoir volume of the water head and the on/off

status of the unit. The decision variables xt include the allocation

of power generation flow, water spillage, and the start-up/

shutdown action of units during each period. St+1 is the state

vector of the next period after decision xt is executed in state St.

g(St, xt) denotes the benefit generated by reaching state St+1 after
executing xt. The value function V(St) reflects the influence of
the current state on the revenue from period t to T, that is, the

maximum power generation during [t, T].

FIGURE 1
Diagram of ADP solution.
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According to the optimality principle, the above T stage

maximum profit problem can be transformed into T single-

period decision-making problems with the Bellman equation so

that the optimal solution can be obtained via step-by-step

recursion, which can be expressed as

V(St) � max[g(St, xt) + V(St+1)] (13)

The solution of the Bellman equation is based on the

calculation of the value functions of all states in the state

space. However, current computer technology is still

insufficient to traverse the combination of the enormous

state space and decision space. The key idea of ADP is to

use the approximate value function ~Vk(St+1) instead ofVk(St+1)
and to approximate the optimal value function in an iterative

manner, thereby avoiding direct calculation of the value

function.

The basic process of value function iteration is as follows:

First, set the initial value of the approximate value function of each

state. Then, calculate the approximate value function from period 0 to

periodT; the optimal solution of this iteration is determined based on

the rule that the function value of the last period is optimal. Next,

proceed to the next iteration according to the updated approximation

function. In this way, the approximate value function is gradually

approximated to the optimal value function through the iterative

process. In each iteration, instead of traversing the entire state space to

calculate the value function, only a small number of states participate

in the calculation in each period, so the computational complexity no

longer increases exponentially with an increase in the number of state

variables and the total number of periods, thereby overcoming the

curse of dimensionality.

The value function approximation (VFA) methods commonly

used in ADP include table function approximation, piecewise linear

function approximation and neural network approximation, among

which table function approximation is a basic but very effective

method that can accurately approximate the complex non-linear

value function in hydro economic dispatch. Hence, the look-up table

model is applied to approximate the value function, and the value

iteration method is employed to solve the Bellman equation.

3.2 Lookup table for the short-term small
hydropower scheduling problem

The optimization strategy based on the look-up table

establishes a mapping relationship between the discretized

system state variables and the sum of the power generation of

each time period. The table function is used to approximate the

real value function, and by means of variable decoupling between

time periods, the original MINLP problem can be decomposed

into multiple NLP sub-problems containing only continuous

variables to reduce the difficulty of solving.

FIGURE 2
Iteration flow chart of the approximate value table.

FIGURE 3
The operational zone of small hydropower units.
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The continuous variables in the state variables are

discretized as

ΔSi � (Smax
i − Smin

i )/(Ki − 1) (14)

where ΔSi represents the discretization step size of the

continuous variable. Smax
i and Smin

i are the upper and lower

limits of the variable, respectively. Ki is the number of

discrete variables. In this paper, the water volume of the

reservoir is discretized into Kr states, and the on/off status of

m units is 2m, so the size of the state space isM � 2m × Kr. After

the process of discretization, we can initialize an empty value

table to measure the value of being in a state, and the size of the

table is M × T.

3.3 Approximate value iteration

The value iteration of ADP forms a value function sequence

by continuously updating the value table to approximate the

optimal value function. In each iteration, the decision is

determined by the estimated value of the current value

function and the state variable, which can be expressed as

xk
t � argmax{gt(St, xt) + γ ~V

k−1
t (G(St))} (15)

where γ ∈ (0, 1) is the decay factor. When γ is 0, the value

function focuses on only the immediate benefits after the decision

is made in the current period, and the algorithm becomes a short-

sighted myopic algorithm. When γ approaches 1, the algorithm

pays more attention to the benefits in the future period, which is

more conducive to obtaining the optimal value table of the whole

period. G(St) � {rt, d1,t, . . . , dm,t} is the aggregated state variable.
After completing the decision for each period, the observed

value v̂kt of the value function of the current state is calculated as

v̂kt � min{gt(St, xt) + ~V
k−1
t (G(St))} (16)

Then, the value function of the previous period is updated as

~V
k

t−Δt(G(Skt−Δt)) � αkv̂kt + (1 − αk) ~Vk−1
t−Δt(G(Skt−Δt)) (17)

where αk ∈ (0, 1) is the step size in the k-th value iteration.

In the process of value iteration, only the value function

corresponding to the state accessed in each period is updated.

