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The rapid development of the Industrial Internet-of-Things extends demand

response (DR) research to the aspect of low-carbon emission in smart grids.

This study proposed the concept of low-carbon DR (LCDR) in the electricity

market as well as the price-based LCDRmechanism and its model. First, carbon

cost conduction from the generation side to the demand sidewas analyzed, and

then conduction function was quantifiably deduced. Second, the mechanism

and model of price-based LCDR were proposed by considering three DR

signals, namely, the electricity price, carbon price, and carbon emission

intensity of the demand side, based on the traditional price-based DR

(PBDR) mechanism. Third, the proposed LCDR mechanism was applied to

the environmental–economic dispatch optimization problem. At last, case

studies on the modified IEEE 39-bus system verified that the LCDR

mechanism can reduce carbon emissions while maintaining the function of

the traditional PBDR. Meanwhile, the applicability of LCDR was illustrated based

on carbon emission sensitivity to LCDR model parameters. The proposed

mechanism can guide participants in the electricity market in reducing

electricity carbon emissions.
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Introduction

The application of Industrial Internet-of-Things (IIoTs) (Sisinni et al., 2018) brings

advanced measurement and communication technologies to the power grid, such as cyber

networks (Sridhar et al., 2012) and smart meters (Depuru et al., 2011), making the power

grid smarter than ever. The extensive use of smart equipment significantly enhances the

observability and controllability of the demand side in the smart grid and provides strong

hardware and data support for the development of demand response (DR) (Chen et al.,

2020). DR refers to “changes in electric usage by customers from their normal

consumption patterns in response to changes in the price of electricity over time, or
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to incentive payments designed to induce lower electricity use at

times of high wholesale electricity market prices or when system

reliability is jeopardized” (Siano, 2014).

At present, carbon emission reduction has achieved a global

consensus (United Nation, 2021). As consumption terminals, the

power consumers in the demand side should undertake their

carbon reduction responsibility. Based on DR, consumers can

change their load in time and space with their power suppliers

from high- to low-carbon emission generators, resulting in

carbon emission reduction. In this context, DR can play a

vital role in carbon neutrality based on the IIoTs.

By widely using smart meters, the energy consumption of the

demand side can be effectively monitored. Using high-frequency

meter data, more accurate characteristics of loads and carbon

emissions can be obtained. Based on the advanced cyber

networks, the consumers can receive more accurate and

timely DR signals (Albadi and El-Saadany, 2007) from

independent system operators or dispatching departments.

These signals include electricity price, electricity carbon

emission intensity (CEI), incentives, and control instructions.

As a result, consumers can achieve carbon emission reduction

(Stoll et al., 2014), which is beneficial for themselves and the

power grid, by reducing their carbon consumption.

DR programs generally include the price-based demand

response (PBDR) (Conejo et al., 2010) and the incentive-based

DR (IBDR) (Lu and Hong, 2019). In PBDR programs, consumers

respond to real-time prices based on the demand elasticity model

(Kirschen et al., 2000) and modify their demands by shaving/

shifting flexible load from peak times into valley times to flatten

load curves. PBDR programs are usually applied to the day-ahead

and real-time market clearing (Wu, 2013; (Li et al., 2022),

economic dispatching (Dehnavi and Abdi, 2016), and power

grid planning (Wang et al., 2020). A successful PBDR can help

the power market set efficient electricity prices, improve

economic efficiency, and reduce environmental costs and

carbon emissions.

At present, carbon emission costs (Gillenwater and

Breidenich, 2009) have been internalized into the electricity

market. It is generally considered that carbon emission costs

are directly included in the generation side (Newcomer et al.,

2008). Through market clearing, carbon emission costs can be

conducted from the generation side to demand side,

accompanied by the increase in electricity prices (Wook et al.

