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Alterations in thermal hydraulic parameters directly affect the safety of reactors.

Accurately predicting the trends of key thermal hydraulic parameters under

various working conditions can greatly improve reactor safety, thereby

effectively preventing the occurrence of nuclear power plant accidents. The

thermal hydraulic characteristic parameters in the reactor are affected by many

factors, in order to preliminarily study whose forecasting methods and

determine the feasibility of neural network forecasting, the China

Experimental Fast Reactor (CEFR) is selected as the research target in this

study, and the maximum surface temperature of fuel rod sheath and mass flow

rate are used as predictive variables. After data samples are generated through

the reactor sub channel analysis code (named SUBCHANFLOW), two widely

used adaptive neural networks are used to perform the thermal hydraulic

parameter forecast analysis of CEFR fuel assembly under steady-state

conditions. The 1/2 core model of CEFR is used to perform a single-step

predictive analysis of thermal hydraulic parameters under transient

conditions. The results show that the adaptive radial basis function (RBF)

neural network exhibits a better fitting ability and higher forecasting

accuracy than that of the adaptive back propagation neural network, and the

maximum error under steady-state conditions is 0.5%. Under transient

conditions, poor forecasting accuracy is observed for some local points;

however, the adaptive RBF neural network is generally excellent at

predicting temperature and mass flow. The mean relative error of

temperature does not exceed 1%, and the mean relative error of flow does

not exceed 6.5%. The proposed RBF neural network model can provide real-

time forecasting in a short time under unstable flow conditions, and its

forecasting results have a certain reference value.
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1 Introduction

Reactor thermal hydraulic parameters, such as the maximum

fuel sheath surface temperature, are closely related to the

economics and safety of nuclear power plants. Accurately

predicting the change trend of key thermal hydraulic

parameters of reactors under various working conditions in a

short time can enable operators and nuclear power plant systems

to respond in advance, significantly improve the reactor safety,

and effectively prevent nuclear power plant accidents. However,

during reactor operation, the key thermal hydraulic parameters

are affected by multiple physical quantities simultaneously and

their change trends are complex; thus, it is difficult for adaptive

forecasting methods to achieve accurate forecasts in a short time.

Therefore, for improving reactor security, it is vital to develop a

new forecasting method for the key thermal hydraulic

parameters of reactors.

Neural network is a mathematical model that simulates the

behavioral characteristics of animal neurons for information

processing. Owing to its nonlinear, large-scale, strong parallel

processing ability, robustness, fault tolerance, and strong self-

studying ability, it has been triumphantly applied in many

domains, such as nonlinear function approximation,

information classification, type recognition, information

processing, image-processing, control and hitch diagnosis,

financial forecast, time series forecasting (Liang and Wang,

2021). Since the 1990s, many studies have made use of various

neural network arithmetics to forecast core parameters. Huang

et al. (2003) made use of the back propagation (BP) artificial

neural network to forecast the critical heat flux density of

reactors. Compared with the traditional method, this method

exhibits a high forecasting accuracy and is more convenient to

update and use, thereby making it easier to adopt. Taking the

10 MW high temperature gas-cooled reactor into

consideration, Li et al. (2003) monitored and analyzed the

changes in various parameters of reactors under various

faults by using an artificial neural network. Mohamedi et al.

(2015) used a neural network to predict the effective

multiplication factor Keff and peak fuel power Pmax of a

light water reactor; their results indicate a high forecasting

accuracy, while demonstrating that the neural network analysis

method can largely cut down the time acquired for this

optimization process. Peng et al. (2014) proposed that the

normalized adaptive radial basis function (RBF) neural

network arithmetic can be used for accurately reconstructing

the axial power array of the core; they also studied the power

array of the ACP-100 modular reactor. Their study also found

that this technique exhibits sufficient robustness to overcome

the intrinsic ill-posedness during power array reconstruction.

However, most of the existing studies are based on the widely

used BP neural network, and rarely involve other neural

networks. Furthermore, most of the current research focuses

on forecasting and analyzing steady-state parameters of

reactors. However, there are few studies on the transient-

state condition, which significantly affects reactor security;

therefore, forecasting its change trends is more important.