In other words, in the approximate value table, only the cells

corresponding to the current reservoir volume and the unit on/off

status are updated. In each iteration, the corresponding elements

accessed in the table function are updated in a forward manner

step by step until a converged approximation table is obtained. The

iterative process for updating the value table is shown in Figure 2.

3.4 Compression of state space

In the above ADP algorithm, for each time period t, all

discrete states are traversed when solving 15) to select the optimal

decision-making action, which makes the solution process highly

time-consuming. Therefore, to reduce the computational burden

caused by the increase in discrete states, considering the

operation mode of determining electricity-by-water of small

hydropower, we compress the existing state space to further

reduce the solution time.

First, the forecasting information of water inflow is

developed to compress the search space of discrete states of

water volume. For period t of the k-th iteration, the total available

water volume qavlk,t can be defined as

qavlk,t � jt · Δt − (rk,t+1 − rk,t) (18)

To ensure qavlk,t > 0, the upper bound of the search space of the

water volume rk,t+1 in the next period should not exceed

jt · Δt + rk,t. In addition, to avoid unreasonable water

abandonment, the total available water should not exceed the

upper limit of the power generation flow of the units; that is, the

lower bound of the search space of the water volume rk,t+1 in the

next period should not be lower than jt · Δt + rk,t −∑m
i�1qmax

i .

Therefore, the search space for discrete states of water volume

can be restricted to:

⎧⎪⎪⎨⎪⎪⎩
rmin
k,t+1 � jt · Δt + rk,t −∑m

i�1
qmax
i

rmax
k,t+1 � jt · Δt + rk,t

(19)

Similar strategies can be used to compress the on/off

status of units in the search space. For period t in the k-th

TABLE 1 Parameters of hydro units.

Parameter Value Parameter Value Parameter Value Parameter Value

rmax (Mm3) 14.4 qmin (m3/s) 14 cp 10.0971 br 0.0042

rmin (Mm3) 13.4 pmax (kW) 4200 dp 78.0492 cr 21.4179

hmax (m) 9.4 pmin (kW) 1,400 ep 9.4814 aq −1.2228e-7

hmin (m) 5.0 ap −8.4886 fp −427.0754 bq 0.0023

qmax (m3/s) 52 bp −0.1963 ar −3.1084e-7 cq 20.88
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iteration, if the difference between the total available water in

this period and the previous period satisfies

Δqavlk,t � qavlk,t − qavlk,t−1 > 0, unnecessary traversal of the state

that requires a shutdown action to reach should be

avoided. For instance, if the current unit status is [1,100],

then [0100] and [1,000] should be eliminated in the decision

space during this period. In contrast, if the available water

volume is reduced compared with that in the previous period,

the statuses that require a start-up action to reach should be

avoided. Therefore, [1,110], [1,101] and [1,111] should be

excluded from the search space.

The scale of the problem is greatly reduced by adopting the

above compression processing strategy of the search space.

For the hydro units of the identical model, their output

characteristics are exactly the same. For the objective of

maximum power generation, the exchange of on/off status

between units will not affect the optimization results, so the

optional states can be further compressed. For example, for

the same four hydro units, assuming that the state in a certain

period is [1,100], regardless of the trend of available water, the

five statuses [1,010], [1,001], [0110], [0101] and [0011] in the

state space can be represented by the original state [1,100], so

these five states can be eliminated from the search space.

When the number of units of the same model increases, the

proposed strategy makes the state space no longer grow

exponentially but increase linearly, further reducing the

decision space, thereby greatly reducing the computational

burden.

FIGURE 4
Approximate value function iteration process. (A) Full view; (B) Front view of iterations after 1200.

FIGURE 5
Convergence curves of ADP and IPM.

FIGURE 6
Changes in the water volume under different numbers of
discrete points.
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3.5 Description of non-convex operational
zone in approximate dynamic
programming process

The operational zone (OZ) of small hydropower units is

usually a non-convex polygon region, as shown in Figure 3.

