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The fast and reliable detection of subsynchronous oscillations (SSOs) in wind

farms is important for maintaining the stable operation of a power system.

This paper presents a novel, SSO detection method for noisy synchrophasor

data that considers the issue of detection as a binary classification (SSO

and non-SSO) from the perspective of pattern recognition. The proposed

algorithm easily implements cycle-based feature extraction from raw data

by applying the strong period of the SSO signal, which is distinguished from

noisy data. To mitigate the performance reduction of regular classifiers due

to the imbalance issue caused by SSO data being substantially less than non-

SSO data, a weighted kernel extreme learning machine is constructed as a

classifier to implement SSO detection. Experimental studies are carried out on

simulation and field data; the results show the effectiveness of the proposed

algorithm for SSO detection in the case of a low SNR and of imbalance issues.

KEYWORDS

subsynchronous oscillations, detection, cycle, feature extraction, weighted kernel extreme

learning machine

1 Introduction

With an increase in renewable energy power generation, the problem of
subsynchronous oscillation (SSO) has become constantly prominent (Yang et al., 2020;
Ma et al., 2022). The SSO phenomenon occurs in electrical power systems due to weak
grids or the interaction between turbine-generators with low inertia and long-distance
series compensated lines (Shair et al., 2019a), resulting in coupled oscillation between
mechanical system and electrical system at frequencies lower than the system rated
frequency (Xie et al., 2017; Wang et al., 2019). Unstable SSO threatens the safety of
equipment and the stable operation of a power system. For suppressing the SSOs, some
proper mitigation techniques, e.g., damping control methods for damping the oscillation
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(Shair et al., 2019b; Zhang et al., 2020), virtual inertia control
methods for enhancing the stability of grids (Sun et al., 2020;
Fu et al., 2022), are have been reported in the literature. To
effectively take these mitigation measures, the SSO event firstly
needs to be correctly detected.

Many methods for SSO detection have been presented
in the literature, including the widely employed Prony
(Hauer et al., 1990), matrix pencil (Hua and Sarkar, 1990;
Wang et al., 2021), TLS-ESPRIT (Tripathy et al., 2011),
interpolated DFT (Yang et al., 2020), Hilbert-Huang transform
(Zhang et al., 2016), and synchrosqueezing transform
(Ma et al., 2022). The mathematical nature of these methods
is such that they always use relatively complex computation and
give numerical results, e.g., frequency, damping, amplitude and
phase of SSO, even if there are no SSOs present in a signal.
Essentially, these methods are parameter identification methods.
Long window data and certain parameters, e.g., number of
mode orders and detection thresholds, need to be determined
in advance, and incorrect parameter settings cause incorrect
detection. Moreover, a power system mostly operates in a
normal working state, and SSOs occur in only a few cases;
thus, it is unnecessary to apply such heavy computations to
detect SSOs. Only after SSO is detected are these parameter
identification methods conducive to the suppression of SSO.
From the view of artificial intelligence, the detection of SSO
can be considered a problem of binary classification (i.e., SSO
and non-SOS) in pattern recognition. Classification methods
generally include feature extraction and classifier construction.
For feature extraction, since the SSO signal, as one type of
disturbance in a power system, is a nonstationary signal,
certain statistical and other types of features are extracted from
time-frequency transformation methods, such as the wavelet
transform (Lin et al., 2002; Chen et al., 2020) and S-transform
(Sarkar and Chilukuri, 2021). However, the high computational
complexity of these transforms creates an immense obstacle to
online SSO detection. Although deep learning (DL) methods
(Miao et al., 2022; Satheesh et al., 2022) can automatically
extract certain abstract features, large manually labeled data
for SSOs and non-SSOs are required to train the network to
achieve excellent performance, while SSO data are scarce in
reality. When facing a new dataset, there are limitations for
adaptively adjusting DL methods. In addition, measurement
noise always exists in captured electric data, and distinct features
with high effective extraction are needed to distinguish complex
and variable SSO signals from noisy data, making the case for
online SSO detection.