Based on the adaptive RBF neural network, this study

forecasts the maximum surface temperature of the fuel

sheath of a reactor under steady-state and transient-state

conditions, compares the adaptive RBF neural network with

the widely used adaptive BP neural network, and elucidates the

adaptability of the adaptive RBF neural network for forecasting

key parameters.

2 Introduction of neural network
model

2.1 Back propagation neural network

The traditional BP neural network is a feed forward neural

network based on the error BP arithmetic (Huang et al., 2003). It

simulates the reactive procedure of human brain neurons to

external stimulus signals, constructs a multi-layer perceptron

model, and adopts forward propagation and error

backpropagation (Liang and Wang, 2021). Through multiple

iterative studies, this neural network can describe numerous

input-output pattern mappings without revealing their specific

mathematical equations, and can successfully build an intelligent

model for solving nonlinear data (Liang andWang, 2021). As one

of the mostly widely applied neural networks, its modeling

process mainly includes forward transmission of information

and error BP (Lyu et al., 2021). The traditional BP neural network

has a simple construction and stable gradient descent. In theory,

it can realize high-precision nonlinear fitting. Moreover, it can be

utilized in the nonlinear function approach, time series

forecasting, and other applications.

FIGURE 1
Structure of the 3-layer BP neural network.
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The traditional BP neural network is an arithmetic

comprising an input layer, an output layer, and a hidden

layer. The input and output layers are sufficiently connected,

and there are no connections between neurons in the same layer

(Li et al., 2003). Figure 1 shows the topology of a typical BP neural

network. The input dimension is l, number of hidden layer nodes

is p, and output dimension is q.

The traditional BP neural network is studied via a two-step

procedure: forward propagation of signals and BP of signals

(Huang et al., 2003). First, the input signal is transmitted through

the input layer, hidden layer, and output layer (in that order) to

complete the forward propagation of the signal. When the signal

error of the output layer is larger than the anticipated error, the

error BP process is performed. Second, the error values obtained

via calculation are used to modify the weights of each layer one by

one, and BP is carried out from the output layer to the hidden and

input layers. Finally, through continuous forward propagation of

signals and BP of errors, weights of each layer are continuously

modified. This procedure is iterated until either the signal error of

the output layer decreases to a tolerable level, or the pre-

determined number of iterations is reached.

According to the three-layer BP neural network method, the

following presumptions are made: the input vector is

X � (x1, x2, ..., xi, ..., xl)T; output vector of the hidden layer is

H � (h1, h2, ..., hj, ..., hp)T; output vector is

O � (o1, o2, ..., ok, ..., oq)T; prospective output vector is

D � (d1, d2, ..., dk, ..., dq)T; weight matrix between the input

layer and the hidden layer is W � (W1,W2, ...,Wj, ...,Wp) (Li
et al., 2003); weight matrix between the hidden layer and output

layer is V � (V1, V2, ..., Vk, ..., Vq); Wj is the weight vector

consistent with the jth neuron in the hidden layer; and Vk is

the weight vector consistent with the kth neuron in the output

layer (Li et al., 2003).

2.1.1 Forward propagation of signals
The following equations are associated with the hidden layer:

netj � ∑l
i�1
wijxi, j � 1, 2, ..., p (1)

hj � f(netj), j � 1, 2, ..., p (2)

where netj is the input of the jth neuron in the hidden layer and

f(x) is the transfer function.

The following equation is associated with the output layer:

ok � ∑p
j�1
vjkhj, k � 1, 2, .., q (3)

After using the transfer function f(x) as the bipolar sigmoid

function, we obtain the following expression:

f(x) � 2
1 + e−2x

− 1 (4)

The derivative of this function is:

f′(x) � 1 − f2(x) (5)

2.1.2 Backward propagation of errors
The mean square error of the output is shown below:

E � 1
2
(D − O) � 1

2
∑q
k�1

(dk − ok)2 (6)

By determining the gradient change of the loss function E

with respect to each weight, the error is reversely transferred; this

ensures that all the weights are adjusted in the direction in which

the loss function E decreases the fastest. The loss function E can

be continuously reduced, and the output constantly approaches

the actual output value.

