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Proton exchange membrane fuel cell (PEMFC) is one of the most widely used fuel cell
types. Accurate modeling of PEMFC can better facilitate the research of PEMFC and guide
designers to design FC products that meet people’s needs. The modeling problem of
PEMFC can be transformed into a parametric optimization problem. In order to improve
the exploration capability of the pathfinder algorithm, the concept of quantum computing is
introduced and a new quantum coded pathfinder optimization algorithm (QPFA) is
proposed. QPFA was applied to the extraction of parameters of NedStackPS6,
BCS500W and 250W FC, and these models of PEMFC have been applied for
commercial use. The experimental results were compared with seven recently
proposed metaheuristics and recently published literature, showing the accuracy and
high precision of QPFA in extracting PEMFC parameters.
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1 INTRODUCTION

Due to the air pollution and environmental changes caused by burning fossil fuels, green renewable
energy is increasingly considered as an alternative energy source (Priya et al., 2018). The fuel cell is a
new energy supply technology (Rezk et al., 2022). Several popular fuel cell products in the market can
be divided into several types according to the type of electrolyte: proton exchange membrane FC
(PEMFC) (Pourrahmani et al., 2019), alkaline FC (AFC) (Saebea et al., 2019), solid oxide FC (SOFC)
(Chuahy and Kokjohn, 2019), phosphoric acid fuel cell (PAFC) (Guo et al., 2021), (Inci and Türksoy,
2019), and microbial fuel cell (MFC) (Sayed et al., 2021), (Ido and Kawase, 2020). PEMFC is the most
widely used (Miao et al., 2020). A large number of PEMFCs use in transportation applications
(Shaheen et al., 2021). These fuel cells have been used for a variety of purposes in power supply, the
mathematical model of PEMFC accurately established to better promote the research of FC.

There are three main types of mathematical modeling for PEMFCs, theoretical (Ashraf et al.,
2022), empirical (Busquet et al., 2004), and semi-empirical models (Amphlett et al., 1995). Accurate
design and modeling of PEMFCs can help researchers design products that meet performance
requirements and reduce production costs. Early researchers mainly used adaptive filters and black-
box testing techniques to determine the parameters of PEMFCmodels. However, these methods have
significant drawbacks, including poor accuracy and lack of flexibility. PFMFC has multi-variable and
multi-peak nonlinear characteristics, and the operation of the PEMFC is accompanied by complex
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behavior of gas, liquid and heat conduction (Yang et al., 2020),
which will lead to complex and labor time costly application of
conventional technology (Abdel-Basset et al., 2021a). Therefore, a
new technique is urgently needed to solve the PEMFC parameter
extraction problem. With the development in the field of artificial
intelligence, metaheuristic algorithms have achieved good results
in nonlinear system optimization problems, and the problem of
extracting PEMFC parameters can be seen as an optimization
problem to be solved (Kandidayeni et al., 2019).

Many researchers have investigated the PEMFC parameter
extraction problem using metaheuristic algorithms. GA was first
used to extract the parameters of PEMFC (Priya et al., 2015),
(Zhang and Wang, 2018), However, GA has the disadvantages
of slow convergence speed and high parameter sensitivity, so a
new optimization algorithm particle swarm optimization
algorithm is applied to the PEMFC parameter extraction
(Salim et al., 2015). Gong and Cai (2013) employed a named
ranking-based differential evolution to find the parameters of
the PEMFC model. El-Fergany (2018a) used Slap Algorithms to
extract parameters of two PEMFC models that have been
applied to commercial reality. Rao et al. (2019) modeled
PEMFC using shark odor optimization and proved the
reliability of shark odor optimization using statistical
methods. Chen and Wang (2019) proposed a cuckoo search
algorithm (CS-EO) with an explosion operator and applied it to
the PEMFC parameter extraction problem with success on four
models of fuel cell cases. Priya and Rajasekar (2019) used the
flower pollination algorithm for PEMFC model parameter
extraction. Selem et al. (2020) applied MRFO to the problem
of accurate extraction of uncertain parameters of PEMFC
models. Rizk-Allah and El-Fergany (2021) proposed an
improved and developed AEO (IAEO) applying it to PEMFC
modeling and optimization. Gouda et al. (2021a) used the
jellyfish search algorithm to extract the exact parameters of
the PEMFC and experimented on three test cases with success.
Gouda et al. (2021b) investigated the dynamic performance of
the fuel cell using the basic pathfinder algorithm. Several other
optimization algorithms have been successfully applied to the
PEMFC parameter extraction problem, such as ICHOA (Abdel-
Basset et al., 2021a), MVO (Fathy and Rezk, 2018), IFSO (Qin
et al., 2020), PO (Diab et al., 2020), JAYA (Xu et al., 2019), SMO
(Gupta et al., 2021), EO (Seleem et al., 2021), GBO (Elsayed
et al., 2021), BMO (Abdel-Basset et al., 2021a), and so on.
Although many metaheuristic algorithms have been applied to
extract unknown parameters of PEMFC, according to the No
free lunch theorem (Wolpert and Macready, 1997), no single
algorithm can solve all engineering optimization problems.
There is still room to improve the extraction accuracy of
PEMFC parameters, so it is necessary for researchers to
improve the meta-heuristic algorithm and apply it in the
extraction of PEMFC parameters.

Pathfinder optimization algorithm is a metaheuristic
algorithm proposed by Yapici and Cetinkaya (2019). It is
inspired by the principle that the group leader leads other
individuals to the optimal future regional in nature.
Pathfinder optimization algorithm has been applied to
many complex practical engineering optimization problems

and achieved success. In this paper, in order to solve the
problem that the individual follower will easily fall into a local
optimum in pathfinder algorithm, a quantum coded
pathfinder optimization algorithm is proposed to solve
continuous optimization problems. In QPFA, the
probability amplitude is used to represent the probability
of qubits two states, and the probability amplitude is
mapped to the optimization problem interval to calculate
the fitness value of individuals. Each individual
corresponds to two solutions of the optimization space,
which expands the diversity of the population, effectively
avoids the problem of easily falling into a local optimum in
PFA, and increases the exploration ability of the algorithm.
The updating strategies of the PFA and the quantum revolving
gate are used to update the probability amplitude for
algorithm iteration. Then QPFA is applied to extract
unknown parameters of PEMFC. This paper’s main
contribution can be summarized as follows:

1) A novel quantum coding pathfinder optimization algorithm is
proposed to extract unknown parameters of PEMFC.

2) Three real PEMFC cases, NedStackPS6, 500WFC and
250WFC, were solved successfully. The experimental results
proving the superiority of QPFA in extracting unknown
parameters of PEMFC.

3) The results extracted by QPFA were compared with the
excellent metaheuristic algorithm. In order to improve the
persuasion of this study, the parameter results extracted by
QPFA were compared with the results of recently published
literatures, and QPFA found the best results.