The boundaries of the irregularly shaped OZ vary with the

net head and have several inflection points, such as points B and

E, as illustrated in Figure 3, which makes the OZ a non-convex

region. The mathematical representation of the irregularly

shaped OZ can be derived as follows:

{ kABi (hi,t − hAi ) + pA
i ≤pi,t ≤ kFEi (hi,t − hFi ) + pF

i , h
A
i ≤ hi,t ≤ hBi

pB
i ≤pi,t ≤pE

i , h
B
i ≤ hi,t ≤ h

C
i

(20)
where hAi , h

B
i , h

C
i and hFi represent the net head of points A, B,

C and F, respectively. pA
i , p

E
i and p

F
i indicate the unit output of

points A, E and F, respectively. kABi and kFEi denote the slopes

of AB
��→

and FE
��→

, respectively. If we employ a regularly shaped

rectangle to approximate OZ, such as the red dotted box

shown in Figure 3, the approximate OZ would not only

raise the lower limit of unit output under the lower net

head but also reduce the final generation. However, it will

fail to ensure the safety of unit operation when the water

discharge is large. Generally, such a non-convex region cannot

be perfectly represented with linear constraints in

programming models unless additional 0–1 variables are

introduced.

Under the ADP framework proposed in this paper, the

irregularly shaped OZ can be perfectly expressed. In each

single-period optimization process, the variation in water

volume is a constant. As a result, the optimal result of water

discharge for each unit is obtained before solving the single-

period sub-problem, which means the net head has already been

pre-designated. Thus, the upper and lower boundaries of the OZ

can be dynamically updated as the net head changes.

TABLE 2 Comparison of IPM and ADP optimization results.

Period Output power of IPM
(kW)

Output power of
ADP(Kr = 11) (kW)

Output power of
ADP(Kr = 51) (kW)

Output power of
ADP(Kr = 201) (kW)

1 1984.11 2,388.43 1986.91 1986.91

2 2058.92 1988.53 1990.15 2092.03

3 2,133.12 1991.77 1993.40 2095.03

4 2,206.78 1995.01 2,400.42 2,199.37

5 2,279.93 1998.25 2,402.42 2,302.68

6 2,352.36 2001.48 2,404.41 2,305.06

7 2,424.07 2,802.11 2,406.40 2,407.40

8 2,495.10 2,802.11 2,408.39 2,508.58

9 2,565.46 2,802.11 2,410.38 2,608.53

10 2,635.03 2,802.11 2,804.47 2,609.62

11 2,703.86 2,802.11 2,804.47 2,708.32

12 2,771.94 2,802.11 2,804.47 2,805.66

13 2,839.26 2,802.11 2,804.47 2,805.66

14 2,905.75 2,802.11 2,804.47 2,901.55

15 2,971.22 2,802.11 2,804.47 2,995.93

16 3,036.01 2,802.11 3,182.63 2,994.66

17 3,099.71 2,802.11 3,179.89 3,087.41

18 3,162.50 2,802.11 3,177.14 3,178.52

19 3,224.32 3,543.71 3,174.40 3,267.89

20 3,285.15 3,537.47 3,171.65 3,264.34

21 3,344.98 3,531.22 3,168.90 3,351.80

22 3,403.76 3,524.96 3,528.09 3,437.40

23 3,461.44 3,518.69 3,521.83 3,432.08

24 3,518.01 3,152.37 3,515.56 3,515.56

Total energy (kWh) 66,862.79 66,797.21 66,849.81 66,861.98

Error -- 0.0981% 0.0194% 0.0012%
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4 Case studies

A small hydropower plant in southern China is adopted as a

test system to verify the effectiveness of the proposed formulation

and methodology. The parameters of each unit are illustrated in

Table 1. All simulations are implemented with MATLAB R2021a

using a PC with a 3.6 GHz AMD R7 4700G processor and 16 GB

of RAM. The scheduling period is 24 h, and the time resolution

is 1 h.

4.1 Iterative process of the approximate
value function

To express the dynamic approximation process of the value

function, we define the change rate of the approximation

function as follows:

η( ~Vk,t) � ( ~Vk,t − ~Vopt,t)/( ~V0,t − ~Vopt,t) × 100% (21)

The indicator η( ~Vk,t) reflects the differences in the value

function of each period compared with the optimal value

function in the k-th iteration. The change in this difference

represents the adjustment of the state of the ADP algorithm

in the iterative process to achieve the maximum power

generation. For instance, if the initial value function ~V0,t of

period t is greater than the optimal value function ~Vopt,t, and

η( ~Vk,t)> 0 in the k-th iteration, then there is ~Vk,t > ~Vopt,t,

indicating that the value function of the state during the

current period is better than the optimal value function.

However, due to the significant impact on the state of t+1 and

subsequent periods, which restricts future power generation, it is

FIGURE 7
Approximate output surface using the PAR method (Mh = 6,
Mq = 11)

FIGURE 8
Comparison of unit output between ADP and PAR-MILP. (A) ADP; (B) MILP.
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discarded in the subsequent iteration process. In contrast, if

η( ~Vk,t)< 0, then ~Vk,t < ~Vopt,t, indicating that the approximation

of the value function in the current period is inferior to the

optimal value function. Therefore, a better strategy will be sought

in the subsequent iteration process.