For classifier construction, certain machine learning
(ML) and DL methods have been widely utilized in
certain fields. DL methods, such as deep neural networks
(Yadav et al., 2019) and recurrent neural networks (RNNs),
also face performance degradation due to the shortage of
SSO data. Conversely, ML methods, including k-nearest

neighbors (KNN) (Khan et al., 2020), the support vector
machine (SVM) (Zidi et al., 2018), the extreme learning
machine (ELM) (Huang et al., 2006, 2012), the random forest
(RF) (Phan et al., 2020), XGBoost, LightGBM (Li et al., 2020),
etc., show good performance for small datasets. Refer
(Abdelaziz et al., 2012) used an SVM to implement SSO
detection from synchrophasor data collected in phasor
measurement units (PMUs) since PMUs are feasible for wide-
area oscillation monitoring. Although the SVM is the most
popular classifier, the ELM tends to have a better scalability and
generalization performance at faster speeds for classification than
the SVM (Huang et al., 2006). Although the RF, XGBoost and
LightGBM, as ensemble learning, can achieve high performance,
they take a longer time to implement the detection task. In
addition, when these regular ML methods are employed to
detect SSO from PMU data, they face the issue of imbalanced
data distribution. Since the number of collected PMU data in
non-SSO operations is much larger than that in SSO events,
the regular ML methods are biased towards the majority class
(non-SSO) and misclassify the minority class (SSO) as the
majority class. Although over-sampling methods, e.g., SMOTE,
synthesize new samples into the minority class, the existence
of noise samples generates more noise and even degrades the
performance (Lu et al., 2020). Thus, it is desired to construct
a classifier to conduct imbalanced data with satisfactory
performance and faster detection speed.

Based on the above analysis, an effective method based on
the weighted kernel ELM (WELM) with cycle-based feature
extraction is proposed to detect SSO from noisy PMU data.
First, strong periodicity of SSO data is applied to easily
extract cycle-based features, distinct from noisy non-SOS data.
Second, the WKELM classifier is constructed to implement
SSO detection, considering that WKELM has the potential
to handle the class imbalance learning problem and has
fast detection with good generalization performance. Last,
simulation and field data are employed in our experiments,
and the obtained results demonstrate that the proposed
method generally has good performance and faster detection
speed.

Compared with existing methods, the innovation of our
method is listed as follows: 1) novel cycle-based features,
including amplitude, time-period and shape features, are easily
extracted, which is more discriminative and objective to
distinguish from noisy non-SSO data; 2) the WKELM classifier
introduces the overall discriminative ability for imbalanced data
and guarantees high efficiency for SSO detection even in the
case of a low signal-to-noise ratio (SNR); 3) the proposed
approach has less computational burden and potential for online
applications;

The paper is organized as follows: The feature extraction
method is proposed in Section 2. The design of the WKELM
classifier is presented in Section 3. The simulation and
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FIGURE 1
Feature Extraction from PMU data. (A) Noisy non-SSO PMU data; (B) noisy SSO PMU data; (C) cycle-based features.

application results are presented in Section 4.2. The conclusions
are given in Section 5.

2 Feature extraction

One of the most important parts of SSO detection is to
extract useful information from the amplitude of phasors. The
purpose of feature extraction is to reduce the measured signals
into discriminative features, which are useful for classifying SSO
and non-SSO events. Since the oscillation is more visible in
current phasors than voltage phasors, the following paper uses
current phasors for SSO detection.The phasor signals received in
the PMUare the continuous time-domain signals, which are split
into equal-time sections, and the length of the window depends
on the monitoring object. After segmentation, we extract easily
computed cycle-based features in the time domain, including
amplitude, time-period, and shape features, and then calculate
the statistical distribution of these features for each segmentation
as the input of the classifier.

2.1 Cycle-based feature extraction

We note that there is a strong periodicity in the amplitude
sequences of phasors with SSO, whereas non-SSO data, even
induced by noise, do not exhibit this periodicity, as shown in
Figures 1A,B. To extract these important cycle-based features,
the peaks and troughs are roughly identified as the local minima
and maxima of the amplitude of the current phasors in the
segmented data. In our experiments, different from the definition

of the cycle in the power system, cycles are considered the start
and end at consecutive troughs in the currentmagnitude phasors,
as shown in Figure 1C. The amplitudes of the ith peak and its
preceding trough are denoted as aiP and aiT, respectively, and the
time stamps of aiP and aiT in the segmentation are denoted as tiP
and tiT, respectively.
• Amplitude feature
Theoretically, the amplitude sequence of non-SSO noise-

free phasors demonstrates a steady tendency as a straight line
under the condition of the steady operation of the wind-farm
system. Due to the randomness of noise, the height, defined as
the amplitude difference between the peak and trough in a cycle,
between two adjacent cycles randomly increases or decreases.
Moreover, the extent of the height change is irregular. In contrast,
it is observed from the field PMU data that when SSO occurs in
the wind-farm system, the change in height in the segmentation
shows regularity, as shown in Figure 1. Even with the effect of
noise, the trend also exists in PMU data.