The structure of this article is as follows. Section 2 describes
the fuel cell model. Section 3 explains the method of extracting
unknown parameters of PEMFC by QPFA and an objective
function of optimization. Section 4 introduces the basic
pathfinder algorithm (PFA). Section 5 introduces the quantum
coding pathfinder algorithm (QPFA). Section 6 introduces the
experimental results and analysis of QPFA applied to three real
cases, and compares the results with some powerful optimization
algorithms. Section 7 is the summary of this paper and the
prospect of the future work.

2 PROTON EXCHANGE MEMBRANE FUEL
CELL MODEL

This section introduces the semi-empirical model of PEMFC
proposed by Mann et al. (2000). Its validity has been verified in
many previous studies. The voltage output of PEMFC can be
calculated using Eq. 1 (Mann et al., 2000).

Vo−cell � Enernst − Vact − VΩ − Vcon (1)
where Vo−cell represents the output voltage of PEMFC, its unit of
measure is V. Enernst denotes the cell open circuit voltage in (V)
that is derived from the Nernst equation. Vact means a potential
for activation in (V).VΩ is the ohm voltage drop in the circuit and
Vcon represents the concentration voltage loss in (V).
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Assuming that all connected cells have the same polarization
properties, whenNs multiple cells are connected in series to form
the stack, the stacks output voltage stack in (V) is described by
Eq. 2.

Vo−stack � Ns · Vo−cell (2)
Based on the Nernst equation and the magnitude of the change

in temperature, Enernst can be calculated by Eq. 3.

Enernst � 1.22 − 8.5 ×
(T − T′)

104
+ 4.3085 ×

T[ln(PH2 · P0.5
O2
)]

105

(3)
where T is the operating temperature of the cell in Kelvins and T
≤ 100°C, T′ = 273.15K. PH2 and PO2 are the hydrogen and oxygen
partial regulating pressures in PFMFC, they use atm as the unit of
measurement. Dynamic changes of external load will lead to
changes in PH2 and PO2, and their numerical changes can be
calculated by Eqs 4–6 respectively. When the fuel cell chooses
natural air as oxidant for electrochemical reaction, PO2 will be
calculated by Eq. 6.

PH2 � 0.5 × FHa × PH2O × ⎡⎢⎣ Pa

FHa × PH2O × exp(4.192IcAT0.832)⎤⎥⎦ (4)

PO2 � FHa × PH2O × ⎡⎢⎣ Pc

FHa × PH2O × exp(4.192IcAT0.832)⎤⎥⎦ (5)

PO2 � Pc − FHa × PH2O −
0.79
0.21

× PO2 × exp(4.192Ic
AT0.832

) (6)

where FHa and FHc are the humidity of the steam at the anode and
cathode of the fuel cell. Pa and Pc are the anode and cathode inlet
pressures (atm). Ic and A are the cell current in (A) and the
membrane effective area in (cm2), respectively. Furthermore,
PH2O is the water vapor saturation pressure (atm), which is
calculated by Eq. 7, its value is only affected by temperature T.

lgPH2O � 2.95 ×
T − T′
100

− 9.18 ×
(T − T′)2

105
+ 1.44 ×

(T − T′)3
107

− 2.18

(7)
The electrochemical reaction in fuel cells is slow at the initial

stage, and activation loss Vact is used to describe the process, Vact

can be calculated from Eq. 8.

Vact � −[ω1 + ω2T + ω3T log10(CO2) + ω4T log10(Ic)] (8)
where ω1, ω2, ω3 and ω4 are the semi-empirical coefficient in the
model, their units of measurement are V, VK−1, VK−1 and VK−1.
CO2 represents the oxygen concentration at the cathode catalytic
layer in (mol/cm3), which is expressed by Eq. 9.

CO2 �
PO2 × exp(498T )
5.08 × 106

(9)

In addition, the concentration of hydrogen at the anode
catalytic layer CH2 in (mol/cm3) is described by Eq. 10.

CH2 �
PH2 × exp(−77T )
10.9 × 105

(10)

The ohm voltage loss in the circuit is calculated by Eq. 11, in
the polarization curve, it shows a linear relationship.

VΩ � Ic(RW + RI) (11)
where RW in (Ω) represents the resistance shown by electrons as
they pass through the connections to the external circuit, which
can be calculated from Eq. 12. RI in (Ω) indicates the resistance
shown by protons passing through membrane active area
A (cm2).

RW � ηF(DA) (12)

where the thickness of the membrane is represented byD in (cm).
The membrane’s specific resistivity is represented by ηF in
(Ω.cm), ηF can be calculated by Eq. 13, λ in Eq. 13 represents
the amount of water in the membrane.

ηF�
181.6×exp−1(4.18×(T−303)T )×[1+0.03(IcA)+0.062( T

303)2(IcA)2.5]
(λ−0.634− 3Ic

A )
(13)

Finally, the concentration over-potential V con or mass
transport losses will affect the I–V curve when the FC is
overloaded, and this phenomenon can be calculated and
described by Eq. 14.

Vcon � −ε log10(σmax − σ
σ ) (14)

where ε is a parametric coefficient in (V), σmax and σ are
represents the actual and maximum cell current density in
(A.cm−2).

3 PROPOSED IDENTIFICATION STRATEGY

This section introduces a general framework for extracting
PEMFC parameters using metaheuristic algorithm. The QPFA
proposed in this paper will be applied to extracting PEMFC
parameters. According to the semi-empirical PFMFC model
introduced in the previous section, seven parameters in the
equation are unknown, and there is a strong coupling between
these parameters. For such an optimization problem with
nonlinear constraints, the metaheuristic optimization
algorithm is used to determine the best parameters. The
objective function is of great significance for model parameter
identification. In this paper, the sum of the squared error (SSE)
between the actual output voltage and the estimated output
voltage is chosen as the objective function. The optimal model
parameters are extracted by minimizing the objective function.
Objective function (SSE) can be calculated by Eq. 15.

OFSSE � min
⎧⎨⎩∑Nc

R�1
(Vactual(Nc) − Vsimulation(Nc))2

⎫⎬⎭ (15)
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where Vactual and Vsimulation are the actual PFMFC data and
simulation fuel cell voltage,Nc is the number of data items retrieved.

The optimization variables are the unknown PEMFC
parameters, which can be described as:

x � [ω1,ω2,ω3,ω4, λ, ε,RI]
Every variable has upper and lower bounds as follow:

ωmin
i ≤ωi ≥ωmax

i (i � 1, 2, 3, 4)
λmin ≤ λ≥ λmax

εmin ≤ ε≥ εmax

Rmin
I ≤RI ≥Rmax

I

The specific values of upper and lower bounds of parameters
are listed in Table 1. A general framework for PEMFC parameter
extraction using metaheuristic optimization algorithm is shown
in Figure 1.

