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Cascading commutation failures (CFs) pose severe risks in multi-infeed high voltage direct
current (HVDC) systems. Different from the single or concurrent CF, not only the time-
relevance of signals but also the spatio coupling and even control correlation of HVDCs will
attribute to the cascading CFs. The conventional approaches to identify them tend to fall
into a dilemma due to their complicated dynamics, wide-area coupling and vague
threshold of judgement. In this paper, a deep-learning method based on the data-
driven idea is proposed to recognize the cascading CFs. It analyzes the crucial factors
leading to the cascading relationship of multiple HVDCs, while classifying them into time
and space signals. To extract the inherent correlation between HVDCs as well as the time
relevance in question, a spatio-temporal convolutional network (STCN) is formulated. The
data generated in case of faults with diverse severity are applied to train STCN. Finally, the
proposed framework and STCN method are validated by a customized IEEE 39 bus
system and a practical power grid.

Keywords: HVDC, cascading commutation failure, graph convolutional network, temporal convolutional network,
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1 INTRODUCTION

The technology of line commutated converter based high voltage direct current (LCC-HVDC) plays
an important role in the long distance and large capacity transmission due to its low cost and fast
power regulation (Guo et al., 2012). However, the risk of cascading commutation failures (CFs) in
scenario of multiple HVDCs in close proximity severely threatens modern power grid. It raises great
necessity to identify them accurately so as to facilitate the protection design, mitigate the fault
propagation and maintain the system stability.

The occurrence of cascading CF can be attributed to not only the voltage coupling between
HVDCs via grid, but also the control of each HVDC. The latter always tries to avoid CF by adjusting
the firing angle after all. However, if the voltage dynamics is too rapid for the control system to react,
then CF is still inevitable. It infers that the variation of voltage over time i.e., the temporal effect is one
of the factors reflecting the possibility of cascading CF. Unfortunately, such a dependence is rather
difficult to be formulated analytically. Alternatively, some researches turn to apply the data-driven
methods such as neural network to intelligently establish mapping. On the other hand, multiple
HVDCs with different locations affect each other via voltage coupling, which forms the spatio effect.
Such an effect is sometimes asymmetric with regard to multi-infeed HVDC system. It causes many
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classical spatio correlation networks e.g., graph convolutional
network (GCN) to perform worse. With all that, there remain
some issues in either temporal or spatio aspects to be solved.

Actually, the attempts to enhance the grid safety have pushed
forward the studies on the identification of cascading CF in the
last few decades. The literatures can be roughly classified into two
types as follows. With regard to the analytical methods, the
relevant reports are popular. An approach to derive the region
boundary is presented for the critical CFs and the extinction
angles in multi-infeed HVDC systems (Li et al., 2017), although
the concurrent CFs rather than the cascading CFs are involved (Li
et al., 2021). reported a supplement considering double-phase to
ground and inter-phase short-circuit faults. The adverse
interaction between HVDCs or buses is one of the crucial
reasons leading to the cascading CFs. To quantify such effects,
multiple-infeed interaction factor (MIIF) is advised by CIGRE
working group (CIGRE Working Group B4.41, 2008). More
generally (Xiao et al., 2020), proposes an index namely AC-
DC interaction factor to evaluate the voltage coupling between
AC lines and converter buses so that CF incurred by voltage
distortion can be judged. In (Xiao et al., 2022), the analytical
evaluation related to local and concurrent CFs is investigated with
the inter-inverter interactions considered in multi-infeed LCC-
HVDC systems. Since the dynamical influence from HVDC
control is usually neglected in the literatures above, the
misjudgments are inevitable sometimes. An approach
involving the transients due to HVDC is proposed to evaluate
the CF risk (Yang et al., 2020). After the dynamic reactive power
of inverter stations as well as the induced successive CF is
analyzed (Ouyang et al., 2021), presents a rapid prediction
method based on the extinction angle of LCC-HVDC affected
by the adjacent one. However, the criterion established on the
analytical extinction angle is more or less difficult to be specified.
Practically the dropping rate and amplitude of voltage on the
converter bus are monitored in engineering to formulate the
judging criterion. For instance, in case that the voltage is reduced
to less than 0.8 p. u. and the dropping rate exceeds 0.3 p. u. per
second, it will be deemed as the occurrence of CF (Shao et al.,
2011). Once again, such a criterion is derived from a great deal of
engineering experience and cannot ensure validation all the time.