Figure 4A shows the change rate of the approximate value

function of the three units in 24 time periods with the ADP

iteration process, and the change rate convergence curve for each

time period is shown in Figure 4B. Figure 4 shows that η( ~Vk,t)
oscillates positively and negatively with the value iteration

process and finally converges to 0, indicating that the

algorithm gradually updates the strategy in the iterative

process and approaches the optimal value function to achieve

the goal of maximum power generation.

4.2 Optimization results of single-unit
short-term small hydropower scheduling

To clarify the approximation process of the power generation

obtained by the proposed ADP algorithm to the optimal solution,

the discrete state number Kr of the water volume is taken as 51,

and the single-unit optimization convergence curve of the ADP

algorithm is obtained as depicted in Figure 5. The ADP algorithm

converges to the optimal generation of 66,849.81 kWh when the

number of iterations reaches 1,325, which is only 0.0194%

different from the optimal result of 66,862.79 kWh obtained

by IPM, thereby demonstrating the optimality of the proposed

ADP algorithm in solving the STSHS.

To illustrate the influence of Kr on the approximation of the

optimal solution of the non-linear problem by the ADP

algorithm, the number of discrete states Kr of water volume is

taken as 11, 51, and 201, and the optimization results of single-

unit STSHS by ADP and IPM are compared, as shown in

Figure 6. As Kr increases, the water volume of ADP gradually

approaches the optimal water volume of IPM. When Kr is 201,

the water volume curve of ADP almost overlaps with that of IPM,

which indicates that the decision made by ADP in each period

will gradually approach the optimal as the number of discrete

points of water volume increases.

To further illustrate the performance of the ADP algorithm,

Table 2 lists the unit output of the IPM and ADP algorithms in all

24 time periods. Table 2 shows that as the number of discrete

states of water volume increases, the approximate solution

obtained by ADP gradually approaches the optimal solution

obtained by IPM. When Kr = 11, the error compared to the

maximum power generation of IPM is reduced to 0.0982%, which

can fully meet the needs of engineering applications. When Kr is

increased to 201, the error compared to the maximum power

generation of IPM is only 0.0012%. The above results show that

FIGURE 9
Comparison of the output of each method under different inflows. (A) Case 1: Relatively smooth inflow; (B) Case 2: Inflow with a significant drop.

TABLE 3 Comparison of optimization results of each method.

Algorithms ADP(Kr = 21) Myopic PAR-MILP MINLP

Case 1 Generation (kWh) 67,205.43 64,860.89 63,740.5 67,071.40

Time (s) 2,129.8 209.4 7,685.2 43,200

Case 2 Generation (kWh) 61,910.67 57,591.58 58,545.69 61,989.52

Time (s) 1,589.6 41.4 3,687.1 2,800
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for the STSHS problem, the error between the solution of the ADP

algorithm and the optimal solution is extremely small, and the

quality of the solution can be significantly improved by increasing

the number of discrete states, further indicating that the proposed

algorithm has superior convergence performance and practical

engineering value.

4.3 Optimization results of multiple-unit
short-term small hydropower scheduling

When the STSHS model includes 0–1 variables

representing the on/off status of the units, it cannot be

solved by IPM. With the maturity of the solving technology

of the MILP problem, the MILP model of the STSHS problem

can be achieved via piecewise linearization and then using a

commercial solver to obtain the optimal solution. In this

paper, PAR is used to perform piecewise linearization of

the HPF function (3). The number of discrete points of net

head Mh = 6, the number of discrete points of water discharge

Mq = 11, and the obtained approximate output surface is

shown in Figure 7.

For the STSHS problem involving three units, the state

discrete number Kr of the water volume is set to 51, and the

TABLE 4 Comparison of optimization results before and after space compression.