Thus, we calculate the average height Hi from the ith trough
to the ith peak and from the i+ 1-th trough to the ith peak as

H i =
(aiP − a

i
T) + (a

i
P − a

i+1
T )

2
(1)

to be one of the features.
• Time-period feature
All measurement data and research reports demonstrate that

themagnitudes of current phasors show oscillationwith a certain
frequency due to the SSO. Naturally, the time interval between
two adjacent peaks is consistent with the interval between the
other two adjacent peaks in the segmentation. Similarly, the time
interval between two adjacent troughs has the same property.
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However, this property is apparent from the non-SSO noisy
phasors.

Thus, we calculate the time interval between the ith peak
and the (i− 1)th peak as T i

p = t
i
P − t

i−1
P and the time interval

between the ith trough and the (i− 1)th trough as T i
t = t

i
T −

t i−1T . To suppress the time-period difference due to noise and
nonsynchronized sampling, we calculate the average of T i

p and
T i
t , i.e.,

T i
pt =

T i
t +T

i
p

2
. (2)

In addition, to indicate that the cycle in SSO data has
approximately equal durations of rising and descending, we
calculate the rise-descend symmetry as

Sird =
tiP − t

i
T

T i
t
. (3)

Moreover, to indicate that the peak and trough have
approximately equal durations, we calculate the peak-trough
symmetry as

Sipt =
tiz − ti−1z

ti+1z − ti−1z
, (4)

where tiz denotes the time stamp of ith zero-crossing, which is
roughly estimated by the midpoint between the ith peak and the
trough.
• shape feature
The shape feature is indicated by the slope of two adjacent

peaks or the slope of two adjacent troughs.When themagnitudes
of current phasors continuously rise or descend, corresponding
to the positive damping ratio or negative damping ratio,
respectively, the slopes from SSO data show more regularity
than those from non-SSO noisy data. In our experiments, we
empirically choose the slope of the (i− 1)th peak and ith peak as
a feature and calculate the slope as

Silp =
aiP − a

i−1
P

T i
p
. (5)

Thus far, we have extracted five cycle-based features, i.e.,

[Hi,T
i
pt,S

i
rd,S

i
pt,S

i
lp] , (6)

for each cycle.

2.2 Feature set acquisition

To comprehensively acquire the features of each PMU
segmentation, the statistical distribution of the cycle-based
features is extracted. Commonly, the variations in the
distributions of these features can be used to distinguish non-
SSO and SSO events, while the variation is sensitive to the mean.

The uncertainty in the means of the amplitude, time period and
slope feature depends on the different operation conditions of
the wind farm when SSO occurs. Thus, the variations in these
features are not suitable as discriminative features.

To avoid the effect of scale, we utilize the coefficient of
variation (CV) to measure the dispersion of the cycle-based
features.The CV is a unitless measure of variation, defined as the
standard deviation divided by the mean, i.e.,

CV = σ
μ
× 100%, (7)

where μ is themean and σ is the standard deviation.Eq. 7 denotes
that the CV is a relative standard deviation independent from the
mean.

Thus, we calculate the CV of the cycle-based features in Eq. 6
for each segmentation, denoted as

x = [HCV,TCV
pt ,S

CV
rd ,S

CV
pt ,S

CV
lp ] , (8)

to serve as input of the following WKELM classifier.

3 Classifier based on weighted
kernel extreme learning machine

To address the issues of the data imbalance between SSO
phasors and non-SSO phasors and to improve the robustness
and nonlinear processing capabilities for detecting SSOs, the
WKELM is applied in ourworkswhile preserving the basic ELM’s
advantages over other regular ML methods, such as inherently
faster calcification speeds, lesser computational complexity, and
better overall performance on classification.