4 BASIC PATHFINDER ALGORITHM

In the PFA algorithm, each individual in the population will be
placed in D - dimensional space. The individual in the most
promising area is called the pathfinder, and the rest of the
population will follow the pathfinder to search. This search
model can be mathematically described by Eq. 16

xi+1
n � xi

n +W1 · (xi
n−1 − xi

n) +W2 · (xi
p − xi

n) + ε

n ∈ [2, 3, ...N]
(16)

where i represents the current iteration, xn represents the position
of the follower of the population. W1, W2 are two randomly
generated vectors calculated from Eqs 17, 18, r1 and r2 are a
uniformly distributed random number generated randomly
between (0, 1). W1, W2 can control the weight of the follower
moving to the pathfinder and the neighboring individuals in the
population. ε is the vibrancy vector, and its calculation can be
obtained from Eq. 19, Δij is the distance between the i-th and the
j-th position in population.

W1 � α · r1 (17)
W2 � β · r2 (18)

ε � (1 − i

imax
) · u1 · Δij,Δij � ‖xi − xi−1‖ (19)

The pathfinder updating position is obtained from Eq. 20

xi+1
p � xi

p + 2r3 × (xi
p − xi−1

p ) + η (20)
where xi+1

p represents the position of the i+1 generation
pathfinder, xi

p is the location of the i-th pathfinder. xi−1p is the
location of the i-1 generation pathfinder, i represents the number
of current iterations, r3 represents a random number in a uniform
distribution at [0,1]. η is obtained from Eq. 21.

η � u2 · e −2i
imax (21)

where imax represents the maximum iteration number, u2 is a
random number evenly distributed within the range of [-1,1]. The
pseudo-code of pathfinder algorithm is in Algorithm 1.

TABLE 1 | Upper and lower bounds of parameters.

Parameter to optimize ω1 ω2 ω3 ω4 λ ε RI

Lower bound −1.19969 1 3.6 −2.60 10 1 0.0136
Upper bound −0.8532 5 9.8 −9.54 24 8 0.5

FIGURE 1 | Process of extracting PEMFC parameters with metaheuristic optimization algorithm.
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Algorithm 1. Pseudo-code of the Pathfinder algorithm.

5 PROPOSED QUANTUM CODE
PATHFINDER ALGORITHM

A quantum coding method is proposed by Li et al. (Shiyong,
2007), this paper adopts the quantum coding method proposed
by Li et al. The probability amplitude of qubit is used to encode
the position vector of individual population in QPFA, quantum
revolving gate updates the quantum bit rotation angle. In order
to avoid premature convergence of PFA, quantum not gate is
added into the algorithm as mutation behavior.

5.1 Quantum Theory
Since the concept of quantum mechanical systems was intro-
duced, researchers in many fields have devoted themselves to
the study of quantum mechanics (Benioff, 1982). Quantum
physics is the theoretical root of quantum computing, and
Schrödinger’s equation (SE) describes the intrinsic dynamics
of quantum computing (Grover, 2001).

5.2 Qubit and Quantum Superposition
The smallest unit of information storage is called a qubit in
quantum theory, qubits are the basic storage unit in quantum
computing, and the Dirac symbol |x〉 is used to represent qubits. A
qubit can have state |0〉 and state |1〉 or the linear combination of
state |0〉 and state |1〉 (Shiyong, 2007), (Dey et al., 2014). The linear
combination of state |0〉 and state |1〉 referred to as quantum
superposition, this superposition is described by the wave function
|Ψ〉 in Hilbert space. The wave function is described as:

|Ψ〉 � ω|0〉 + θ|1〉 (22)
where ω and θ are called the probability amplitude of the quantum
state, ω and θ represents for when measuring a qubit, wave function
|Ψ〉 collapse to |0〉 with a probability |ω|2, collapse to |1〉 with a
probability |θ|2. ω and θ satisfy the constraint of Eq. 23.

|ω|2 + |θ|2 � 1 (23)
According to Eq. 23, use the coding method of Li et al.

(Shiyong, 2007), ω � cos(φ), θ � sin(φ), φ is the rotation angle
of a qubit.

5.3 Initial Population
When the population is initialized, the probability amplitude of
qubit is directly used as the position vector of the individual in
PFA algorithm, the individual population can be initialized as:

⎡⎣Pm � ⎡⎣ cos(φm,1)
sin(φm,1)

∣∣∣∣∣∣∣∣∣
cos(φm,2)
cos(φm,2)

∣∣∣∣∣∣∣∣∣ ......
∣∣∣∣∣∣∣ cos(φm,n)
sin(φm,n)

∣∣∣∣∣∣∣∣∣⎤⎦⎤⎦ (24)

where n = 1,2,. . .,D represents the dimensions of the problem,
m = 1,2, . . . , N represents the population number of individuals
in PFA, φm,n is the rotation angle of qubits, φm,n is initialed by
Eq. 25.

φm,n � 2π · rand(0, 1) (25)
Each individual in the QPFA corresponds to two positions in

the problem space, they are calculated from the probability
amplitude of qubits respectively, PiC is calculated by the
probability amplitude of quantum bit |0〉, PiS is calculated by
the probability amplitude of quantum bit |1〉.

PmC � (cos(φm,1), cos(φm,2), ..., cos(φm,j))
PmS � (sin(φm,1), sin(φm,2), ..., sin(φm,j)) (26)

5.4 Solution Space Mapping
In QPFA, the search traversal space of the population individual
is [−1,1] in every dimension. Since the form of qubit is used to
represent the individual population in PFA, it is necessary to map
the qubit to the optimization problem interval, the quantum bit’s
probability |0〉 and |1〉 correspond to the two solutions of
optimization problem. The mapping process is accomplished
through Eqs 27, 28.

Yn
mC � 1

2
[Yn

max(1 + ωn
N) + Yn

min(1 − θnm)] (27)

Yn
mS �

1
2
[Yn

max(1 + ωn
m) + Yn

min(1 − θnm)] (28)

whereYn
mC and Y

n
mS are calculated from the probabilities of qubits

|0〉 and |1〉, respectively. Each qubit map to two positions in the
solution space.