On the other hand, some works reported the feasibility of
artificial intelligence (AI) on the analysis of CF. By using stacked
denoising autoencoder, the duration of CF can be predicted by
inputting AC fault information as well as the operation status of
generators, reactive power compensation and the other relevant
devices (Zhu and Liu, 2019). Recently (Zhu et al., 2022) improves
a fast probability estimation of successive CF. These two
literatures emphasize the spatial features coupling multiple
HVDCs. Cui et al. (2020) proposes an approach integrating
physical-drive and data-driven model to predict the voltage
drop on the converter buses and thereby judge the cascading
CFs. The temporal features are extracted by data-driven model,
while the spatio coupling between HVDCs is still obtained
analytically. Temporal convolution network (TCN), as a
cutting-edge type of deep-learning technology, drew enough
attention in the scenarios of time-relevance feature-extraction,
including fault diagnosis in power electronics (Gao et al., 2021;

Guo et al., 2022). However, few literatures are found for it to be
applied on identification of cascading CFs.

With regard to identifying the cascading CFs, previous works
mostly face some dilemma. Either the judgement thresholds are
difficult to confirm in an analytical way, or the AI-based approaches
lack the explicit consideration of the coupling on both spatio and
temporal dimension. In this paper, a novel method for the CF
identification within amulti-infeedHVDC system is proposed in the
particular case that they incur the cascading sequence. The
contributions are summarized as follows.

(1) Based on the analysis of CFs and their coupling mechanism
between HVDCs, the data-driven idea of deep learning is
proposed on the identification of cascading CFs. It hopefully
can overcome the difficulty in their analytical mapping and
threshold setting.

(2) A hierarchical structure integrating spectral GCN and TCN is
proposed. It explicitly formulates a spatio and temporal
convolutional network (STCN), thereby extracting the
geographical and time-relevance features of cascading CFs
straightforwardly.

The rest parts of this paper are organized as follows. In Section
2, the mechanism of cascading CFs is analyzed, while the crucial
factors to incur them are emphasized. In the meanwhile, the
relevant features of GCN and TCN suitable for the identification
of cascading CFs are pointed out. Section 3 proposes the
structure of STCN and its framework so as to identify
cascading CFs. In Section 4, the proposed method is validated
in the customized IEEE 39 bus system and a practical grid.
Finally, the paper concludes in Section 5.

2 CRUCIAL FACTORS DURING
CASCADING COMMUTATION FAILURE
AND FEASIBLE CONVOLUTION NEURAL
NETWORK

2.1 Mechanism of Cascading Commutation
Failure
As one of severe faults in LCC-HVDC, the occurrence of CF in a
thyristor-based converter can be attributed to insufficient reverse
voltage or its inadequate time-duration to shut down a valve
reliably. If an AC short-circuit fault occurs near to HVDCs, CFs
are probably incurred simultaneously in several converters due to
the voltage dip caused by the short-circuit fault, as the grid cannot
provide enough reverse voltage. Such a phenomenon is well-
known as concurrent CF. However, this paper targets at another
type of CFs involving multiple HVDCs, which are namely
cascading CFs. Different from the concurrent CFs, the
cascading CFs are ascribable to more complicated factors,
including not only the disturbance due to the short-circuit
fault but also the adverse coupling between HVDCs due to
inappropriate control correlation.

In case that the voltage on converter bus decreases or the
HVDC current increases largely, CF tends to happen. The control
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system within HVDC always tries to avoid CF by adjusting the
trigger angle dynamically. However, the performances of control
require some time to show up. If the voltage or the current
changes too rapidly for the HVDC control to react, CF is still
inevitable. In other words, the time-domain relevance of some
crucial signals, such as the voltage on converter bus or the HVDC
current, can reflect the possibility of CF in a single HVDC system.

Given a multi-infeed HVDC system e.g., the one as illustrated
in Figure 1, a special kind of cascading CFs, however,
demonstrates the distinct reasons of spatio interactions
between HVDCs in addition of temporal factors. When a
short circuit fault enough to incur a CF in HVDC 1 happens,
the CFs successively appear in both HVDCs. That is to say, CF
propagates from one to another HVDC. The cascading process of
CFs is shown in Figure 2 with the crucial factors emphasized by
colorful fonts. It infers that CFs spread via geographic AC grid
and couple with each other to form the cascading failures.

With all that, the spatial and temporal features should be
extracted if cascading CFs are required to be identified in multi-
infeed HVDC system. Convolution networks, as a popular
approach to map the inherent links of signal, can play an
important role. They are classified as per their emphasis on
either geography graph or temporal signals.