3.1 Basic ELM

Thebasic ELM, proposed byHuang et al. (Huang et al., 2006,
2012), is a single-hidden layer feed-forward neural
network (SLFM). Given N distinct training samples
{(xi,yi)

N
i=1|xi ∈ R

d,yi ∈ R
m}, xi is an d× 1 input feature vector,

and yi is anm× 1 target label vector. For the binary classification
in this work, d = 5 and m = 2. The conventional SLFM with L
hidden neurons is mathematically modeled as:

oj =
L

∑
i=1

βi ⋅ h(wi ∗ xj + bi) j = 1,…,N (9)

where oj is the jth input data target vector, βi are the weights
between the ith neuron in the hidden layer and the output layer,
h(⋅) is an activation function, and wi and bi are the weight vector
and bias vector between the ith hidden neuron and the input
layer, respectively.

For the training set, there are (βi, wi, bi) to satisfy oj = yj.
Further, Eq. 9 can be concisely rewritten in matrix form as

Y =Hβ (10)
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where H is the hidden layer output matrix, expressed as

H = [[

[

h (x1)
…
h (xN)

]]

]

= [[

[

h (w1 ∗ x1+b1) h (wL ∗ x1+bL)
… … …
h (w1 ∗ xN+b1) h (wL ∗ xN+bL)

]]

]
(11)

and

β = [β1,β2,…,βL]
T
L×m, Y = [y1,y2,…,yN]

T
N×m, (12)

where (⋅)T is a transpose operator.
The object of training the ELM is to estimate the

parameters (βi, wi, bi) by solving the optimization problem,
i.e., min ‖Hβ−Y‖2. Huang et al. (Huang et al., 2006) suggested
that (wi, bi) do not need to be tuned but are randomly generated
according to a uniform probability distribution. Thus, only β
needs to be estimated by using the least squares algorithm, given
by

β =H†Y (13)

where H† is the Moore-Penrose generalized inverse of H.
For a binary classification issue in this work, the predicted

class label of x is obtained as

label(x)ELM = sign (h (x)β) . (14)

To achieve good accuracy, the basic ELM classifier usually needs
a large number of hidden nodes, resulting in computational
burden and longer training time. Moreover, randomly choosing
wj and bj for more hidden nodes causes a large variation in
the performance. In addition, similar to other classifiers for
imbalanced data, the basic ELM classifier decreases the accuracy
of detecting SSO data as a minority class.

3.2 Weighted kernel ELM

To solve the previously mentioned issues in the basic
ELM classifier, the WKELM is selected in our work. First, for
the problem of imbalanced data, the N×N diagonal matrix
W associated with every training sample is introduced in
the basic ELM to formulate the weighted ELM (WELM)
(Zong et al., 2013). The main idea of the WELM is to assign
a larger weight to the training errors of the minority class
than to those of the majority class. According to this
strategy, the diagonal elements in W are empirically given by
(Zong et al., 2013)

Wii = 1/n(yi) (15)

or

Wii = {
0.618/n(yi) , n(yi) > AVG(n(yi))
1/n(yi) n(yi) ≤ AVG(n(yi))

(16)

where n(yi) is the number of training samples belonging to class
yi and AVG(⋅) is the average number of samples for all classes.
Intuitively, by using the weighted matrix W, the quantity of
the minority class and majority class is roughly rebalanced. To
minimize the weighted cumulative training errors for all samples
and the norm of output weight ‖β‖2, the objective function of the
WELM is mathematically formulated as

min
β

1
2
‖β‖2 + 1

2
λW

N

∑
i=1
‖h(xi)β− yi‖

2 (17)

where λ is a penalty parameter, achieving a trade-off between
the fitting error minimization and the model complexity.
According to theKarush-Kuhn-Tucker theorem (Fletcher, 1984),
the solutions of the WELM can be obtained as

β =HT( I
λ
+WHHT)

−1
WY, (18)

Second, to improve the robustness and nonlinear processing
capabilities of the WELM for SSO detection, the hidden layer
random mapping h(xi) is replaced by the kernel function; then,
the kernel mapping function for WELM can be written as
(Wang et al., 2017)

ΩK =HHT : ΩK,i,j = h(xi) ⋅ h(xj) = K(xi,xj) (19)

where K(xi,xj) is the kernel function.
Further, using Eqs 18, 19, for the binary classification, the

decision function of WKELM of x is given by

label (x) = sign (h (x)β)

= sign(h (x)HT( I
λ
+WHHT)

−1
WY)

= sign([[

[

K (x,x1)
…

K (x,xN)

]]

]

T

( I
λ
+WΩK)

−1
WY), (20)

where K(x,xj) = exp(−γ‖x− xj‖
2), i.e., RBF kernel function, is

adopted in this work.