The network weight is updated as follows:

Δvjk � −η zE

zvjk
� −η zE

zok

zok
zvjk

� η(dk − ok)hj (7)

Δwij � −η zE

zwij
� −η zE

zhj

zhj
znetj

znetj
zwij

� η⎛⎝∑q
k�1

(dk − ok)vjk⎞⎠(1 − h2j)xi (8)

where η is the studying rate, which is a constant in the adaptive

gradient descent method.

The structure of the traditional BP neural network is

relatively simple, and the gradient descent is relatively stable

(Wang et al., 2020). Theoretically, this network can achieve high

precision nonlinear fitting, while exhibiting a certain application

value for nonlinear function approximation, time series

forecasting, and other approaches. However, the studying rate

of the traditional BP neural network does not change once

initialized, which makes it difficult to implement the correct

studying process at minimum loss function values, thereby

leading to a low convergence speed. Thus, the adaptive

moment estimation (Adam) arithmetic (such as the adaptive

BP neural network) has been used to improve the gradient

descent method (Wang et al., 2020), which ensures that the

studying rate can adapt to changes in the size of the loss function

to improve the convergence speed.

The Adam arithmetic parameters are updated as follows:

θt+1 � θt − lrt					
vt + ϵ√ mt (9)

where θ is any parameter; lrt is the studying rate; ε is set as

10–8 to ensure that the division result is not 0; t is the number of

iterations: �m is the bias-corrected initial moment evaluation; and

vt is the bias-corrected second moment evaluation (Wang et al.,

2020). Figure 2 indicates the calculation flow diagram of the

neural network forecast method used in this study.
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FIGURE 2
Flow-process diagram of neural network forecast model.
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2.2 Adaptive radial basis function neural
network

The generation of RBF neural network has a strong biological

background. In human cerebral cortex, local regulation and

overlapping receptive fields are the distinguishing features of

human brain response. Based on the characteristics of receptive

fields, Moody and Darken established a model, namely: RBF

network.

The RBF neural network is a local approximate feed forward

neural network, which can approach any nonlinear function. It

exhibits an optimum generalization capability and a rapid

convergence speed, even when dealing with mechanisms that

are difficult to analyze in the system. One of the most commonly

used in the RBF neural network is the Gaussian Kernel Function,

which has the best forecasting performance compared to other

kernel functions such as Linear Kernel Function and Polynomial

Kernel Function (Lou et al., 2013). Compared with that of the BP

neural network, the RBF neural network exhibits a faster

convergence speed because it comprises only one middle

hidden layer. The hidden layer considers the Euclidean

distance as an independent variable between the input vector

and central vector, while utilizing the Gaussian Kernel Function

as the activation function, which can map the data to infinite

dimensions. If the input is at a considerable distance from the

middle of the activation function, the output value of the hidden

layer tends to be significantly small. A real mapping effect is

observed only when the Euclidean distance is negligible, thereby

demonstrating local approximation. Poggio and Girosi have

demonstrated that generalized RBF neural networks exhibit

superior performance for continuous function approximation

and has great noise immunity (Maruyama and Girosi, 1992).

Currently, Gaussian radial basis neural networks is one of the

most common RBF neural networks. The network construction

and the RBF neural network arithmetic tend to differ in these

neural networks, which overcomes the shortcomings that BP

network is easy to fall into local optimal solution and its

convergence speed is slow to a certain extent (Hong et al.,

2021). Figure 3 shows the basic structure of single output

layer RBF neural network.

In this work, the Gaussian kernel function is selected as the

RBF, which is controlled by the central location and relevant

width parameters. The width of the function unit controls the

decline rate of the function. The output of the hidden layer is

represented as:

hj � exp( −
����x − cj

����2
2σ2j

), j � 1, 2, ..., p (10)

y � ∑s
j�1
ωjphj (11)

where x − cj is the Euclidean distance; jis the number of hidden

layer nodes; cj and σj are the central vector and distance of the jth

node in the hidden layer, respectively; hj is the output of the jth

node in the hidden layer; ωjis the weight of the jth neuron; and y

is the output of the network. In this article, these parameters are

optimized using the Adam arithmetic.