(2010); Panagiotis et al. (2021)). The energy consumption price

that consumers pay becomes the integrated electricity–carbon

price. Thus, the PBDR needs to take carbon emission costs into

account; moreover, research on PBDR should be extended to the

field of low-carbon emission.

Recent research on low-carbon–oriented PBDR mostly

focuses on the impact of traditional PBDR programs on

carbon emissions. He et al., (2020) proposed an

environmental–economic dispatch (EED) model with a price-

based integrated DR program considering the carbon trading

scheme. In the study by Zeng et al. (2014), PBDR is used for

planning distribution systems in a transition toward low-carbon

sustainability. A new piecewise linear approximation method for

calculating carbon emission factors was proposed by Fleschutz

et al. (2021) to quantify the effect of PBDRs on operational

carbon emissions in European countries. Song et al. (2014) and

Dahl and Petersen (2016) developed new simulation models to

investigate the joint influence of price and CO2 signals in DR

programs. However, existing research still have major problems.

First, there is no clear analysis of the conduction process of

carbon emission costs from the generation side to the demand

side, making it difficult to quantify carbon emission costs for the

demand side. Second, there is a lack of low-carbon–oriented DR

mechanism to achieve better carbon emission reductions.

Therefore, this study proposed the concept of LCDR as well

as the price-based LCDRmechanism considering the conduction

of carbon emission costs in the smart grid. The main

contributions of this study are as follows:

1) Quantified carbon emission cost conduction from the

generation side to the demand side in the wholesale

electricity market and deduced electricity carbon emission

cost function and carbon emission cost conductivity (CECC)

in the demand side.

2) Proposed the price-based LCDR mechanism and its model,

which integrates three DR signals, namely, electricity price,

carbon price, and CEI of the demand side.

3) Established an EEDmodel considering the price-based LCDR

model to verify the proposed mechanism and analyzed the

applicability of the mechanism based on the sensitivity of

carbon emission to the three main parameters of the LCDR

model.

The remainder of the paper is organized as follows. Section

2 quantifies carbon emission cost conduction in the wholesale

electricity market. Section 3 proposes the price-based LCDR

mechanism and its corresponding model. Section 4 establishes

an EED optimization model considering the LCDR mechanism.

Section 5 presents case studies to show the function of carbon

emission reduction in the LCDR mechanism and its application

scenarios.

Quantified analysis of carbon
emission cost conduction in the
wholesale electricity market

In general, carbon emission cost is internalized into

electricity cost and directly included in the generation side. It

is directly passed to the demand side in the wholesale electricity

market, resulting in the increase in electricity prices. According

to the operation characteristic of the power grid and the market

clearing method, the additional carbon emission cost per unit of
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electricity consumption is different. That is, each node in the

power grid has a different CECC.

Therefore, this study proposed a quantified analysis method

for carbon emission cost conduction including three parts: 1) the

carbon emission cost of electricity consumption, 2) the clearing

mechanism of the electricity market, 3) the electricity CEI of the

demand side.

Carbon emission cost of electricity
consumption

Carbon price in the carbon trading market offers a generally

accepted reference price for market participants, which can be

used to calculate carbon emission cost. In general, carbon

emission cost (Zhang et al., 2016) is the product of carbon

price and carbon emissions:

Cc
t � ρct · Et (1)

In the power grid, the carbon emission cost generated by

power production and consumption can be accurately calculated

using real-time carbon price, electricity CEI, and electricity

power, benefiting from advanced smart meters:

Cc
t � ρct · et · Pt (2)

where et and Pt are determined by the physical characteristic and

the market clearing mechanism of the power grid.

Clearing mechanism of the electricity
market

When demand-side loads are determined, the market

clearing mechanism determines the operation state and output

of the generator.

The security-constrained economic dispatch (Jabr et al.,

2000) is a general spot market clearing model. The purpose of

this model is to maximize the social welfare of power grids over a

period of time. It needs to meet a series of physical operational

constraints of the power grid. In general, the time period is

divided into multiple time steps in the economic dispatch model.