4 Experiments and results

To demonstrate the effectiveness of the proposed detection
algorithm, we verify the validity of the extracted features and
compare the detection performance of WKELM with that of
other commonly employedmachine learningmethods, i.e., ELM,
SVM, KNN, RF, XGBoost and LightGBM, since SSO detection
is considered a classification issue in this paper. The settings of
key parameters for seven classifiers are shown in Table 1. The
algorithms are tested on simulated and measured field PMU
data, where simulated PMU data are generated at 100 samples
per second, while the real measured PMU data are sampled at
50 samples per second. All experiments are conducted on a PC
computer with an i7-11700K 3.60 GHz CPU, and 32 GB RAM.
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TABLE 1 Parameter settings of the used ML-based classifiers.

Classifiers Parameter settings

KNN Number of neighbors used: 20
SVM Kernel function: RBF, Kernel parameter:1, Cost

parameter : 10−3

RF Number of decision tree classifier used: 10
XGBoost Number of boosted trees to fit: 10, Maximum depth of

a tree: 6
LighGBM number of boosted trees to fit: 100, Maximum tree

leaves for base learners: 32
ELM Number of hidden nodes: 1024, Penalty parameter:

103

WKELM Kernel function: RBF, Kernel parameter:1, Number of
hidden nodes: 1024,
Penalty parameter: 103

4.1 Evaluation indices

For a classification problem, we use precision, recall,
accuracy and F1 score as evaluation indicators to evaluate the
performance of the methods applied in this work. Precision,
recall and accuracy are defined as

precision (%) = TP+TN
TP+ FP

× 100%

recall (%) = TP+TN
TP+ FN

× 100%

accuracy (%) = TP+TN
TP+TN+ FP+ FN

× 100%, (21)

respectively, where TP (true positive) is the number of SSOs
correctly detected as SSOs; TN (true negative) is the number of
non-SSOs correctly detected as non-SSOs; FP (false positive) is
the number of non-SSOs incorrectly detected as SSOs; and FN
(false negative) is the number of non-SSOs incorrectly detected
as SSOs. Additionally, the F1 score is defined as

F1 (%) =
2× precision× recall
precision+ recall

× 100%, (22)

where precision and recall are given in Eq. 21.

4.2 Results from simulation data

The simulation PMU data are generated by using the DFT-
based PMU algorithm from the current waveform data in
the wind power system, as shown in Figure 2. The system
is modeled in the PSCAD/Simscape Power Systems software
for electromagnetic transient simulations. The system contains
five doubly fed induction generator(DFIG)-based wind farms,
and series capacitor is installed on the line of bus 5-bus 6 to
compensate for the wind power (Wang et al., 2020). The SSO
occurs owing to the unstable interaction between DFIGs and
series capacitors. The parameters of each DFIG are shown in
Table 2.

FIGURE 2
Single line diagram of test system.

TABLE 2 Parameters of DFIG impedance model (Wang et al., 2020).

Meaning verification Value

DC-bus voltage 1150
Fundamental voltage of the grid 575
Fundamental current of SSC1 0.0925
Fundamental current of the machine 0.305
Resistance of SSC 0.003
Resistance of stator winding 0.01638
Resistance of rotor winding 0.1827
Filter inductance of SSC 0.3
Leakage inductance of stator winding 0.2552
Leakage inductance of rotor winding 0.2222
Ratio of winding turns 1
Modulator gain of SSC 0.5
Proportional gain of SSC current controller 0.83

SSC: stator side converter.

SSO is triggered by switching on the series capacitor at
t = 9 s; varying the compensation level of the series capacitor
causes different intensities of SSO waveforms; and nine types
of current waveforms are recorded to conduct this experiment.
Using the DFT-based PMU algorithm (Yang et al., 2020), we
synthesize PMU data with a 100 Hz reporting ratio. To simulate
the real operation condition, noise is superimposed onto PMU
data. As an example, three types of current waveforms and the
corresponding noisy PMU data are shown in Figure 3, where
the signal-to-noise-ratio (SNR) = 40 dB. To highlight the effect
of noise, noisy PMU data during the non-SSO time period are
shown in a small window.