The specific implementation steps of the generalized RBF

neural network are similar to the BP neural network, that is, after

a single training, the gradient descent method is used to iterate

the weights of each neuron, when the termination condition is

reached, the iteration is stopped and a group of optimal weights

are obtained. The generalized RBF neural network also has the

problem of constant learning rate in the iterative process.

Therefore, this study has optimized the weight update method

of the generalized RBF neural network through adaptive gradient

descent method to obtain the adaptive RBF neural network

arithmetic.

From the above analysis, it can be seen that the adaptive RBF

neural network has better generalization capability and faster

convergence speed than the adaptive BP neural network, which

makes it have a better application prospect in nonlinear time

series forecasting. In view of this, the performance of adaptive BP

neural network and adaptive RBF neural network applied to

steady-state and transient analysis of key thermal hydraulic

parameters of reactor core is studied below.

3 Comparative analysis of different
neural network models

For comparing the advantages and disadvantages of different

adaptive neural network models, the maximum surface

temperature of a fuel rod sheath of the China Experimental

FIGURE 3
Structure of single output layer RBF neural network.
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Fast Reactor (CEFR) under different conditions is selected as the

basis for comparison. The main dynamic thermal hydraulic

parameters of CEFR are shown in Table 1. During the CEFR

equilibrium cycle, the fuel power and reactor core flow rate of the

fuel assembly are determined by referencing the CEFR safety

analysis report. The specific values are shown in Figure 4, where

the first line represents the sub channel number during the

analysis of the 1/2 core model. The second line represents the

power of the fuel assembly in kW, while the third line represents

the coolant flow in kg/s.

3.1 Steady-state single assembly analysis

The normal operating state of reactors is steady-state

condition. In that case, the boundary conditions such as inlet

and outlet temperature and flow rate change little, in order to

simplify the model, which can be approximately considered as

unchanged. Studying the trends of key thermal hydraulic

parameters under steady-state conditions can further improve

the reactor safety and economy. For studying the forecasting

performance of two neural networks under steady-state

conditions, the core model of CEFR is used to perform

steady-state analysis, which can be divided into three parts:

acquisition of data samples, determination of network

topology, and result and analysis.

3.1.1 Acquisition of data samples
The CEFR core is divided into four fuel zones, with 61 fuel

rods in each assembly. Figure 5 shows the 126 sub channels

obtained by using the SUBCHANFLOW code (Gomez et al.,

2012) when building the CEFR single-assembly model.

According to the CEFR safety analysis report, the channel

power and flow range of CEFR is 0–1,200 kW and 0–6 kg/s,

respectively. Several datasets are arbitrarily selected, combined

with the main parameters of CEFR in Table 1, and used as

SUBCHANFLOW input. After calculations are performed by the

code, 1,000 significant dataset samples are obtained.

The generalization capability of the adaptive BP neural

network is relatively poor, and the most intuitive performance

of the generalization capability is the overfitting and under

fitting, both of which are two states in the neural network

training process. At the beginning of the training, the error of

the training set and the test set is relatively poor, and the entire

TABLE 1 Main parameters of CEFR.

Parameters Values Parameters Values

Rated thermal power 65 MW Sheath thickness 0.3 mm

Outside distance across flats of the fuel assembly 59 mm Outer/inner diameter of fuel pellets 5.2/1.6 mm

Wall thickness of wrapper tube 1.2 mm Wire diameter 0.95 mm

Number of fuel rods 61 Wire pitch 100 mm

Height of active core 450 mm Core inlet/outlet temperature 360/530°C

Fuel rod diameter 6.0 mm

FIGURE 4
Distribution of channel number, power, and flow rate for analysis of the 1/2 core model.
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model is in the state of under fitting. With the increase of model

complexity, the error of the training set and the test set will

become smaller and smaller, the error of the test set will begin to

rise after a certain demarcation point, and the entire model will

enter the overfitting state. If the neural network training is

stopped at the demarcation point, the generalization capability

of the network will be best. Therefore, the generalization

capability can be improved by introducing verification sets.

Adding the validation set to the training network helps in

determining the change in the forecast error at any time.