Period Output power without state
compression (kW)

Output power with state compression (kW)

Unit 1 Unit 2 Unit 3 Unit 1 Unit 2 Unit 3

1 0.00 1784.41 0.00 1784.41 0.00 0.00

2 0.00 1788.02 0.00 1788.02 0.00 0.00

3 0.00 1791.62 0.00 1791.62 0.00 0.00

4 0.00 1795.21 0.00 1795.21 0.00 0.00

5 0.00 1798.79 0.00 1798.79 0.00 0.00

6 0.00 1802.37 0.00 1802.37 0.00 0.00

7 0.00 1805.93 0.00 1805.93 0.00 0.00

8 0.00 1809.49 0.00 1809.49 0.00 0.00

9 0.00 1813.04 0.00 1813.04 0.00 0.00

10 0.00 2,835.36 0.00 2,835.36 0.00 0.00

11 0.00 2,835.36 0.00 2,835.36 0.00 0.00

12 0.00 2,835.36 0.00 2,835.36 0.00 0.00

13 0.00 2,835.36 0.00 2,835.36 0.00 0.00

14 0.00 2,835.36 0.00 2,835.36 0.00 0.00

15 0.00 2,835.36 0.00 2,835.36 0.00 0.00

16 0.00 2,835.36 0.00 2,835.36 0.00 0.00

17 0.00 2,835.36 0.00 2,835.36 0.00 0.00

18 0.00 2,835.36 0.00 2,835.36 0.00 0.00

19 0.00 2,835.36 0.00 2,835.36 0.00 0.00

20 0.00 2,835.36 0.00 2,835.36 0.00 0.00

21 0.00 2,835.36 0.00 2,835.36 0.00 0.00

22 0.00 2,850.36 2,850.36 2,850.36 2,850.36 0.00

23 0.00 2,832.07 2,832.07 2,832.07 2,832.07 0.00

24 2,813.69 2,813.69 0.00 2,813.69 2,813.69 0.00

Total energy (kWh) 67,205.43 67,205.43

n 464 464

t(s) 4422.8 2,129.8

TABLE 5 Comparison of ADP optimization results with different value
table sizes.

Value table size Kr = 21 Kr = 51 Kr = 101

Generated energy(kWh) 67,205.43 67,254.17 67,262.80

Number of iterations 464 1,325 2,628

Time consuming (s) 2,129.8 11,764.1 47,941.7
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unit output optimization results obtained using ADP and PAR-

MILP are shown in Figure 8.

Figure 8 shows that the units start and stop frequently in the

MILP results. One reason is that the output characteristics of the

three hydropower units are the same. The second reason is that,

ignoring the start-up and shutdown costs of small-capacity

hydropower units, if the inflow is small, the reservoir tends to

store water to raise the net head, and the amount of water

available for power generation is limited, resulting in an

unnecessary start and stop. In comparison, the optimization

results of unit commitment obtained via ADP are more stable

and reasonable, among which unit 3 is not even turned on during

the whole scheduling period. The reason is that in the ADP

algorithm, the search space for the unit commitment decision is

compressed, and the redundant on/off state is eliminated from

the decision space. As a result, a relatively smooth unit

commitment scheme can be obtained without applying

additional constraints, such as unit start/stop costs.

Next, to further verify that the ADP algorithm proposed in

this paper more easily achieves a satisfactory trade-off between

solving efficiency and solution optimality compared with other

algorithms, we compare the optimization results of MILP,

MINLP and myopic methods with ADP. The Gurobi

9.1.2 commercial solver is used for MILP, and the LINGO

commercial solver is used for MINLP. The results of the

power outputs of each method under different reservoir

inflows are shown in Figure 9, and the time consumption and

total generation results are shown in Table 3.

As shown in Figure 9 and Table 3, regardless of the inflow

changes, the generation results of ADP andMINLP are extremely

close and larger than those of other methods because they

completely retain the nonlinearity of HPF and the head effect.

Although the myopic algorithm also completely retains the

original non-linearity, due to its short-sighted characteristics,

the impacts of the current strategy on the subsequent period

cannot be considered in the decision-making process, and the

power generation obtained is the lowest. Especially after rainfall,

when the water inflow gradually decreases, the disadvantages of

the myopic algorithm become more obvious. As shown in

Figure 9B, myopic tends to maximize the water discharge

during each time period, ignoring the reduction of net head

in the next time period, which causes the total generation to be

7.5% less than that of the ADP method. Using commercial

solvers directly to solve MINLP problems can also produce

high-quality solutions, which are only 0.2% different from the

ADP results, but the time consumption is 20 times greater than

that of ADP. Although PAR-MILP approximates the nonlinear

HPF surface by piecewise approximation, the energy generation

optimization result is not substantially different from that of

ADP, but the corresponding time cost is still much higher than

that of ADP. The comparison results indicate that the solution

quality of ADP is remarkable among the four algorithms on the

premise of ensuring the optimization accuracy level within 0.2%.

In terms of computational efficiency, ADP is superior to MILP

and MINLP.