The simulation PMU data are generated by using the DFT-
based PMU algorithm from the current waveform data in the
wind power system, as shown in Figure 2. The system, which
is modeled in the PSCAD/EMTDC platform, contains several
DFIG-based wind farms, and a series capacitor is installed to
compensate for the wind power. SSO is triggered by switching
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FIGURE 3
Three types of SSO waveform and the corresponding noisy PMU data (A) current waveform data; (B) noisy PMU data with SNR = 40 dB.

FIGURE 4
The number ratios of synthetic non-SSO and SSO data for training and testing.

TABLE 3 Number of data used in the training and testing.

Training + testing Training Testing

non-SSO 2,160 1698 462
SSO 1000 812 188

total 3160 2,510 650

on the series capacitor at t = 9 s; varying the compensation
level of the series capacitor causes different intensities of
SSO waveforms; and nine types of current waveforms are
recorded to conduct this experiment. Using theDFT-based PMU
algorithm (Yang et al., 2020), we synthesize PMU data with a
100 Hz reporting ratio. To simulate the real operation condition,
noise is superimposed onto PMU data. As an example, three
types of current waveforms and the corresponding noisy PMU
data are shown in Figure 3, where the signal-to-noise-ratio

TABLE 4 Effect of features on the performance of WKELM
classification, SNR = 40dB.

Features Recall(%) Precision(%) F1(%) Accuracy(%)

All 98.92 97.85 98.38 97.69
no HCV 94.17 92.51 93.33 90.74
no TCV

pt 94.95 91.80 93.35 90.90
no SCVrd 94.62 94.20 94.41 92.28
no SCVpt 94.34 94.13 94.24 92.13
no SCVlp 93.84 91.95 92.88 90.28

(SNR) = 40 dB. To highlight the effect of noise, noisy PMU data
during the non-SSO time period are shown in a small window.

From the simulation PMU data, we obtain a total of 3160
sets of 0.5 s window data, including non-SSO and SSO data.
Approximately 80% of data is used to train different classifiers,
and the other 20% of data are used to test the performance of
the trained classifiers. Among the sets of training and testing
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FIGURE 5
Scatter plots between two any features, when SNR = 40 dB.
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TABLE 5 Performance results of different classifiers under differen SNR.

SNR (dB) Classifiers recall(%) precision(%) F1(%) accuracy(%)

WKELM 97.03 98.07 97.55 96.45
ELM 93.50 93.50 93.50 91.05
SVM 91.67 96.07 93.82 91.05

30 KNN 92.21 96.05 94.09 91.51
RF 92.71 97.16 94.88 92.59
XGBoost 93.99 96.48 95.22 93.21
LightGBM 95.42 95.84 95.63 93.83

WKELM 98.92 97.85 98.38 97.69
ELM 95.97 96.17 96.07 94.29
SVM 95.98 94.09 95.03 93.06

40 KNN 95.21 95.41 95.31 93.36
RF 95.63 95.42 95.53 93.67
XGBoost 95.58 96.01 95.80 94.14
LightGBM 96.29 96.29 96.29 94.75

WKELM 98.62 98.62 98.62 98.15
ELM 97.40 96.71 97.06 96.14
SVM 97.49 96.17 96.83 95.68

50 KNN 97.52 96.86 97.19 96.14
RF 97.32 97.75 97.53 96.60
XGBoost 97.32 97.98 97.65 96.76
LightGBM 97.33 98.20 97.76 96.91

data, the ratios of non-SSO and SSO data are shown in Figure 4.
Accordingly, there is data imbalance between non-SSO classes
and SSO classes. The amount of data used in the training and
testing procedure is shown in Table 3.

4.2.1 The effectiveness of features
The five features in Eq. 8 are extracted from the noisy PMU

data with SNR = 40 dB and a 0.5 s time window. To demonstrate
the distribution of the extracted feature values of the SSO class
and non-SSO class, two-dimensional (2D) scatter plots between
any two features are shown in Figure 5, which shows that the
feature distribution of the non-SSO class is more concentrated
than that of the SSO for most features since different SSO cases
with varied amplitudes, frequencies and envelope shapes, as
shown in Figure 3A, are considered in this experiment. Even
with noise and diverse SSO events, there is a different feature
distribution for the non-SSO class and SSO class.