When the error gradually decreases to the inflection point, the

network training is stopped and the network weight can no

longer be updated, which can avoid overfitting and under fitting

of the model. Subsequently, the dataset is divided into two parts:

training set (accounts for 80%) and the validation and test sets

(account for 20%) (Yang et al., 2022); the number of samples in

these two datasets is the same. Therefore, 800 datasets are

randomly selected as the training samples, 100 are chosen as

the verification samples, and the remaining 100 are used as the

test samples. Since the adaptive RBF neural network exhibits

optimum generalization capability and convergence speed, the

training and test samples can be used directly in the ratio of

80 and 20%, respectively. Therefore, 800 datasets are

stochastically chosen as the training samples, and the

remaining 200 datasets are the test samples. The evaluation

model is constructed by predicting the results of the test set.

The training samples only participate in network training, and

the test samples only participate in the forecasting process and

result analysis. The training set is randomly disrupted before each

training to avoid excessive recording of local features by the

neural network.

3.1.2 Determination of network topology
The number of hidden layer nodes and hidden layers

significantly affects the topology of neural networks. An

excessive number of hidden layers tends to destabilize the

network. An increasing trend in the number of hidden layers

leads to an increased probability of local optimization in the

training process. An excessive number of hidden layer nodes

tends to affect the learning time of the network, while an

extremely small number either leads to poor network learning

or no learning at all. In addition, the number of hidden layer

nodes and hidden layers is related to the generalization ability of

the network (Li and He, 2006).

Nielson has theoretically proven that a neural network with

one hidden layer can approach all functions that are continuous

in a closed interval by changing the number of hidden layer

nodes (Azghadi et al., 2007); consequently, a network with good

performance can be obtained. Therefore, two different neural

networks with a three-layer topology structure are chosen; that is,

the number of hidden layers in these networks is one. The

number of hidden layer nodes is continuously debugged by

performing iterative calculations for each neural network, and

the number of optimal hidden layer nodes in the final grid is

determined using the grid error. The basic principle of selecting

hidden layer nodes is that the overall degree of freedom of the

network should equal the data samples; thus, every 10 nodes in

the range of [20, 360] are selected as the current node number.

This procedure is iterated 5,000 times, and the mean relative

error associated with network forecasting is determined

(Figure 6).

Figure 6 reveal that within the set number of nodes, the

relative error of adaptive BP tends to increase as the number of

nodes increases; the minimum number of nodes is 30. The

change trend of the mean relative error of the adaptive RBF

with the number of nodes is not obvious. Considering that the

increase in the number of nodes will increase the amount of

calculations, hidden layer nodes are selected to be 40.

3.1.3 Result and analysis
The adaptive BP neural network and the adaptive RBF neural

network were used to repeat the experiment 10 times with the

same datasets, and the mean values associated with the

forecasting results of the test set were determined (Table 2).

MRE can reflect the degree of dispersion of data samples. The

smaller the MRE, the higher the forecast accuracy. Maximum

relative error can reflect the degree of maximum deviation from

the actual value as well as the fitting ability of local data. By

comparing the maximum relative error and MRE of the test sets

of the two neural network arithmetics, it is determined that the

MREs of both the test sets are less than 1%. A high forecasting

accuracy implies that the maximum surface temperature of the

FIGURE 5
Number of coolant channels.
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fuel rod sheath can be better predicted. The MRE of the adaptive

RBF neural network (less than 1%) is extremely similar to the

MRE of the test set, indicating that the network has a good fitting

effect for local points.

From the above results, it can be summarized that compared

to the adaptive BP neural network arithmetic, the adaptive RBF

neural network arithmetic exhibits a better forecasting ability for

the maximum surface temperature of the fuel rod sheath in the

fast reactor core. The reason is that in contrast to the adaptive BP

neural network, the adaptive RBF neural network has better

generalization capability, can approximate any complex

nonlinear function with higher accuracy and obtain high-

precision forecasting results for the input data, which shows

that it has a good application prospect.

3.2 Transient full reactor analysis

The transient condition is that the coolant flow rate will

change significantly with time due to accident working

conditions or some reasons, and then other thermal hydraulic

parameters of reactors will also change, among which flow

instability has a significant impact on reactor safety under

transient conditions, so studying the flow instability under the

transient conditions is of great significance to the safe operation

of reactors. The construction method of neural network under

transient conditions is the same as that under steady-state

conditions.

