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The study of fluid dynamics due to the stretching surface is one of the most

eminent topics due to its potential industrial applications viz. drawing wire and

plastic films, metal and polymer extrusion, fiber and glass production. In the

present article, the author is going to study the effects of hybrid nanofluids flow

on an inclined plate including CuO (Copper Oxide), and Cu (Copper). The

Casson fluid with a couple-stress term has been used in the flow analysis. The

surface of the plate is considered slippery. The convection has been taken

nonlinear with thermal radiation. The governing equation of the flow of hybrid

nanofluids with energy equation has been transformed into highly nonlinear

ODEs through similarity transformation. The proposed model has been solved

through a numerical RK-4 method. Significant variables of the physical process

such as solar radiation, nonlinear convection parameters, heat transfer rates,

and their effect on the solar power plant have been noticed.
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Introduction

Rising energy needs around the world, including irreversible means of energy such as

natural fuels, energy storage, heat exchangers, and thermal resources. The production of

these real resources, the result in huge detrimental effects on the environment, such as air

pollution and global warming. To mitigate these losses, scientists have focused on

techniques that improve renewable energy skills, like the production of solar energy.

The spotless and cheapest renewable source of energy is solar energy, which may be
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converted into environmentally sociable thermal energy. These

kinds of energies can be found in the shape of (solar collectors)

and heat-changing liquids.

The collectors acquire solar rays by an absorbent plate and convey

heat further to the absorbent solution such as water, water mixture).

Nevertheless, their significant loss is the lower thermal capability of

these conventional fluids, as they reveal low thermal efficiency in the

alteration development. Converting conventional working liquids

into nanofluids is one of the initiatives that has received much

attention over the past few years to enhance the thermal efficiency

of this technology. Nanofluids refer to a stable dispersion of solid

particles of sizes between 1 and 100 nm (Choi, 1995). Nanofluids are

widely used in various physical processes such as energy storage (Gul

et al., 2019). Mebarek-Oudina (Mebarek-Oudina, 2019) studied the

flow of nanofluids using different base liquids Sheikholeslami et al.

(2014) presented a complete numerical simulation of nanofluid flow

with magnetic and viscous dissipation effects. Because of the excellent

use of nano liquid, Li et al. (2019) studied the flow of nano liquid

within a porous duct by using external power in the form of the

Buongiornomodel. The impacts ofmagnetic hydrodynamics (MHD)

on the heat trade-off dynamics of chemically reactive water base

nano-liquids containingCu/Ag in a rotating disk inside the permeable

channel have been investigated by Reddy et al. (2017). Many recent

studies have been conducted in the area of energy and thermal

environments using analytical and numerical methods for handling

heat exchange and nano-fluids. For instance, Zaim et al. (2020) and

Khan et al. (2019), Hybrid nanofluid is obtained by combining two

types of nanomaterials, which are added to conventional liquids, and

are used in many heat exchange areas. Khan et al. (2017a) and Khan

et al. (2020a) formulated and analyzed the transient flow

of(Cu − Al2O3/H2O), and concluded that the Nusselt number

performance improved considerably through the addition of 5%

nanomaterials. Hayat and Nadeem (Hayat and Nadeem, 2017)

investigated the inspiration of energy exchange through the

increasing surface of hybrid nanofluids (Cu − Ag/H2O). Ali

Lunda et al. (2020) studied the impacts of viscous dissipation on

the flow of hybrid nano liquid (Cu − Al2O3/H2O) by analyzing the
stability of the shrinking plate. Aziz et al. (2020) and Khan et al.

(2017b) considered the flow of hybrid nano-fluids on an extended

plate. Sundar et al. (2020) has been examined the resistive aspect and

energy transport phenomenon of(MWCNT − Fe3O4/H2O) hybrid
nano liquid. Sohail et al. (2020) examined the three-dimensional

movement of nanofluid in a flexible medium along with thermal

radiation. Besides the aforementioned research papers, the following

current articles can also be cited for getting more knowledge on the

hybrid nano liquid process in various geometries. For example, Khan

et al. (2021), Tahir et al. (2017), Khan et al. (2020b).

Recently, particles of different shapes on a closed porous surface

and liquid moving in the permeable medium have attracted the

attention of scientists. Their use can be measured in various fields

such as nuclear engineering, and environmental sciences. Various

physical processes that require the liquid movement on a porous

medium include the use of blood flow in the veins or lungs,

chemically catalysts connectors, geothermal energy, porous heat

pipes, and porous heat pipes. As a Forchheimer term, it was

introduced in Forchheimer (1901). Many researchers have used

Darcy-Forchheimer concepts in various geometries for the study of

fluid flow in a porous space. We are going to mention a few of them.