2.2 Spectral Graph Convolution
The geographic grid can be usually mapped into a graph, either
directed or undirected. As a non-Euclid space, it is difficult to
define its convolution kernel if convolution is directly applied to a
graph. Hereby, a spectral convolution in Fourier domain is
carried out, which converts graph data and convolution kernel
to spectral domain for convolution. By introducing the
normalized Laplacian matrix, the original feature distribution
remains unchanged when it is multiplied by the feature matrix.
The normalized Laplacian matrix holds that

L � IN − D−1/2AD−1/2 (1)

where A is the adjacent matrix including the connection weight
between graph nodes; IN is a unit matrix; D is the degree matrix,
the element of which is Dii � ∑

j
Aij, and Aij is the connection

weight of nodes i and j. There are two main benefits for

normalizing the Laplacian matrix. On the one hand, if the
normalization is not carried out, the node features with large
degree will keep increasing, while those with small degree reduce
furtherly. On the other hand, the normalized Laplacian matrix
helps to improve the training efficiency.

However, it makes the convolution kernel affect the whole
graph, thus losing locality. And there is still massive computation
to be carried out, slowing down the training speed. In order to
reduce the computation, the first-order Chebyshev polynomials
(Kipf and Welling, 2017) are introduced to approximate the
parameters of convolution kernels, and the convolution is
formulated as follows

gθ(Λ)px � θ0x + θ1(L + IN )x � θ(IN + D−1/2AD−1/2)x (2)
where g(Λ) = diag (θ) is defined as filter parameters to derive
the GCN.

2.3 Temporal Convolutional Network
As one of the representative algorithms in deep learning, TCN
demonstrates the advantages over convolution neural network
and recurrent neural network, when dealing with time sequence
problems (Bai et al., 2018). Due to the introduction of dilation
factor, TCN can obtain a large receptive field through a shallow
layer, which is conducive to the extraction of time characteristics.

When a sequential input data x and filter g are used, the
dilated convolution operation is represented as

g(t) p x � ∑S−1
s�0 g(s)x(t − ds) (3)

where S is the size of the convolution kernel, and d is the dilation
factor controlling the interval of input convolution data. The
output is only related to the previous information instead of the
future, and therefore has strict causal attributes (Dong et al.,
2022).

3 PROPOSED IDENTIFICATION OF
CASCADING COMMUTATION FAILURE

As analyzed in Section 2.1, the time-relevance and the
geography-relevance of signals determine the occurrence of
cascading CFs. Hence, the method based on STCN to
recognize the cascading CFs is proposed in this section.

3.1 Structure of Proposed STCN
Since some spatial and temporal features are required to be
emphasized in the input signals, the network structure should
be designed deliberately. As known, GCN integrates the graph
information to extract the spatial features from the inputs, while
TCN enables finding the temporal features in time series as a
result of a large receptive field and a strict causal mapping. Hence,
this paper proposes a structure namely STCN to recognize the

FIGURE 1 | Two-infeed HVDC equivalent system model.
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cascading CFs. It hopefully combines the advantages of TCN and
GCN. As illustrated in Figure 3, the structure of STCN is overall
composed of a first-order GCN layer, a TCN layer and a
classification layer. The GCN layer is responsible to extract the
spatio correlation between HVDCs, while the TCN layer is used
to enrich the temporal features. Finally, the classification layer
outputs whether or not the cascading CFs are judged to occur.

To reflect the interaction between HVDCs via grid, the
multiple-infeed interaction factor (MIIF) weights the graph of
grid. That is to say, the adjacent matrix A is formulated by MIIF
so that it is asymmetric. Furtherly, the formed Laplacian process
the signal data before they are input into GCN.

GCN extracts the spatial features from the data in
chronological order and it does not destroy their time
sequence. The neural network structure in serial will not
interfere with the temporal feature extraction at TCN. When
both the temporal and spatial features are acquired, the suitable
classifier should be applied to map the extracted high-order
features to the corresponding judgment results of cascading
CFs. This paper adopts the fully connected structure with
softmax activation function as the classification layer.

3.2 Selection of Input Signals
Cascading CFs are happening in a dynamic process. It is
inaccurate to make a judgement of cascading CF by using the
feature of a specific moment only. When the symmetrical fault
occurs in AC grid, the amplitude and the dip rate of the voltage on
converter bus as well as the HVDC current affects the occurrence
of CF. In case of the asymmetrical fault, not only the above

factors, the phase offset and waveform distortion will also affect
CF (Tang and Zheng, 2019).