5.5 Individual Updates
In order to make use of the pathfinder search optimization
algorithm to update rotation angle, the displacement differ-
ence of updating population individuals in the pathfinder
search optimization algorithm is used to rewrite Eqs 16–30.
In QPFA, the movement of individual population is carried
out through the quantum revolving door, and the position
update of individual population in PFA is transformed into the
probability amplitude update of individual population qubit
in QPFA.
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5.5.1 Update of Qubit Angle on Individual

Δφp
mn(t + 1) � Δφp

mn(t) + Δφp + η (29)
ΔφF

mn(t + 1) � ΔφF
mn(t) +W1 × ΔφF +W2 × ΔφF

p + ε (30)
where t represents the current iteration, Δφp represents the
difference of the probability amplitude vector between the current
pathfinder’s position and the previous pathfinder’s position. ΔφF

represents the probability amplitude vector difference between the
position of the current follower and the position of an adjacent
follower. ΔφF

p represents the probability amplitude vector difference
between the current follower position and the pathfinder position.
Δφp, ΔφF

ij and ΔφF
p can be calculated as follows:

Δφp �
⎧⎪⎨⎪⎩

2π + φn
p(t) − φn

p(t − 1) φn
p(t) − φn

p(t − 1)< − π
φn
p(t) − φn

p(t − 1) − π≤φn
p(t) − φn

p(t − 1)≤ π (n � 1, 2, ..., D)
φn
p(t) − φn

p(t − 1) − 2π φn
p(t) − φn

p(t − 1)> π
(31)

ΔφF �
⎧⎪⎨⎪⎩

2π + φn
m − φn

m−1 φn
m − φn

m−1 < − π
φn
m − φn

m−1 − π≤φn
m − φn

m−1 ≤ π m � 2, 3, ..., N. n � 1, 2, ..., D
φn
m − φn

m−1 − 2π φn
m − φn

m−1 > π
(32)

ΔφF
p �

⎧⎪⎨⎪⎩
2π + φn

p − φn
m φn

p − φn
m < − π

φn
p − φn

m − π≤φn
p − φn

m ≤ π (m � 2, 3, ..., N. n � 1, 2, ..., D)
φn
p − φn

m − 2π φn
p − φn

m > π
(33)

where φn
p represents the angle of pathfinder individual in n-th

dimension. φn
m represents the angle of the follower individual in

n-th dimension.

5.5.2 Update of Qubit Probability Amplitude of
Individual
In the quantum optimization algorithm, the quantum revolving
gate is used to update the probability amplitude of the qubit. The
quantum revolving gate is set as Eq. 34, and the updating of the
probability amplitude of the qubit is realized by Eq. 35.

κ(Δφ) � [ cos(Δφ) −sin(Δφ)
sin(Δφ) cos(Δφ) ] (34)

[ cos(φ(t + 1))
sin(φ(t + 1)) ] � κ(Δφ(t + 1))[ cos(φ(t))

sin(φ(t)) ] (35)

where [cos(φ(t)), sin(φ(t))]T and
[cos(φ(t + 1)), sin(φ(t + 1))]T represents the probability
amplitude before and after the update. φ(t) and ϕ(t + 1)
represents the rotation angle before and after the update.
Through the Eq. 35, [cos(φ(t + 1)), sin(φ(t + 1))]T can be
calculated as Eq. 36. According to the trigonometric
transformation formula Eq. 36 can be rewritten as Eq. 37.

{ cos(φ(t + 1)) � cos(Δφ) cos(φ(t)) − sin(Δφ) sin(φ(t))
sin(φ(t + 1)) � sin(Δφ) cos(φ(t)) + cos(Δφ) sin(φ(t))

(36)
{ cos(φ(t + 1)) � cos(φ + Δφ)
sin(φ(t + 1)) � sin(φ + Δφ) (37)

when the update is complete, two new locations for the individual
will be created:

PmC � (cos(φm,1 + Δφm,1(t + 1)), ..., cos(φm,n + Δφm,n(t + 1)))
PmS � (sin(φm,1 + Δφm,1(t + 1)), ..., sin(φm,n + Δφm,n(t + 1)))

(38)

5.6 Mutation of Behavior
In PFA algorithm, pathfinder has a great influence on the follower. In
the middle and late stage of algorithm execution, the follower will
closely follow the pathfinder to search, which will increase the
probability of the algorithm falling into the local optimal solution.
Although quantum coding improves the diversity of the population,
it is still possible to fall into the local optimal solution. In order to
better jump out when the population falls into the local optimal
solution, a quantumnot gate is added tomutate the population qubit.
Mutation behavior is carried out through quantum not gates,
quantum not gates are described by Eq. 39. The mutation
operation is described by Eq. 40.

[ 0 1
1 0

][ωθ ] � [ θω] (39)

[ 0 1
1 0

][ cos(φmn)
sin(φmn) ] � [ sin(φmn)

cos(φmn) ] (40)

5.7 Quantum Coding Pathfinder Algorithm
Pseudo Code
The pseudo-code of the Quantum Pathfinder algorithm as in
Algorithm 2.

Algorithm 2. Pseudo-code of the Quantum Pathfinder algorithm.
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6 RESULTS AND DISCUSSION

In this section, QPFA is applied to extract unknown parameters of
three types of fuel cells, which are respectively NedStackPS6, BCS
500 and 250W FC. The objective function is to minimize the sum
of squares of the difference between real data and simulation data,
which can be obtained by Eq. 15. The simulations were performed
on the MATLAB 2016b platform and run on a CPU Core i5-7100
v5 (3.80 GHz) with 16 GB RAM. The specific process of extracting
fuel cell location parameters using QPFA algorithm is shown in
Figure 2. Three types of fuel cell parameters, specific operating
environments, and data sets are obtained in the Ref (Li et al.,
2020a), the upper and lower bounds of the extracted unknown
parameters are listed in Table 1.

In order to better test the ability of QPFA to extract unknown
parameters of fuel cells, it is compared with six other excellent
meta-heuristic algorithms with the strong optimization ability,
which are PFA (Yapici and Cetinkaya, 2019), JAYA (Rao, 2016),
WOA (Mirjalili and Lewis, 2016), SCA (Mirjalili, 2016), PSO
(Kennedy and Eberhart, 1995), GWO (Mirjalili et al., 2014), and
SMA (Li et al., 2020b). Finally, the experimental results were
compared with the recently published literature. Due to the
execution characteristics of the metaheuristic algorithm, the results
of each run are different. In order to better test the optimizing ability
of the algorithm, the results of 30 runs are considered in the
experimental verification. The population, number of all
metaheuristic algorithms Npop = 30 and the number of iterations
Maxiteration = 1000. The specific parameter values of each

FIGURE 2 | Extracting PEMFC parameter flow chart using QPFA.

TABLE 2 | Specific parameters of the three PEMFCS.

PEMFC Name Ncell A (cm2) D (μm) σmax(A/cm2) T(K) PH2(atm) PO2(atm)

NedStackPS6 65 240 178 5 343 1 1
BCS 500W 32 64 178 0.469 333 1 0.2075
250W 24 27 178 0.860 343.15 1.0 1.0
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TABLE 3 | SSE value obtained experimentally in Case1.