To further show the effectiveness of the extracted five
features, we disregard any one feature and adopt the remaining
four features as inputs to train and test the performance of
the WKELM classifier. The performance results are shown in
Table 4. Compared with the results of adopting all five features,
disregarding any one feature reduces the performance indices of
the WKELM classifiers.

4.2.2 Noise sensitivity
To test the noise sensitivity of the classifiers, PMU data

are superimposed by not only noise with SNR = 40 dB but

also noise with SNR = 30 dB and 50 dB. After the features
extracted from the training data are utilized to train the used
classifiers, the trained classifiers are applied to the testing data,
and the performance indices are recorded in Table 5. Among
all the classifiers employed, the WKELM classifier achieves the
best performance for different SNRs. Taking accuracy results
in Table 5 as examples, in the case of SNR = 50 dB, WKELM
can achieves 98.15% detection accuracy with 2.47% higher than
the lest accuracy from SVM. Even through SNR is decreased
to be 30dB, the accuracy of WKELM maintains 96.48%, and
WKELM is less affected than other classifiers. For example,
WELM achieves 7.10% improvement over ELM having the
lest accuracy, and 4.32% improvement over LightGBM having
the second high accuracy. The above results indicate that
WKELM classifier holds strong anti-noise ability over other
classifiers.

4.2.3 Time of training and testing
Table 6 shows the training time and testing time for the

number of corresponding data inTable 3. Since RF, XGBoost and
LightGBM belong to the ensemble algorithm, they take longer
to train and detect than nonensemble classifiers, e.g., SVM and
KNN. To achieve satisfactory performance for ELM, we set 1024
nodes for the hidden layer in ELM, leading to a relatively longer
training time, although the ELM has a faster testing time among
all the classifiers.The reason for the shortest detection time is that
the basic ELM is a single-hidden layer neural network. Since the
WKELM uses the kernel function to replace the hidden layer of
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TABLE 6 The training and testing times of different algorithms.

SNR (dB) Time(ms) WKELM ELM SVM KNN RF XGBoost LightGBM

30 training(ms) 14.19 432.95 11.76 8.66 289.38 1239.36 226.47
testing(ms) 3.98 0.98 3.94 8.74 12.91 43.61 6.05

40 traing(ms) 14.54 421.63 10.17 8.39 284.27 1225.78 214.45
testing(ms) 3.35 1.03 3.98 7.98 12.96 48.87 5.14

50 traing(ms) 13.35 436.97 10.97 9.67 287.12 1243.28 234.90
testing(ms) 2.68 0.83 2.76 9.35 10.97 40.89 6.98

FIGURE 6
The system diagram of Guyuan wind farm.

FIGURE 7
Field PMU data from Guyuan wind farm, China. (A) Field PMU data; (B) zoomed non-SSO window data within in blue box in (C); zoomed SSO
window data within in red box in (A).
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FIGURE 8
The number ratios of field non-SSO and SSO PMU data for training and testing.

FIGURE 9
Scatter plots between two any features.

the ELM, the training time is obviously shortened comparedwith
the ELM.Moreover, theWKELM achieves faster detection times
than most classifiers. Thus, the WKELM obtains the tradeoff
between training time and testing time.

TABLE 7 Evaluation indices for detection performance of different
algorithms.

Classifiers Recall(%) Precision(%) F1(%) Accuracy(%)

WKELM 99.27 98.79 99.03 98.63
ELM 97.69 97.10 97.40 96.32
SVM 99.51 92.02 95.62 93.58
KNN 96.60 95.78 96.19 94.61
RF 97.93 97.34 97.64 96.66
XGBoost 98.09 98.21 98.15 97.39
LightGBM 98.56 98.10 98.33 97.64

4.3 Results from field data

The field PMU data from Guyuan wind farm, North China,
are also selected to verify the SSO detection performance and
efficiency of our proposed method. The system diagram with
twenty-three wind farms in the Guyuan area is shown in
Figure 6 (Xie et al., 2017). All these wind farms are radially
connected by 220-kV transmission lines and connected to a
500-kV compensated network. Most of the wind generators are
1.5-MW DFIGs, and a few are permanent magnet synchronous
generators. Figure 7A shows an example of field PMUdata; non-
SSO data within the blue box and SSO data within the red box
are magnified and shown in Figures 7B,C. In this experiment,
5,835 window data are used for training, and 1168 window data
are used for testing. Figure 8 shows the ratio of non-SSO class to
SSOclass utilized for training and testing. Similarly, an imbalance
issue exists in the training and testing data.The class labels of the
window data are determined by expert knowledge and spectrum
analysis in advance.