The selected input signals should be streamlined enough to
reflect the information involved in the existing experience fully.
Therefore, the phase to neural voltage on the converter bus and
the HVDC current with a certain time-duration after the fault is
employed as the input characteristics. The phase to neural voltage
reflects the working state of the converter station, and to a certain
extent, it also contains the phase deviation information. HVDC
current reflects the transmission capacity. If the information of
each HVDC is input together, it contains all the spatio and
temporal information in theory.

4 CASE STUDY

In order to validate the proposed method, two cases in a
customized IEEE 39 bus system and a practical power grid are
established respectively in PSCAD/EMTDC to produce the
required data. The proposed structure of STCN is
implemented in MATLAB platform.

4.1 Validation in Customized IEEE 39 Bus
System
Based on the classical IEEE 39 bus system, the inverters of two
HVDC links are added to the 7th and 12th bus, respectively. The
HVDCs are established as per the CIGRE standard model. The
system topology is shown in Supplementary Material A.

FIGURE 2 | Cascading process of CFs between two HVDCs in proximity.
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To produce the sample data, the fault is assumed as three-
phase grounding, two-phase grounding and single-phase
grounding fault respectively. The fault resistance ranges
from 1Ω to 31Ω, while the fault lasts 0.1s. A total of
1,167 samples are generated. The samples are randomly
divided into the training group and the test group in a
proportion of 70% over 30%. The truth judgement of CFs is
derived from the extinction angle in theory. Any sample with
less than 7.5° of the extinction angle is regarded as CF in the
training group.

The STCN is built. Adaptive moment estimation (ADAM) and
cross entropy are used as the solver and the loss function,
respectively. The hyperparameters are shown in Table 1.

In order to evaluate the performance of the proposed method,
the following indices are defined in the test procedure, which are
the accuracy rate (Ra), fault recognition rate (Rfr) and
misjudgment rate (Rm).

Ra � Nr

N
(4)

Rfr � Nfr + No

Nf
(5)

Rm � Nm + No

N
(6)

where Nr is the number of correct recognitions, N is the total
number of tests, Nfr is the number of faults correctly
recognized, No is the number of single CF judged as
cascading CF, Nf is the total number of CFs (including
single and cascading CF), Nm is the number of the
situations where commutating successfully is identified as
single CF or cascading CF.

Among these indices, the accuracy rate is the basic evaluating
indicator to identify various situations in the test. Since CFs may
lead to serious consequences, an important purpose of the
proposed method is to distinguish them from normal
situations. The fault recognition rate describes the ability of
STCN to recognize them. The judgment in training is more
stringent than in testing. That is to say, the training strategy is
relatively conservative. Hence the misjudgment rate is to describe
the conservative degree of the proposed method.

In order to demonstrate the improvement of the performance,
the proposed method is compared with the typical full-connected
network (FCN) without spatio and temporal convolution.
Meanwhile it is compared with the method based on the
threshold set in (Shao et al., 2011) the critical ac-dc
interaction factor (CADIF) in (Xiao et al., 2020) and the
critical multiple-infeed interaction factor (CMIIF) in (Wang
et al., 2021) respectively. The FCN contains 3 hidden layers
with 200, 50 and 4 neurons, respectively. The activation
functions of the first two hidden layers are Rectified Linear
Unit (ReLu), while the third hidden layer is activated by
softmax function. The compared results are listed Table 2.

Although the analytical method in (Shao et al., 2011) exhibits a
high fault recognition rate of 97.89%, it results in a large
misjudgment rate as well. Many single CFs are misjudged as
cascading CFs. This advises that the thresholds based on
experience may be too conservative in other systems. The
accuracy of data-driven FCN-based method without explicit
extraction of spatio and temporal features is relatively better.
However, some position information in the input and the
correlation between the adjacent positions are destroyed to
some extent, resulting in unsatisfactory results. Because the
effect of control system is not considered, CADIF will incur a
great error when judging cascading CFs. Alternatively, the
cascading CFs can be monitored by analyzing the interaction
between HVDCs (Wang et al., 2021). However, it poses the
premise that the foregoing HVDC suffering from CFs is

FIGURE 3 | Structure of STCN for identifying cascading commutation failures.

TABLE 1 | Hyperparameters of STCN.

Parameter Value

Initial learning rate 0.01
Learning rate drop factor 0.1
Learning rate drop period 10
Mini batch size 128
Max epochs 80
L2 Regularization 10–4

Dilation factor (the first layer) 1
Dilation factor (the second layer) 2
Filter size of TCN 2 × 1
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known, while the impact of AC fault on HVDC is neglected, also
resulting in unsatisfactory performance. It can be found that the
proposed method, compared with the four others, exhibits higher
fault recognition and accuracy rates. Its performance has been
significantly improved.