Algorithm Parameter

ω1

(V)
ω2

(V/k)
ω3

(V/k)
ω4

(V/k)
λ ε RI

(mΩ)
SSEBest SSEAvg SSEWorst SSEStd

PFA −0.9082 4.53E-03 5.54E-05 −9.54E-05 12.6054 1.36E-02 1.05E-04 2.0797 2.08171 2.1131 0.04175
JAYA −0.8532 4.22E-03 4.58E-05 −9.54E-05 12.7813 3.27E-02 1.00E-04 2.1803 2.2896 3.1655 0.29923
WOA −1.1817 5.05E-03 3.76E-05 −9.54E-05 12.8164 2.68E-02 1.12E-04 2.1246 4.6200 5.9980 0.9438
SCA −1.0667 4.99E-03 5.32E-05 −9.56E-05 13.1816 3.77E-02 1.32E-04 2.3398 3.9250 8.1258 1.2699
PSO −0.9158 5.02E-03 9.27E-05 −9.54E-05 12.5836 1.71E-02 1.00E-04 2.4013 3.5004 13.5874 2.5540
GWO −1.1446 5.01E-03 4.51E-05 −9.54E-05 12.7690 2.20E-02 1.12E-04 2.1152 2.6402 3.5747 0.4390
SMA −0.8897 5.00E-03 9.79E-05 −9.54E-05 12.5745 1.36E-05 1.00E-04 2.0675 2.0952 2.3091 0.0625
QPFA −0.9887 5.00E-03 7.65E-05 −9.54E-05 12.5743 1.36E-05 1.00E-04 2.0656 2.0656 2.0656 5.55E-15

*Bold numbers represent the best results.

FIGURE 3 | Box plot and convergence curve in case 1. (A) Box plot in case 1. (B) Convergence curve in case 1

TABLE 4 | Comparison of real data and simulated data in Case 1.

N Experimental data Simulated data N Experimental data Simulated data

I real (A) Vreal(V) Vsimulated (Vreal-V simulated)
2 I real (A) Vreal(V) Vsimulated (Vreal-V simulated)

2

1 2.250 61.640 62.35582 5.12394215E-01 16 110.300 47.520 47.63614 1.34888357E-02
2 6.750 59.570 59.78175 4.48398363E-02 17 117.000 47.100 47.04734 2.77273442E-03
3 9.000 58.940 59.05036 1.21785926E-02 18 126.000 46.480 46.25212 5.19287650E-02
4 15.750 57.540 57.49817 1.74951349E-03 19 135.000 45.660 45.44943 4.43414609E-02
5 20.250 56.800 56.71949 6.48106818E-03 20 141.800 44.850 44.83644 1.83896332E-04
6 24.750 56.130 56.04617 7.02683743E-03 21 150.800 44.240 44.01462 5.07967038E-02
7 31.500 55.230 55.15893 5.05161221E-03 22 162.000 42.250 42.97207 2.72552558E-01
8 36.000 54.660 54.62225 1.42531698E-03 23 171.000 41.660 42.11575 2.07707021E-01
9 45.000 53.610 53.6345 6.00487538E-04 24 182.300 40.680 41.01373 1.11373700E-01
10 51.750 52.860 52.94529 7.27426382E-03 25 189.000 40.090 40.34464 6.48427736E-02
11 67.500 51.910 51.44034 2.20578332E-01 26 195.800 38.510 39.65256 2.03221082E-02
12 72.000 51.220 51.027682 3.69862957E-02 27 204.800 38.730 38.71485 2.29421401E-04
13 90.000 49.660 49.41835 5.83931295E-02 28 211.500 38.150 37.99957 2.26289534E-02
14 99.000 49.000 48.62698 1.39146229E-01 29 220.500 37.380 37.01387 1.34050102E-01
15 105.800 48.150 48.03079 1.42121441E-02 SSE 2.0656
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metaheuristic algorithm are consistent with the settings of the
original algorithm.

6.1 Case1: NedStackPS6
The technical parameters of NedStackPS6 are shown in theTable 2.
According to the parameter extraction method as mentioned
earlier, the parameter value of PEMFC obtained at the optimized
minimum objective function will be the parameter to be extracted.
Therefore, the performance of the optimization algorithm extracting
PEMFC parameters can be judged by comparing the value of the
objective function. After 30 runs, the experimental results obtained
by QPFA and seven powerful optimization algorithms are shown
in Table 3. Table 3 lists the minimum objective function value
(SSEBest), average objective function value (SSEAvg), worst objective
function value (SSEWorst), variance value (SSEStd), and best

PEMFC parameters value obtained by the optimization
algorithm used in the experiment after 30 runs. As can be seen
from Table 3, QPFA has achieved the best average value, the best
value and the worst value. QPFA ranks the first among the eight
algorithms. The box plot of the 30 running results is shown in
Figure 3A, which shows that QPFA has good stability. In order to
intuitively see the convergence speed performance of the
algorithm, the average convergence curve of 30 running results
is drawn in Figure 3B. It can be seen that QPFA’s convergence
speed is very fast, and its convergence curve is always at the bottom
of the convergence curve of other algorithms, and finally achieves
the best average objective function value in 1000 generations.

Table 4 shows each real data point and the simulated data
point values calculated by the parameters extracted from QPFA,
and the square of the difference between them (SSE) is also

FIGURE 4 | Electrical characteristics of parameters extracted by QPFA on Case 1. (A) I-V curve in case 1 (B) I-P curve in case 1 (C) I-V curve of different pressures
(D) I-P curve of different pressures.
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listed. PEMFC’s I-V curve and I-P curve obtained by QPFA is
shown in the Figures 4A,B and . It can be seen from the
simulated data curve and real discrete data points that the
simulated data curve calculated by the parameter values given
by QPFA fit the real discrete data points curve well. However,

there are still some errors. In the activation and start-up stage of
fuel cell, SSE reaches the maximum error: 5.12394215E-01,
which may be because the output voltage PEMFC drops
steeply and a lot of electrochemical reaction takes place in
the initial stage. With the continuous output voltage of PEMFC,
in the ohm region with linear voltage attenuation, their
errors gradually decrease, and the minimum SSE value
reaches 1.83896332E-04. In the third stage of PEMFC,
concentration losses, SSE fluctuated with the increase of
currency, but it was still within the acceptable range. In
general, the NedstackPS6 parameter value extracted by
QPFA well simulates the current-voltage polarization curve
of NedstackPS6, and the error value is within an acceptable
range. Based on the modeling PEMFC parameters extracted
from QPFA, numerical simulation was carried out PH2/PO2= 1/
1bar, 2/1.5 bar, 3/1.5 bar and 3/2 bar. The experimental results
are consistent with the actual situation that the higher the
pressure, the higher the output voltage of the battery stack.
The I-V curve and I-P curve of the battery stack is shown in the
Figures 4C,D. In order to better detect the optimization
performance of QPFA, the Friedman test statistical analysis
was conducted on the results of 30 times of optimization. As
shown in the Figure 5, QPFA ranked first with the lowest rank
value 1.35, proving that the optimum performance of QPFA
ranked first. Table 5 lists parameters extracted by QPFA and

FIGURE 5 | Friedman test on Case 1.

TABLE 5 | Compare the QPFA on case 1 with the reference paper.