4.4 Effect of state space compression

To further illustrate the effect of the proposed state space

compression strategy in improving the efficiency of ADP, the

number of discrete states Kr of the water volume is set to 21, and

the optimization results before and after state space

compression are obtained, as shown in Table 4, where n is

the number of ADP iterations and t is the time consumption

of ADP.

Table 4 shows that the optimal power generation obtained by the

ADP algorithm before and after state space compression is the same,

indicating that the states eliminated by the proposed compression

strategy are redundant states that do not need to be traversed and will

not affect the algorithm’s optimization ability. In addition, the

execution time of ADP after state compression is reduced by

51.84%, which demonstrates that the proposed compression

strategy significantly improves the solution efficiency and is

suitable for cases with multiple hydropower units, showing its

potential practicability and validity for solving the STSHS problem.

4.5 The effect of value table size on
approximate dynamic programming
optimization results

To clarify the relationship between the approximate

accuracy of ADP and the size of the value table, we set the

discrete number Kr of the water volume to 21, 51, and 101,

which means that the adjacent state intervals of the water

volume are 50,000 m3, 20,000 m3, and 10,000 m3,

respectively. To ensure that the reservoir can reach the

maximum water storage capacity, the initial volume of the

reservoir is set to 13.4 million m3. The simulation results of

ADP with different values are shown in Table 5.

Table 5 shows that as the size of the value table increases,

the power generation gradually increases, indicating that the

quality of the solution also improves. In addition, the

number of iterations and solution time increase linearly

with the size of the value table. A possible explanation for

this is that as the number of discrete states increases, the

value table must be updated more often to better

approximate the value function, so the number of

iterations required to converge increases. In addition,

since the state of the water volume is more discrete, in the

ADP algorithm, more sub-problems must be solved in each

period and in each iteration to make the optimal decision,

resulting in an increase in the time consumption of each

iteration. Therefore, when using ADP to solve the STSHS

problem with unit commitment, a trade-off should be made
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between approximation accuracy and calculation time

according to engineering requirements.

5 Conclusion

An ADP solution algorithm is proposed for the problem of

short-term economic dispatch of small hydropower. The

mapping relationship between the discrete state of the

water volume and the value function is established through

the table function model. Furthermore, the state space is

compressed, and the MINLP problem is transformed

into multiple NLP sub-problems to reduce the model

complexity.

A comparison with the IPM optimization results shows that

ADP and IPM tend to produce the same solution in the case of

single-unit operation, which proves that the proposed ADP

method can obtain high-quality solutions.

For the case of multi-unit optimal scheduling, comparison

with the results of myopic, MILP and MINLP shows that ADP

obtains better power generation results than myopic and MILP

because it retains the nonlinearity of the original model. In

addition, the solution time required to make MINLP obtain the

same level of optimization results as ADP will obviously exceed

that of ADP. This verifies that the proposed method can

consider both the quality of the solution and the

computational efficiency in solving the non-convex nonlinear

SHED problem.

The results of ADP optimization with space compression

show that the proposed space compression strategy can

effectively reduce the number of candidate decision-making

actions in the iterative process and significantly improve the

solution efficiency.

Simulation results with different table sizes show that the

proposed algorithm can achieve a balance between optimality

and solution efficiency by setting the discrete number of water

volumes.
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Nomenclature

Sets and indices

i index of hydro units

M set of units

t index of periods

T set of time periods

Parameters

hi,t net head of reservoir at period t

hmax maximum net head of the reservoir (m)

hmin minimum net head of the reservoir (m)

pmax i maximum production of unit i (kW)

pmin i minimum production of unit i (kW)

qmax i maximum water discharge of unit i (m3/s)

qmin i minimum water discharge of unit i (m3/s)

rfinal water volume of the reservoir at the end of the last

period (m3)

rinit water volume of the reservoir at the beginning of the initial

period (m3)

rmax maximum water volume of the reservoir (m3)

rmin minimum water volume of the reservoir (m3)

Δt length of each time period (h)

Variables

di,t binary variable, which is equal to 1 if hydro unit i is online at

period t and 0 otherwise

ht net head of reservoir at period t

hdw t tailrace level of the reservoir at period t (m)

hup t forebay level of the reservoir in period t (m)

jt inflow of reservoir at period t (m3/s)

pi,t power output of hydro unit i at period t

qi,t water discharge of unit i at period t

rt water volume of the reservoir at period t (m3)

st total reservoir spillage in period t (m3/s)
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