Saif et al. (2019) discussed the movement of nano-fluids through a

porous space. The variation in the motion of a liquid was created an

expandable curved surface. Rasool et al. (2019) reported the flow of

Darcy-Forchheimer nano-fluids produced by the stretching medium.

The Darcy-Forchheimer liquid that flows through a spinning disc was

discovered by Sadiq et al. (2020). Sheikholeslami et al. (2020) (Rasool

et al., 2022) observed the behavior of non-Darcy liquid within a clear

cavity. Hayat et al. (2020b), Sheikholeslami et al. (2020) examined the

influence of Darcy-Forchheimer and EMHD on the flow of viscous

liquids with joule heating and thermal flux over an extending surface.

The numerical outcomes of CNTs nano-liquid flow across the

divergent and convergent channels with thermal radiation have

been calculated by Kumar et al. (2020) (Hayat et al., 2020a). There

are various technicalmethods available for estimating temperature. The

significance of radiation for heat and flow transmission is understood,

especially in the fields of glass manufacturing, rocket engineering,

furnace construction, nuclear plant, solar farms, physical science,

and manufacturing, etc. Of such importance, the imposition of

thermal radiation for heat transport is shown in Kumar et al.

(2020). The different properties of such fluids were further studied

by many researchers. Nanofluid flow reduces (Bilal, 2020; Khan et al.,

2020c; Algehyne et al., 2022) the resistance to heat transfer for different

flow systems. With the passage of time researchers came to know that

the spread of two different types of nanoparticles in a pure fluid further

augment the thermal flow characteristics. They termed such fluid as

hybrid nanofluid. Rasool et al. (2022) and Wakif et al. (2022) have

inspected the dynamics of hybrid nanofluid flow with the influence of

thermal radiations and viscous dissipation past a stretching surface and

have determined the influence of various parameters. It has been

observed by the authors that the upper branch of the solution has been

highlighted to be more applicable due to its stable nature (Alghamdi

et al., 2021; Xia et al., 2021; Shah et al., 2022). have deliberated an

incredible work to discuss the thermal flow improvement for hybrid

nanofluid flow by means of different flow geometries and flow

conditions. Recently, it has been noticed by researchers that the

suspension of three different types of nanoparticles in a pure fluid

can enhance the thermal conductivity of such fluid to the best possible

limit. Such fluids are termed tri-hybrid nanofluids.

Themain aim of the ongoing study is to observe the impact of

(Cu, CuO) nano-components on the flow and heat transmission

of water as a base fluid. Such formulation of fluid is used further

on the inclined plate to improve the efficiency of solar collectors.

Thermal radiation, nonlinear convection, and slip conditions are

considered while formulating basic equations. The flow-related

issues were formulated via differential equations which were

solved numerically using the BVP-4 technique. Different

significant quantities are discussed in terms of temperature

and velocity.
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Model analysis

The flow of the hybrid nanofluids containing (Cu − CuO)
nanoparticles is considered over an inclined plate that makes

an angle ψ with the upright axis as shown in the. Figure 1. The

surface of the plate is considered slippery to reduce the

stability of the external dust particles. The thermal

convection is expanded and taking nonlinear. The basic

equations in the presence of thermal radiation and Couple

stress are displayed as.

zu

zx
+ zv

zy
� 0, (1)

ρhnf(u zu

zx
+ v

zu

zy
) � (1 + 1

β
)μhnf(z2uzy2)

± g(ρ)hnf[(βT)hnf(T − T∞) + (βT)2hnf(T − T∞)2]Cosψ − ηp
z4u

zy4,

(2)

(ρcp)hnf(u zTzx + v
zT

zy
) � khnf

zT2

zy2
+ 16

3
(σpT3

∞
kp

z2T

zy2
), (3)

Acceptable boundary conditions are

u � uw + μhnf
zu

zy
, v � 0,−khnfzT

zy
� (Tw − T), at y � 0,

u � 0 � v, T → T∞, at y → ∞ .