Algorithm Parameter

ω1

(V)
ω2

(V/k)
ω3

(V/k)
ω4

(V/k)
λ ε RI

(mΩ)
SSEBest SSEAvg SSEWorst SSEStd

SSO (El-Fergany, 2018a) −0.9719 3.34E-
03

7.91E-05 −9.54E-05 13.0000 5.34E-
02

1.00E-
04

2.18067 NA 2.25060 0.0203

MRFO (Selem et al., 2020) −1.05602 3.13E-
03

4.61E-05 −9.58E-05 20.18817 5.47E-
02

1.66E-
04

2.88702 6.82161 26.37778 4.90253

ABCDE (Hachana and
El-Fergany, 2022)

−1.07813 3.38E-
03

5.96E-05 −9.54E-05 13.09471 1.36E-
02

1.00E-
04

2.079165 2.079165 2.079165 6.6500E-
15

TSO (Hachana and El-Fergany,
2022)

−0.8532 2.46E-
03

3.94E-05 −9.54E-05 14.1357 1.13E-
01

1.09E-
04

2.219 NA NA NA

VSDE (Fathy et al., 2020a) −1.1212 3.34E-
03

4.67E-05 −9.54E-05 13.0000 4.94E-
02

1.00E-
04

2.08849 NA NA NA

MHHO (Yousri et al., 2021) −1.1997 3.50E-
03

3.67E-05 −9.54E-05 13.1930 1.36E-
02

1.00E-
04

2.0834 2.1614 2.5148 9.3800E-
02

SFLA (Kandidayeni et al., 2019) −1.02307 3.47E-
03

7.75E-05 −9.54E-05 15.03229 1.36E-
02

1.62E-
04

2.167055 NA NA NA

GA (El-Fergany, 2018b) −1.1997 3.41E-
03

3.60E-05 −9.54E-05 13.0000 3.59E-
02

1.37E-
04

2.40896 NA NA NA

AEO (Rizk-Allah and
El-Fergany, 2021)

−1.1993 4.27E-
03

9.80E-05 −9.54E-05 15.0028 2.7E-02 1.17E-
04

2.3069 3.0585 3.6245 0.4680

IAEO (Rizk-Allah and
El-Fergany, 2021)

−0.9822 3.59E-
03

9.48E-05 −9.54E-05 13.4650 1.36E-
02

1.00E-
04

2.1459 NA NA NA

BSOA (Cao et al., 2019) −1.1997 4.24E-
03

9.7999E-
05

−9.54E-05 24.0000 1.71E-
02

1.00E-
04

6.4402 NA NA 6.4402

JSA (Gouda et al., 2021a) −1.1163 3.78E-
03

8.03E-05 −9.54E-05 13.4650 1.36E-
02

1.00E-
04

2.1457 NA NA NA

IHBO (Abdel-Basset et al.,
2021b)

−0.85396 2.40E-
03

3.60E-05 −9.54E-05 13.465 1.36E-
02

1.00E-
04

2.14570 2.14570 2.14570 5.69E-10

QPFA −0.9887 5.00E-
03

7.65E-05 −9.54E-05 12.5743 1.36E-
02

1.00E-
04

2.0656 2.0656 2.0656 5.55E-15

*Bold numbers represent the best results.
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parameters in recent published literature, comparing the SSE
values obtained after optimization with the published literature
in recent years, QPFA get a better result than these powerful
optimizers.

6.2 Case2: BCS 500W
A named BCS 500W fuel cell is used in this case to extract
parameters, Table 2 lists the specific parameters of this model.
After 30 runs, the experimental results obtained by QPFA and

TABLE 6 | SSE value obtained experimentally on Case2.

Algorithm Parameter

ω1

(V)
ω2

(V/k)
ω3

(V/k)
ω4

(V/k)
λ ε RI

(mΩ)
SSEBest SSEAvg SSEWorst SSEStd

PFA −0.9088 3.99E-03 4.44E-05 −1.92E-05 22.1675 1.62E-02 2.23E-04 0.0118056 0.0124511 0.0142374 7.56E-04
JAYA −0.8532 4.66E-03 9.80E-05 −1.90E-04 23.1760 1.36E-02 4.63E-04 0.1366704 4.0890170 4.4372629 1.1210
WOA −1.1257 5.01E-03 7.01E-05 −1.94E-04 24.0000 1.71E-02 2.06E-04 0.0134658 0.6715241 3.3504174 9.68E-01
SCA −1.1070 4.99E-03 6.83E-05 −1.88E-04 22.0059 1.80E-02 2.07E-04 0.0416014 0.1651855 0.4893579 1.06E-01
PSO −1.1845 4.60E-03 3.60E-05 −1.93E-04 20.8772 1.61E-02 1.00E-04 0.0116977 0.2126646 5.6549338 1.0279
GWO −1.1768 4.90E-03 5.41E-05 −1.93E-04 21.5540 1.62E-02 1.40E-04 0.0117873 0.0151235 0.0251069 3.80E-03
SMA −0.9819 5.01E-03 9.80E-05 −1.92E-04 21.7181 1.60E-02 1.97E-04 0.0118135 0.0137266 0.0199428 2.01E-03
QPFA −1.1038 4.60E-03 5.06E-05 −1.93E-05 20.8772 1.61E-02 1.00E-04 0.0116977 0.0116977 0.0116977 1.13E-16

*Bold numbers represent the best results.

FIGURE 6 | Box plot and convergence curve in Case 2. (A) Box plot in Case 2 (B) Convergence curve in Case 2.

TABLE 7 | Comparison of real data and simulated data in Case 2.

N Experimental data Simulated data N Experimental data Simulated data

I real (A) Vreal(V) Vsimulated (Vreal-V simulated)2 I real (A) Vreal(V) Vsimulated (Vreal-V simulated)2

1 0.600 29.000 28.99722 7.710066E-06 10 15.730 21.090 20.98774 1.045679E-02
2 2.100 26.310 26.30594 1.650749E-05 17 17.020 20.680 20.69451 2.105234E-04
3 3.580 25.090 25.09356 1.263969E-05 18 119.110 20.220 20.23099 1.206927E-04
4 5.080 24.250 24.25462 2.134710E-05 19 21.200 19.760 19.77094 1.197561E-04
5 7.170 23.370 23.37542 2.933361E-05 20 23.000 19.360 19.36602 3.629781E-05
6 9.550 22.570 22.58461 2.135978E-04 21 25.080 18.860 18.86647 4.181348E-05
7 11.350 22.060 22.07133 1.283099E-04 22 27.170 18.270 18.27472 2.228400E-05
8 12.540 21.750 21.75846 7.163051E-05 23 28.060 17.950 17.95331 1.096127E-05
9 13.730 21.450 21.46126 1.268454E-04 24 29.260 17.300 17.29288 5.073946E-05

SSE 0.0116977
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FIGURE7 | Electrical characteristics of parameters extracted by QPFA onCase 2 (A). I-V curve in Case 2 (B). I-P curve in Case 2 (C). I-V curve of different pressures
(D). I-P curve of different pressures (E). I-V curve of different temperatures (F). I-P curve of different temperatures.