3.2.1 Acquisition of data samples
SUBCHANFLOW is used to construct the CEFR 1/2 core

model. To reduce the number of calculations, the core sub

channel is simplified. It is considered that the axial and radial

power density distributions of all the fuel rods in the reactor core

area are almost the same; thus, hypothetically combining all

coolant channels leads to a bigger channel, whose center is

located on the fuel rod with the relevant heating and wetting

circumferences (Hu. 2019). For studying the forecasting

performance of the neural network under flow instability, the

flow change input into the CEFR 1/2 core model is set (Figure 7).

This dataset comprises a sine signal and Gaussian white noise

signal. Subsequently, the maximum temperature variation in the

core fuel sheath is calculated (Figure 8).

Compared with the steady-state forecasting, the calculation

and processing of sample data of transient forecasting will be

more complex. To facilitate forecasting, the phase space

FIGURE 6
Number of hidden layer nodes-average relative error (A) adaptive BP, (B) adaptive RBF.

TABLE 2 Comparison of neural network forecast error.

Neural network arithmetic MRE of test set/% Maximum relative error
of test set/%

Number of hidden layer
nodes

Adaptive back propagation neural network 0.43 2.35 30

Adaptive radial basis function neural network 0.12 0.50 40

MRE: mean relative error.
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reconstruction of the flow time series f(i) and maximum

temperature-time series of the sheath t(i) is carried out:

{F(i) � (f(i), f(i + τ), f(i + 2τ), L, f(i + (m − 1)τ))
T(i) � (t(i), t(i + τ), t(i + 2τ), L, t(i + (m − 1)τ)) (12)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F(1)
F(2)
.
.
.
F(n)
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.
.
.
f(n + 1 + (m − 1)τ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13)

The embedding dimension m is 30, and the time delay τ is

0.1. A total of 771 datasets were acquired by using the

reconstructed core inlet flow vector F(i) and highest shell

temperature vector T(i) as the input layer, and F(i +mτ) and
T(i +mτ) as the output layer. The selection of each data set is

consistent with the steady-state conditions. In the adaptive BP

neural network, the number of training samples, verification

samples, and test samples is 541, 115, and 115, respectively. In the

adaptive RBF neural network, the number of training samples

and test samples is 617 and 154, respectively. First of all, the

neural network for forecasting mass flow rate is trained by Eq.

(13), with the neural network input data on the left of the equal

sign and the predictive data on the right, and then single-step and

continuous forecasting are carried out on the test samples (the

next input vectors are replaced by the existing forecasting

results).

3.2 2 Analysis of results
The adaptive RBF neural network was used for single-step

and continuous forecasting, and the forecasting results were

compared with the test values. Figures 9, 10 show that when

FIGURE 7
Variation in the core inlet flow.

FIGURE 8
Variation in the maximum surface temperature of the fuel rod sheath.
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single-step forecasting is performed, the forecasting accuracy of

the reactor core inlet flow is not as good as that of the maximum

surface temperature of fuel sheath due to its large noise. The

changes in the reactor core inlet flow can still be well controlled;

however, in continuous forecasting, since the predictive value will

be used as the input value for the next forecast, the error

generated by each forecast will affect the next forecast. The

predictive value of the core inlet flow is in perfect accordance

with the measured value in the first 10 s (Figure 10). In the last

7 s, due to the accumulation of errors, there is a large offset

between the predicted value and the measured value, as depicted

by the peaks and troughs of the flow oscillation. The accuracy of

long-term continuous forecasting is generally low; however, for a

short term, the forecasting accuracy of the core inlet flow is

higher.

In singe-step forecasting of the maximum surface

temperature of fuel rod sheath, the predictive value is basically

the same as the test value; thus, the forecasting accuracy is high.

At 7 s, the forecast of the inlet flow of the core suffers a large

deviation, leading to a poor forecasting accuracy is poor.

The above results show that for ensuring the accuracy of

adaptive neural network prediction results, the time step

FIGURE 9
Contrast between the test samples and single-step forecasting results.