(4)

The velocity components u and vin the x and y-direction,

Mathematical formulation of thermos-
physical properties HNF

μhnf
μf

� 1(1 − ϕ1)2.5 (1 − ϕ2)2.5, (5)

ρhnf
ρf

� ⎡⎢⎢⎣(1 − ϕ2) ⎧⎨⎩1 −⎛⎝1 − ρCu
ρf

⎞⎠ ϕ1

⎫⎬⎭ + ϕ2

ρCuO
ρf

⎤⎥⎥⎦, (6)

khnf
knf

� kCuO + (n − 1)knf − (n − 1)ϕ2(knf − kCuO)
kCuO + (n − 1)knf + ϕ2(knf − kCuO) ,

knf
kf

� kCu + (n − 1)kf − (n − 1)ϕ1(kf − kCu)
kCu + (n − 1)kf + ϕ1(kf − kCu) ,

(7)

(ρCp)hnf(ρCp)f � ⎡⎢⎢⎣(1 − ϕ2)⎧⎨⎩1 −⎛⎝1 − (ρCp)Cu(ρCp)f ⎞⎠ϕ1

⎫⎬⎭
+ ϕ2

(ρCp)CuO(ρCp)f ⎤⎥⎥⎦, (8)

In the above mathematical expression, ϕ1 denotes the

nanomaterials (Cu) volume fraction whereas ϕ2 denotes the

volume fraction of (CuO) nanocomponents.

Introduction to useful similarity transformation variables as

follows:

u � f′(η) bx, v � −
���
bυf

√
f(η), (Tw − T∞) θ(η) � T − T∞, η

� y

��
b

υf

√
,

(9)
In the light of Eq.11, the Eqs 1–5 become

(1 + 1
β
)f‴ + ρhnf

ρf

μf
μhnf

[ff″ − (f′)2] ±
μf
μhnf

[Grθ
+ Grp(θ)2]Cosψ − kfv

� 0, (10)

(khnf
kf

+ Rd)θ″ + Pr
(ρCp)hnf(ρCp)f fθ′ � 0, (11)

f(0) � 0, f′(0) � 1 + Λ(1 − ϕ1)(1 − ϕ2)f″(0), θ′(0)
� −Bi(1 − θ(0)), f(∞) � θ(∞) → 0. (12)

In terms of mutual boundary conditions:

Gr � gβT(Tw − T∞)
buw

, Grp � gβ2T(Tw − T∞)2
buw

, Rd � 16
3

σpT3
∞

kpk
, k

� ηpb

υ2fρf
, Pr � υf

αf
,Λ � μf

��
b

υf

√
.

(13)

FIGURE 1
The solar collector absorbing model.
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The above-mentioned physical numbers are Grashof

numbers, Couple stress term, Radiation factor, Slip velocity,

parameter, and Prandtl number, Velocity slip, and Biot number.

In addition, some of the most useful physical numbers are, as,

(Sherwood number), Skin friction coefficient (Cfx), and Nusselt

number (Nux).

Cfx � τw
1
2ρhnf(uw)2, Nux � xqw

khnf(Tw − T∞). (14)

Where qw represents heat flux close to the surface, and τw
denotes shear stress, employing Eqs. 9 and Eq. 14 gives,

CfxRe
0.5
x � 2(1 − ϕ1)2.5(1 − ϕ2)2.5f″(0),

NuxRe
−0.5
x � −(khnf

kf
+ Rd)Θ′(0). (15)

Numerical method

The RK-4 numerical method has been used. The modeled

Eqs 10, 11 are transformed to the first order by considering.

x1 � η, x2 � f, x3 � f′, x4 � f″, x5 � f‴, x6 � fiv,
x7 � θ, x8 � θ′. (16)

The first order ODEs system (Zaydan et al., 2022) has been

solved with the efforts of the projected variables as shown in Eq.

16. The first order system using the RK4 method has been

obtained as:

Dηx1 � 1, Dηx2 � x3 , Dηx3 � x4 , Dηx5 � x6 , Dηx7 � x8

Dηx6 � 1
k
⎡⎣(1 + 1

β
)x5 +

ρhnf
ρf

μf
μhnf

(x2x4 − (x3)2) ± μf
μhnf

(Grx7 + Grpx7x7)Cosψ⎤⎦,
Dηx8 � −(khnf

kf
+ Rd)−1

Pr
(ρCp)hnf(ρCp)f x2x8.

(17)

The first order system solution obtained and the results are

analyzed for various embedded parameters.

Results and discussion

The hybrid nanofluid flow over a slippery surface of an

inclined plane is considered for the applications of heat

transfer. The impact of f′(η) (velocity profile) and Θ(η)
(temperature profile) quantitatively via differents tables and

graphs for various active variables such as Λ (slip parameter),

Gr, Gr* (Gravitational parameters), Bi (Biot number), ϕ1, ϕ2
(Volume fractions), and Rd (Radiation factor) while