Frontiers in Energy Research | www.frontiersin.org August 2022 | Volume 10 | Article 96404212

Li et al. Proton Exchange Membrane Fuel Cells

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


seven powerful optimization algorithms are shown in Table 6,
this table shows the fitness values obtained by each algorithm and
lists the parameter values corresponding to the best fitness values,

QPFA has achieved the best average value, the best value and the
worst value. The box plot of the 30 running results is shown in the
Figure 6A, which shows that QPFA has better stability than other
algorithms. The average convergence curve of 30 running results
is drawn in Figure 6B. It can be seen that QPFA’s convergence
speed is very fast, and it converges to the minimum mean fitness
at the end of the iteration.

Table 7 shows each real data point and the simulated data
point values calculated by the parameters extracted from QPFA,
and the square of the difference between them (SSE) is listed.
PEMFC’s polarization curve obtained by QPFA is shown in
Figure 7A, PEMFC’s I-P curve is also shown in Figure 7B. In
order to better verify the correctness of PEMFC parameters
extracted by QPFA, numerical simulation of the model was
carried out under the condition of PH2/PO2 = 1/0.2075bar, 1.5/
1bar, 2/1.25bar and 2.5/1.5 bar. I-V and I-P curves under
different conditions are shown in Figures 7C,D. The results
show that increasing the pressure of hydrogen and oxygen
increases the output voltage and power of the battery stack.
BCS500W models at different temperatures were also studied,
I-V and I-P curves are shown in Figures 7E,F. The results show

FIGURE 8 | Friedman test on case 2.

TABLE 8 | Compare the QPFA on case 2 with the reference paper.

Algorithm Parameter

ω1

(V)
ω2

(V/k)
ω3

(V/k)
ω4

(V/k)
λ ε RI

(mΩ)
SSEBest SSEAvg SSEWorst SSEStd

SSO
(El-Fergany,
2018a)

−0.8532 4.81-03 9.43E-05 −1.92E-05 23.0000 1.58E-02 3.49E-04 0.01219 NA 0.01520 8.711E-
04

WCMFO (Ben
Messaoud,
2021)

−0.8532 1.62E-03 3.60E-07 −1.92E-05 4 1.64E-02 0.0017941 0.012233 NA 0.45416 0.081137

VSDE
(Hasanien et al.,
2022)

−1.1970 4.23E-03 9.79E-05 −1.92E-04 20.194 1.57E-02 1.10E-04 0.01214 NA NA NA

SFLA
(Kandidayeni
et al., 2019)

−0.9657 3.47E-03 7.78E-05 −9.54E-05 15.0322 1.36E-02 1.62E-04 0.011697 NA 0.011697 5.03E-08

FOA
(Kandidayeni
et al., 2019)

−1.0356 2.95E-03 3.76E-05 −9.54E-05 15.0296 1.36E-02 1.62E-04 0.011819 NA 0.030233 4.172E-
03

HHO (Mossa
et al., 2021)

−1.09311 3.28041E-
03

5.67E-05 −1.89E-04 20.0436 151.48E-
02

2.25E-04 0.014879 NA NA NA

SSO (Rao et al.,
2019)

−1.018 2.3151E-
03

5.24E-05 −1.2815E-04 18.8547 1.36E-02 7.5036E-
04

7.1889 NA NA NA

MRFO (Selem
et al., 2020)

−1.11262 3.06E-03 4.23E-05 −1.95E-04 21.705 1.718E-
02

1.11E-04 0.03683 0.39107 1.13428 0.25386

IHBO (Selem
et al., 2020)

−1.19970 3.31E-03 4.20E-05 −1.93E-04 20.877 1.613E-
02

1.00E-04 0.01170 0.01174 0.01175 6.00E-05

MFO (Fathy
et al., 2020b)

−1.0079 3.32E-03 7.98E-05 −1.90E-04 20.9189 1.58E-02 1.54E-04 0.0119 0.0478 0.1351 0.0455

JSA (Gouda
et al., 2021a)

−0.96887 2.693E-03 4.67E-05 −1.90E-04 20.8389 1.6111E-
02

1.00E-04 0.011699 0.011999 0.012279 0.000166

JADE (Diab
et al., 2021)

−0.9035 3.4247E-
03

5.2197E-
05

−1.9173E-04 20.8167 1.61E-02 2.5759E-
04

0.011556 NA NA NA

BSOA (Cao
et al., 2019)

−0.9941398 2.6144E-
03

3.6288E-
05

−1.7200E-04 19.799895 1.36E-02 8.0E-04 4.4430 NA NA NA

QPFA −1.1038 4.60E-03 5.06E-05 −1.93E-04 20.8772 1.61E-02 1.00E-04 0.0116977 0.0116977 0.0116977 1.13E-16

*Bold numbers represent the best results.
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TABLE 9 | SSE value obtained experimentally on case3.

Algorithm Parameter

ω1

(V)
ω2

(V/k)
ω3

(V/k)
ω4

(V/k)
λ ε RI

(mΩ)
SSEBest SSEAvg SSEWorst SSEStd

PFA −0.9718 3.99E-03 3.60E-05 −1.21E-05 24.0000 6.31E-02 1.00E-04 0.6103529 0.6109617 0.6222137 2.15E-03
JAYA −0.8532 443E-03 9.77E-05 −9.54E-05 17.9000 5.88E-02 8.00E-04 0.9151293 0.9170588 0.9276728 2.7E-03
WOA −1.1564 5.10E-03 7.53E-05 −1.20E-04 23.3514 6.28E-02 1.01E-04 0.6125997 0.7837051 1.0527705 9.68E-01
SCA −1.1997 5.00E-03 6.67E-05 −1.22E-04 21.5602 6.00E-02 1.00E-04 0.7149883 0.8436228 1.0587128 9.87E-02
PSO −1.0475 5.01E-03 9.80E-05 −1.21E-04 24.0000 6.31E-02 1.00E-04 0.6103414 0.9875362 5.6348136 1.22E+00
GWO −1.0235 4.63E-03 7.09E-05 −1.21E-04 23.9856 6.30E-02 1.01E-04 0.6105449 0.6184790 0.6345232 6.66E-03
SMA −1.1969 5.00E-03 6.68E-05 −1.21E-04 24.0001 6.31E-02 1.00E-04 0.6103437 0.6115994 0.6160648 1.99E-03
QPFA −0.9934 4.60E-03 8.81E-05 −1.30E-05 12.9868 6.17E-02 1.00E-04 0.5934830 0.6102414 0.6103414 7.00E-04

*Bold numbers represent the best results.

FIGURE 9 | Box plot and convergence curve in Case 3. (A) Box plot in Case 3 (B) Convergence curve in Case 3.

TABLE 10 | Comparison of real data and simulated data in Case 3.