Figure 9 shows the scatter plots between any two features
after the features are extracted, as described in Section 2.
Compared with the varied simulated SSO data in Figure 4,
the feature distribution of the SSO is more concentrated since
SSO events occur in a single wind farm. There is an obvious
distribution difference between the non-SSO class and the SSO
class.
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TABLE 8 Training and testing time for different classifier algorithms on field PMU data.

Time(ms) WKELM ELM SVM KNN RF XGBoost LightGBM

training(ms) 27.63 792.15 22.15 18.96 514.17 2045.80 396.14
testing(ms) 3.93 1.33 6.33 16.08 21.27 79.21 12.17

Tables 7, 8 show the performance results and times of
training and testing, respectively, after the selected classifiers
are trained from the extracted features and to execute SSO
detection for testing data. Since the SNR in field data is
not commonly lower than 40 dB, all classifiers can achieve
satisfactory detection performance. In the case of imbalanced
data for SSOs and non-SSOs, the KELM achieves approximately
1.5% and 5.1% improvements in accuracy compared with ELM
and the widely employed SVM, respectively. Although RF,
XGBoost andLightGBMcan achieve performance comparable to
that of the WKELM, they need longer training and testing times
due to the heavy computational burden, making it difficult for
them to satisfy the requirements of online detection. Thus, from
the view of comprehensively considering the performance and
speed of detection, the WKELM obtains the best results among
the examined classifiers.

4.4 Discussion

The proposed methods can achieve better performance for
detecting SSO fromnoisy PMUdata from the view of the balance
of detection time and SSO detection accuracy, compared with
other commonly used ML methods. whereas some aspects need
to be improved in the future works.

First, the effectiveness of the proposed method needs to be
further verified by more comprehensive data, since the field
PMU data used in the paper are captured from one wind farm.
Due to the different network structure and different operational
condition amongwind farms, the variation of SSO could generate
the data previously untrained, it would make the proposed
method ineffective for the unseen data.

Second, the features used for the WKELM classifier are
manually extracted, mainly relied on the expert knowledge.
Human intervention would limit the robustness and
generalization ability of the SSO detection algorithm. While
DL methods can automatically learn feature representations
from complex data without human intervention and can cope
with complex and variable SSO data. Thus, DL-based feature
extraction methods with low time complexity will be considered
in the future.

Thirdly, the WLELM classifier use the fixed weighting
scheme, according to the number of samples in each category as
shown in Eq. 20, the fixed weight is given for different samples of
the same category. Whereas, recent studies show that this fixed

weighing strategy would lead to decrease in the classification
accuracy of the majority class, when facing the problem of data
imbalance (Tong et al., 2021). Thus, to improve the performance
of WLELM classifier, adaptive weighting strategy needs to be
proposed to assign weights adaptive to different samples of the
same category.

5 Conclusion

This paper presents a fast and reliable SSO detection
algorithm for noisy PMU data. The algorithm enables the
easy implementation of distinct feature extraction from raw
PMU data without any signal transforming preprocessing and
constructs the WKELM classifier to detect SSO data from
non-SSO data. The proposed algorithm has been validated
by experimental studies on simulation data and field data.
Compared with other regular classifiers, the proposed method
has higher accuracy with faster detection speed and has potential
for online SSO detection.

In terms of further works, more comprehensive training data
should be used, since this paper only applied the simulation data
and field data from one wind farm, which can not fully represent
the characteristics of SSO data due to the dynamics in the
various wind farms. The generalization of the proposed method
should be tested and improved by using new techniques or
other machine learning algorithms. And then, DL-based feature
extraction methods will be introduced to cope with complex and
variable SSO data with less human intervention. Furthermore, it
will be interesting to investigate adaptive methods to adaptively
assign weights for the WELM classifier.
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