4.2 Validation in a Practical Power Grid
In order to verify the generality of the proposed method, a
simulation case of a practical power grid is studied. The grid
topology is illustrated in Supplementary Material B. Four
HVDCs are fed into AC power grid which includes
21 buses with the rated voltage of 500 kV. Three-phase

grounding fault, two-phase grounding fault and single-
phase grounding fault are applied near to each AC bus
respectively. The fault duration is 0.07s. The cascading CFs
in these four HVDCs subject to different faults are analyzed.

The training strategy is identical with the previous case in Section
4.1. The performance is listed in Table 3. Inferred by the results, the
proposed STCN method can still deliver a good performance in the
practical power grid. This also confirms that the inputs selectedmeet
the requirements to identify cascading CFs.

The dynamics simulation in a specific sample is
investigated. This sample is with two-phase grounding fault
at the 4th bus in 0.8 s, which also lasts 0.07 s, while the
grounding resistance is.

11.5Ω. The relevant data derived from PSCAD of each HVDC
current, the voltage on each converter bus and the extinction angle is
deemed as the truth value to judge the situation of cascading CF.
They are shown in Figure 4, Figure 5 and Figure 6, respectively.

Previously there were some typical approaches to recognize
CFs. They are compared with the proposed STCN method in this
section. If only considering the change of HVDC current (Yin and

TABLE 2 | Test result in customized IEEE 39 bus system.

Method Accuracy Rate (%) Fault
Recognition Rate (%)

Misjudgment Rate (%)

Proposed in this paper 94.86 98.98 4.50
FCN 86.81 86.16 5.13
Analytical threshold in Shao et al. (2011) 66.06 97.89 32.48
ADCIF based on Xiao et al. (2020) 60.36 79.87 28.21
CMIIF based on Wang et al. (2021) 82.91 79.87 8.06

TABLE 3 | Test result in a practical power grid.

Parameter Value (%)

Accuracy rate 95.17
Fault recognition rate 96.33
Misjudgment rate 2.07

FIGURE 4 | Current of four HVDC lines.
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Li, 2021), suggests that the larger the current increases, the easier
it tends to CF. Therefore, it can be seen from Figure 4 that CF is
most likely to occur in HVDC 4. In addition, as per (Shao et al.,
2011), if the voltage is less than 0.8 p. u. and the dropping rate
exceeds 0.3 p. u. per second, HVDCs will be judged to suffer from
CFs. Correspondingly all four HVDCs should commutate

successfully, observed from Figure 5. If the ac-dc interaction
factor of each HVDC is compared with the corresponding CADIF
(Xiao et al., 2020), all the four HVDC are judged to suffer from
CFs. When it comes to the method based on CMIIF (Wang et al.,
2021), the same results of CFs are also obtained. But the above
four methods apparently make mistakes. Figure 6 indicates that

FIGURE 5 | Voltage RMS of four converter buses.

FIGURE 6 | Extinction angle of four converter stations.
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the extinction angles of HVDC 1 and 2 are less than 7°. The
cascading CFs do occur in HVDC 1 and HVDC 2. Obviously, the
incorrect results are reached on the basis of a single factor. This
also explains why the method of (Shao et al., 2011) in Section 4.1
delivers a large error.

After the data from HVDC and converter bus are input into
the trained STCN, the classification results are obtained. The
proposed STCN does advise that HVDC 1 and 2 suffer from the
cascading CFs. Compared with Figure 6, it demonstrates
consistency.

In summary, the effectiveness and generality of the proposed
method are confirmed. It can be inferred that the identification
performance of cascading CFs is apparently promoted by the
proposed STCN method.

5 CONCLUSION

This paper proposes a deep-learning method based on spatio-
temporal convolutional network (STCN) to recognize the
cascading commutation failures (CFs) in multi-infeed high voltage
direct current systems. The following conclusions can be reached.

1) The cascading CFs demonstrate apparent coupling in
geographic and time domain. The time-relevance of the
HVDC current and the voltage on a specific converter bus
represents the temporal factors leading to CFs, while the
correlation of voltages and currents between different
HVDCs forms spatio factors.

2) The hierarchical structure of STCN ensures the spatio and the
temporal features of signals to be extracted explicitly. Thereby
it is suitable for the identification of cascading CFs in multi-
infeed HVDC systems.

3) The proposed method based on STCN performs better to
identify the apparent cascading CFs, if compared with some
conventional approaches based on classical neural network
and analytical formulation.
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