N Experimental data Simulated data N Experimental data Simulated data

I real (A) Vreal(V) Vsimulated (Vreal-V simulated)
2 I real (A) Vreal(V) Vsimulated (Vreal-V simulated)

2

1 0.2046 21.5139 21.598476 7.153164E-03 9 13.4720 15.1411 15.256408 1.329585E-02
2 1.2619 19.6737 19.544114 1.679258E-02 10 16.1494 14.4634 14.396836 4.430801E-03
3 2.6433 18.7154 18.612327 1.062401E-02 11 17.4795 14.087 13.896349 3.634792E-02
4 3.9734 17.9449 18.032021 7.590035E-03 12 18.8438 13.5792 13.294339 8.114588E-02
5 5.3206 17.5497 17.562585 1.660145E-04 13 20.1739 12.6772 12.557718 1.427605E-02
6 6.7019 17.1545 17.141268 1.750810E-04 14 21.5382 10.8743 11.466107 3.502361E-01
7 8.0491 16.6843 16.760232 5.765600E-03 15 22.9025 8.9213 8.776188 2.105739E-02
8 10.7265 15.8752 16.031494 2.442771E-02 SSE 0.5934830
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FIGURE 10 | Electrical characteristics of parameters extracted by QPFA on Case 3 (A). I-V curve in Case 3 (B). I-P curve in Case 3 (C). I-V curve of different
pressures (D). I-P curve of different pressures (E). I-V curve of different temperatures (F). I-P curve of different temperatures.
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that improving the temperatures of battery stack can improve
the output voltage and output power, which is consistent with
the actual situation.

The Friedman test statistical analysis was conducted on the
results of 30 times of optimization. As shown in Figure 8, QPFA
ranked first with the lowest rank value 1.00, proving that the
optimization performance of QPFA ranked first. Table.8 lists
parameters extracted by QPFA and parameters in recent
published literature, comparing the SSE values obtained after
optimization with the published literature in recent years, QPFA
get a better result than these powerful optimizers.

6.3 Case3: 250W PEMFC
In order to better prove the excellent performance of QPFA in
extracting PEMFC parameters, QPFA and other algorithms have
been applied for extracting the model parameters of the 250W
stack. The fitness function values after 30 runs are listed inTable 9,
and the optimal parameter values found by each meta-heuristic
algorithm are also given. After 30 times of runningQPFA to extract
the optimization problem of PEMFC parameters, QPFA obtained
the minimum fitness function value, indicating that QPFA
extracted the optimal PEMFC parameters. Figure 9A is the
variance diagram of parameter extraction of 250W PEMFC. It
can be seen that QPFA has very small variance and excellent
stability. Figure 9B is the algorithms convergence diagram in the
250WPEMFC parameter extraction experiment. It can be seen that
QPFA ranked first in the convergence speed at the beginning of
iteration. As the algorithm continues to iterate, QPFA continues to
search and optimize, and finally obtains the minimum average
fitness function value at the end of iteration. Table. 10 lists the real
values of 250W and the values obtained by numerical simulation
after parameters were extracted fromQPFA to establish the model.
SSE is also calculated point by point inTable.10. Figures 10A,B are
I-V and I-P curves drawn by the parameters obtained by QPFA.
Experimental results at different pressures and temperatures are
shown in Figures 10C–F, the results show that increasing pressure
and temperature can result in higher voltage and higher power
output of the battery stack. The Friedman test statistical analysis
was conducted on the results of 30 times of optimization. As shown
in Figure 11, QPFA ranked first with the lowest rank value 1.35.
Table.11 lists parameters extracted by QPFA and parameters in
recent published literature, comparing the SSE values obtained

FIGURE 11 | Friedman test on case 3.

TABLE 11 | Compare the QPFA on case 3 with the reference paper.

Algorithm Parameter

ω1

(V)
ω2

(V/k)
ω3

(V/k)
ω4

(V/k)
λ ε RI

(mΩ)
SSEBest SSEAvg SSEWorst SSEStd

HO (Fathy et al.,
2021)

−0.48579 1.4215E-
03

5.3464E-
05

−1.397E-04 14.9236 2.085E-
02

1.4E-04 0.92313 NA NA NA

SDE (Fathy et al.,
2020a)

−1.1924 3.199E-03 3.799E-05 −1.87E-04 22.817 2.903E-
02

1.202E-
04

1.0526 NA NA NA

ALO (Ali et al.,
2017)

−0.9438 3.4734E-
03

9.7898E-
05

−1.1811E-04 24.0000 1.36E-
02

1.6530E-
04

1.1513 1.3352 1.4481 0.0982

TLBO-DE (Turgut
and Coban, 2016)

−0.8532 2.6505E-
03

8.0016E-
05

−1.3601E-04 15.6514 3.64E-
02

1.00E-04 7.2776677 7.2776677 7.2776677 7.542E-
15

STLBO (Niu et al.,
2014)

−0.8532 2.5843E-
03

7.6892E-
05

−1.1541E-04 12.6079 3.29E-
02

1.00E-04 7.6266 NA NA NA

ISSA (Sultan et al.,
2020)

−0.8616 3.1548E-
03

9.7857E-
05

−1.5423E-04 22.8812 5.47E-
02

1.0016E-
04

0.6434 0.8698 1.8744 19.96834

CEPSO (Özdemir,
2021)

−0.8555 2.4023E-
03

5.7420E-
05

−1.5838E-04 24.9999 5.54E-
02

1.0000E-
04

0.6112 NA NA NA

JAYA-NM (Gong
and Cai, 2013)

−1.19966 3.55E-03 6.00E-05 −1.200E-04 13.2287 3.334E-
02

1.1026E-
04

5.2513 NA NA NA

MFFA (Menesy
et al., 2021)

−1.00183 2.61199E-
03

3.99591E-
05

−1.55872E-04 23 5.455E-
02

1.0000E-
04

0.64202 0.72676 1.08608 9.96261

QPFA −0.9934 4.60E-03 8.81E-05 −1.30E-04 12.9868 6.17E-
02

1.00E-04 0.5934830 0.6102414 0.6103414 7.00E-4

*Bold numbers represent the best results.
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after optimization with the published literature in recent years,
QPFA get a better result than these powerful optimizers.

7 CONCLUSION AND FUTURE WORK

In this paper, a new quantum coding pathfinder optimization
algorithm is proposed, which uses probability angles to
represent individuals and probability magnitudes to represent
the probabilities of 1 and 0 in quantum computing, and maps
them to the solution space of the optimization problem through
mapping relations. The characteristics of quantum computing
make one individual in QPFA correspond to two individuals in
the solution space, which increases the population diversity and
improves the exploration ability of PFA. Quantum revolving
gate and pathfinder update strategies are used for iterative
updates of probability angles, and quantum non-gates help
QPFA to jump out of local optimal solutions. QPFA is
applied to the determination of PEMFC location parameters,
and three commercial types of PEMFC are studied. QPFA
achieves the best results for all three PEMFC model
parameter extraction, and the Friedman test also shows that
the performance of QPFA ranks the first among all algorithms.
The results obtained from QPFA search optimization were
compared with those from published literature, and the
results obtained by QPFA have higher stability and accuracy

values. Various implementations of the group pathfinder
algorithm will be considered in the future and applied to
more types of PEMFC parameter extraction problems.
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