FIGURE 10
Contrast between the test samples and continuous forecasting results.
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associated with continuous forecasting needs to be limited.

Short-term continuous forecasting performed using the

adaptive RBF neural network can accurately forecast the

maximum surface temperature of the fuel rod sheath.

Single-step forecasting and continuous forecasting were

performed using the adaptive BP neural network and the

adaptive RBF neural network, and the forecasting results are

listed in Table 3. Table 3 reveals that irrespective of using the

adaptive BP neural network or adaptive RBF neural network, the

error associated with single-step forecasts is smaller than that of

continuous forecasts; however, for the core inlet flow, due to the

noise produced by the adaptive RBF neural network, the MREs of

single-step forecasting and continuous forecasting are high; there

is little difference between the forecasts. The single-step

forecasting error for the highest surface temperature of the

fuel rod sheath is significantly smaller than the corresponding

continuous forecasting error. Comparing the forecasting

accuracy of the adaptive BP neural network and the adaptive

RBF neural network, it is revealed that for forecasting the reactor

core inlet flow and the maximum temperature of the fuel rod

sheath, the adaptive RBF neural networks are superior to the

adaptive BP neural networks; further, the MREs of single-step

forecasting and continuous forecasting are less than those

associated with the BP neural networks.

4 Conclusion

This study aimed to forecast the maximum surface

temperature of the fuel rod sheath and the mass flow rate of

CEFR under different working conditions. Consequently,

different neural network arithmetics are analyzed and

compared, and a forecasting method is established for steady-

state and transient-state thermal hydraulic parameters of the

adaptive RBF neural networkmodel. The main conclusions are as

follows:

1) By selecting the 1/2 core model of the CEFR fuel assembly as

the research target, forecasting and analysis of the maximum

surface temperature of fuel rod sheath under steady-state

conditions were performed under the same core background

values; the results were repeatedly verified. The results show

that the forecasting accuracy of the adaptive RBF neural

network is higher than that of the adaptive BP neural

network, and its maximum error is 0.5%. Consequently,

the adaptive RBF neural network arithmetic has a good

application prospect for accurately forecasting the thermal

hydraulic parameters of reactors under steady-state

conditions.

2) Regardless of single-step or continuous forecasting, the

adaptive RBF neural network exhibits a better forecasting

accuracy than that of the adaptive BP neural network;

however, due to the noise produced by the adaptive RBF

neural network, forecasting for certain local points is poor.

Nevertheless, the overall forecasting accuracy is good; the

MRE associated with forecasting the maximum surface

temperature of the fuel rod sheath is no more than 1%,

and the MRE of the flow is no more than 6.5%. Therefore,

the adaptive RBF neural network can provide reasonably

accurate short-term forecasting results and maintain the

accuracy under unstable flow conditions, which indicates

that it has a good application prospect for real-time

forecasting of reactor transients.

3) The adaptive RBF neural network can only complete

continuous forecasting in a short time. In the forecasting

of transient working conditions, the continuous forecasting

error in a short time is acceptable, but with the increase of

time, which will become larger because the continuous

forecasting error is the superposition of multiple single-

step forecasting errors. To solve this problem, further

research is needed to improve the single-step forecasting

accuracy of neural network; when studying the forecasting

performance of the neural network under unstable flow

conditions, we used the boundary condition of mass flow

rate composed of a sine signal and Gaussian white noise

signal. In that case, the transient forecasting accuracy of the

adaptive RBF neural network is very good, but there are a

large number of transient conditions in the reactor core. In

order to further study the adaptability of the method for

forecasting key thermal hydraulic parameters under transient

conditions, it is necessary to carry out targeted research on

different and more complicated boundary conditions.

TABLE 3 Comparison of neural network forecasting results.

Predictive variables Neural network arithmetic MRE/% Number of hidden layer
nodes

Single-step forecasts Continuous forecasts

Flow rate Back propagation neural network 0.0578 0.0629 100

Radial basis function neural network 0.0544 0.0592 300

Temperature Back propagation neural network 0.0051 0.0113 100

Radial basis function neural network 0.0047 0.0088 300
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