Then, the scheduling result of each time step is calculated using

the optimal power flow (OPF) model (Dommel and Tinney,

1968). The OPF model aims to minimize the short-term

generation costs, calculate the output of each generator, and

determine the electricity price for consumers using the well-

known locational marginal price method (Kirschen and Strbac,

2004). Using the obtained market clearing results, the electricity

carbon emissions of generators and consumers can be calculated

as follows:

EG,t � eG · PG,t (3)
ED,t � eD,t · PD,t (4)

where eG is a performance parameter for generators, which is

supplied by generator producers.

It can be seen that with a certain load and carbon price,

the carbon emission cost of a consumer is only determined by

eD,t. Thus, eD,t can quantify carbon costs conducted from the

generation side to the demand side. Therefore, the solution

of eD,t is the key problem. The solution contains two parts,

namely, the operation condition problem and the market

clearing mechanism of the power grid. Based on the market

clearing results, the carbon emission flow (CEF) method

(Zhou et al., 2015) is introduced to calculate ed,t at time t

in this study, which is presented in detail in the following

section.

Electricity carbon emission intensity of the
demand side

The introduced CEF model can track the footprint of carbon

emissions accompanying power flow in the power grid. Then, the

consumers’ real-time electricity CEI can be calculated, and from

which generator carbon emissions are coming at a certain time

can be determined. According to Zhou et al. (2015), the electricity

CEI of nodes can be calculated as follows:

eD,t � (PD,t − P′T
B,t)−1 · RC,t (5)

RC,t � PG,t · eG (6)

where eD,t and RC,t are N-dimensional column vectors, PD,t and
P′B,t are N × N-level matrices, PG,t is an N × G-level matrix, and

eD,t is a G-dimensional column vector.

We further derived the carbon emission cost conduction

function for electricity consumptions and the equivalent

FIGURE 1
The modified IEEE 39-bus system.
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conducted carbon price for demand-side consumers according to

Eqs. 2 and 5:

Cc
D,t � ρct · eD,t · PD,t (7)

ρcD,t �
Cc

D,t

PD,t
� eD,tρ

c
t (8)

Based on this, the concept of CECC was proposed in this

study. The nodal CECC of the ith node is expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γcD,i,t �
eD,i,t
eACEI,t

eACEI,t �
∑G

g�1PG,g,teG,g

∑N
i�1PD,i,t

(9)

γcD,i,t accurately reflects the difference in CECC for consumers

caused by the operation characteristics of the power grid in time

and space.

Mechanism of the price-based low-
carbon demand response

Price-based demand response model

Based on the economic theory, the elasticity coefficient is

generally used to describe the change rate between consumers’

demand and price (Conejo et al., 2010) in PBDR programs,

which is expressed as follows:

εt,τ � ρτ
PD,t

dPD,t

dρτ
(10)

When t equals τ, εt,t is defined as a negative self-elasticity. On

the contrary, εt,τ is defined as a positive cross-elasticity. By

introducing the multiperiod linear elastic load model, the

response load amount is expressed as follows:

ΔPD,t � ∑T
τ�1

εt,τP
0
D,τ(ρτρ0τ − 1) (11)

Price-based low-carbon demand
response model

This study proposed a price-based LCDR model considering

two factors that impact the demand of consumers, such as the

integrated electricity–carbon price and the nodal CEI of the

demand side.