considering (Cu + Water), (CuO + Water) nano liquid and

hybrid nanofluid. The schematic diagram of the flow field is

shown in Figure 1. Figure 2 The flow of fluid is increases over the

slippery surface and this increase is more effective due to the

larger values of the slip parameter Λ. As the fluid moves over the

surface, it traps more heat from the sheet, causing significant

thermal dispersion. Intriguingly, even under favorable thermal

transmission conditions, the entropy rate decreases to improve

the quality of the slow-moving barrier. This can improve the slip

to influence the suspended components and consequently the

FIGURE 2
Λ versus f′(η). When, ϕ1 ,ϕ2 � 0.02, k � 0.2,Gr � Gr* � Rd � 0.3,Bi � 0.1,Pr � 6.2.
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fluid motion is increases. Figure 3 The influence of the couple

stress parameter versus velocity profile is shown in Figure 3. It is

perceived that the development in couple stress terms results,

decreases in the fluid motion at all locations. The rise in the

couple stress parameter values improves the resistance force, to

decline the velocity of the fluid. Figure 4 Incremented fractional

volume through particle strength in porosity, hybrid nano-fluids

also affects the flow rate. As a result, it increases the production of

thermal transport and entropy in both types of flowing fluids and

reduces the velocity profile by incrementing the volume fraction.

Figure 5 Incremented Casson fluid parameter, increasing the

resistive force and declining the fluid motion. The decline effect is

compared for both Cu and CuO hybrid nano-fluids (Figures 6,

7).The increment in the positive value of the gravity parameters

Gr, Gr*will raise the velocity profile and the velocity of the liquid

is improved by the positive value of the gravity parameter. The

opposite impact declines the fluid motion. The comparative

analysis for both Cu and Cu-CuO shown has been displayed

in Figures 6, 7 which signifies that the velocity profile decrement

due to the negative value of the gravity parameter.

Figure 8 Biot number Bi denotes an incremental

convectively thermal rates that can affect the area of

interest related to temperature. According to the

limitation to heat production, the Biot number Bi tends to

increase the current thermal rates in the flow region but

makes the lower portion of the sheet. According to previous

entropy and thermal plots, the Biot number Bi is also a factor

in the elevation of the thermal diffusion, which

simultaneously increases the rate of entropy. Figure 9 As

the volume friction value rises which reduces the

temperature profile. will decrease. This is because when

nanoparticles are put in the conventional fluid, the

nanoparticles increase in temperature, which will increase

the temperature profile.

Figure 10 illustrates the state of thermal radiation

sequentially, for the growing values of the thermal radiation

barrier. Radiation heat raises the thermal state of the

environment of interest, which places a greater thermal

transfer load on the passing fluid, which increases the thermal

conductivity to the radiation barriers. The thermal properties of

the solid materials and base fluid are displayed in Table. 1. The

skin friction improved with the increasing values of the

parametersϕ1, ϕ2, k, Gr, Gr*as displayed in Table. 2. Physically,

the greater values of these factors enrich the resistance force and

subsequently skin friction enhancing. The heat transfer rate

growths with the cumulative values of the nanoparticle

volume fraction and Radiation factors as displayed in Table 3.

The heat transfer rate enhancing for the nanofluids Cu up to

8.1501% using ϕ1 � 0.01 and 8.473% increases for Cu + CuO

hybrid nanofluids using ϕ1, ϕ2 � 0.01. Similarly, the rate of heat

transfer escalats gradually with the growing amount of

nanoparticle volume fraction. From Table 4 it has been

detected that hybrid nanofluids are more proficient for heat

transfer enhancement. The comparison of the current results

is compared with the existing literature considering base fluid

only and shown in Table 4.

FIGURE 3
k versus f′(η). When, ϕ1 , ϕ2 � 0.02,Λ � 0.4,Gr � Gr* � Rd � 0.3,Bi � 0.1,Pr � 6.2.
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FIGURE 4
ϕ1 , ϕ2 versus (f′(η)). When, k � 0.2,Λ � 0.4,Gr � Gr* � Rd � 0.3,Bi � 0.1,Pr � 6.2.

FIGURE 5
β versus (f′(η)). When, k � 0.2,Λ � 0.4,ϕ1 ,ϕ2 � 0.02,Rd � 0.3,Bi � 0.1,Pr � 6.2.
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FIGURE 6
Gr* versus (f′(η)). When, k � 0.2,Λ � 0.4, ϕ1 , ϕ2 � 0.02,Rd � 0.3,Bi � 0.1,Pr � 6.2.

FIGURE 7
Gr versus f′(η). When, k � 0.2,Λ � 0.4, ϕ1 , ϕ2 � 0.02,Rd � 0.3,Bi � 0.1,Pr � 6.2.
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FIGURE 8
Bi versus θ(η). When, k � 0.2,Λ � 0.4,ϕ1 ,ϕ2 � 0.02,Rd � 0.3,Gr � 0.1,Pr � 6.2.

FIGURE 9
ϕ1 , ϕ2 versus θ(η). When, k � 0.2,Λ � 0.4,Bi � 0.2,Rd � 0.3,Gr � 0.1,Pr � 6.2.
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FIGURE 10
Rd versus θ(η). When, k � 0.2,Λ � 0.4,Bi � 0.2, ϕ1 , ϕ2 � 0.02,Gr � 0.1,Pr � 6.2.

TABLE 1 Cu&CuOthermo-physical properties.

Property Cu CuO

ρ(Kgm−3) 6320 3580

cp(Kg−1K−1) 531.8 960

k(Wm−1K−1) 76.5 48.4

TABLE 2 CfxRe0.5x numerical outcomes versus different values of
emerging parameters.

Gr ϕ1,ϕ2 k Gr* Cfx − Cu Cfx − Cu&CuO

0.2 0.0 0.2 0.2 0.472836 0.473952

0.3 1.473962 1.4745742

0.4 1.4749321 1.47575322

0.01 1.4735318 1.474421331

0.02 1.4744321 1.47538012

0.4 1.483120 1.4846352

0.6 1.49431275 1.49532125

0.4 1.47343546 1.47446874

0.6 1.47412023 1.4753214091

TABLE 3 NuxRe−0.5x numerical outcomes versus different values of
emerging parameters and % enhancement in heat transfer rate.

ϕ1,ϕ2 Rd Nux − Cu Nux − Cu&CuO

0.0 0.1 0.132421 0.132421

0.01 0.143214 0.1436422

8.1501% 8.473%

0.02 0.14491 0.146474

9.431% 10.612

0.03 0.1458321 0.147623

10.127% 11.48%

0.2 0.523416 0.5243215

0.3 0.621571 0.6223532

0.5 0.62314 0.6243212

TABLE 4 Quantitative analogy with [39], [40] using NuxRe−0.5x .

Pr Wang Wang (1989) Golra and sidawi
Gorla and Sidawi
(1994)

Recent

6.3 0.24532 0.24545 0.24548

6.5 0.194522 0.194642 0.194653

6.7 0.135281 0.135393 0.135412
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Conclusion

The impact of the Cu and CuO hybrid nanofluid flow for the

enhancement of heat transfer rate has been examined through a

slippery surface of the inclined plate. The convection is taken

quadratic and due to the stretching of the plate, the gravity force

is assumed negative and positive. The significant physical

characteristics of Nusselt number versus radiation and other

physical constraints have been noticed. In this article, some

significant points present our conclusion in the following

remarks. For Gr, Gr* impact have been analyzed and

the comparative results for the Cu& CuO hybrid nanofluid are

observed. The higher value of the nanoparticle volume fractions

ϕ1, ϕ2 incremented the temperature distribution Θ(η). The heat
transfer rate enhancing for Cu up to 10.127% using ϕ1 �
0.01, 0.02, 0.03 and 11.48% increases for Cu + CuO hybrid

nanofluids using ϕ1, ϕ2 � 0.01, 0.02, 0.03. The Biot number

increases the temperature distribution for its larger amount.

The larger value of the parameter Rd enhances the rate of

heat transfer and, as a result, the Nusselt number rises.

Nanoliquids are more viscous than ordinary liquids,

which reflects that the boiling point of nanoliquids is

more than that of conventional base liquids. This would

improve the heat transfer power of the solar collectors.
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Nomenclature

Greek symbols

u, v Velocities components (ms−1)
μnf Dynamic viscosity of nanofluid (mPa)
f Dimensional velocity profiles

μf Dynamic viscosity of base fluid(mPa)
T Fluid temperature (K)
ρnf Nanofluid density(Kgm−3)
Tw Wall surface temperature (K)
ρf Base fluid density(Kgm−3)
T∞ Free surface temperature (K)
ξ Similarity variable

f Dimensional velocity profilesDimensional

ϕ volume fraction of CuO, TiO2and Al2O3 nanoparticles

Bi Biot number

θ Dimensional heat profiles

P Pressure

σnf electrical conductivity of nanofluid Sm−1

Pr Prandtl number

η Couple stress parameter

Re Local Reynolds number

σ* Stefan Boltzmann constant

ψ Stream function

ak Coefficient of mean absorption

Νu Nusselt number

Cf Skin friction coefficient

(Cp)f Specific heat of base fluid (J/kgK)
knf Thermal conductivity (Wm−1K−1)

Subscripts

Thnf Tri-hybrid Nanofluid

nf Nanofluid

f Base fluid
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