First, consumers make demand changes in response to the

integrated price that includes electricity and carbon costs

conducted from the generation side. According to Eq. 11, the

first part of the DR amount on the ith node is as follows:

ΔP′D,i,t � ∑T
τ�1

εi,t,τP
0
D,i,τ(ρei,τρe0i,τ

− 1) (12)

Then, consumers continue to carry out the low-carbon

response to their nodal CEIs. By translating the impact of

CEIs into carbon costs, the second part of the DR amount is

expressed as follows:

ΔP″D,i,t � ∑T
τ�1

εi,t,τP
0
D,i,τ(eD,i,τe0D,i,τ

+ ρcτ
ρc0τ

− 2)⎤⎦ (13)

The detailed derivation of Eq. 13 is presented in the

Appendix. Based on Eqs. 12 and 13, the total DR amount of

the LCDR is derived as follows:

ΔPD,i,t � ΔP′D,i,t + ΔP″D,i,t

� ∑T
τ�1

εi,t,τP
0
D,i,τ[(ρei,τρe0i,τ

− 1) + (eD,i,τ
e0D,i,τ

+ ρcτ
ρc0τ

− 2)] (14)

Furthermore, when using the single-period elastic load

model (Zeng et al., 2014) for simplicity, the relevant parts of

εi,t,τ in Eq. 14 can be omitted. At last, the designed LCDRmodel is

expressed as follows:

ΔPD,i,t ≈ εi,t,tP
0
D,i,t[(ρei,tρe0i,t

− 1) + (eD,i,t
e0D,i,t

+ ρct
ρc0t

− 2)] (15)

Environmental–economic dispatch
optimization model considering the
price-based low-carbon demand
response

The EED model determines the operation state of power

grids and the three DR signals. Thus, the proposed price-based

LCDR is studied based on the EED model.

Objective function

The EED optimization model aims to minimize short-term

generation costs within 1 day in this study. Generation costs are

the sum of fuel and carbon emission costs, which is expressed as

follows

Min : F � ∑T
t�1
∑G
g�1

k[Ce
G(PG,g,t) + Cc

G(PG,g,t)] (16)

where the fuel and carbon emission cost functions of thermal and

gas generators are calculated as follows:

Ce
G,g,t � agP

2
G,g,t + bgPG,g,t + cg (17)
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Cc
G,g,t � ρctEG,g,t � ρct eG,g,tPG,g,t (18)

The short-term generation costs of renewable power plants,

such as wind and solar powers, are assumed to be zero. The

uncertainty and randomness of their outputs are also ignored in

this study. Moreover, DR costs are not taken into account in the

objective function. It supposes that there are no free carbon

emission quotas for participants, such as electricity suppliers and

consumers, in the electricity market in this study. That is, all

electricity carbon emission costs must be paid based on the

carbon price.

Constraints

The proposed EEDmodel should meet the following equality

and inequality constraints.

The power grid–related constraints are expressed as

follows:

∑G
g�1

PG,g,t −∑N
i�1
PD,i,t � 0 (19)

{PL,l,t � (θa − θb)/xl

θ � B−1PInj
(20)

Pmin
L,l ≤PL,l,t ≤Pmax

L,l (21)
Pmin
G,g ≤PG,g,t ≤Pmax

G,g (22)

{PG,g,t − PG,g,t−1 ≤Rup
g if PG,g,t ≥PG,g,t−1

PG,g,t−1 − PG,g,t ≤Rdown
g if PG,g,t−1 ≥PG,g,t

(23)

0≤PW,g,t ≤P
pre
W,g,t (24)

0≤PS,g,t ≤P
pre
S,g,t (25)

The price-based LCDR-related constraints are as follows:

Eqs. 15.

PD,i,t � P0
D,i,t + ΔPD,i,t (26)

−Dmax
i ≤ΔPD,i,t ≤Dmax

i (27)

∑T
t�1
P0
D,i,t � ∑T

t�1
PD,i,t (28)

Constraints (19–25) impose the power grid–related

constraints. Equation 19 ensures the power balance, and Eq.

20 calculates the direct current power flow in branch l, where θ

and PInj are N-dimensional column vectors, and B is an N ×

N-level matrix. Constraint (21) denotes the capacity limits of the

power flow in branches, constraints (22) and (23) denote up and

down output limits and generation ramping limits for generators,

and constraints (24) and (25) are output limits for wind and solar

power plants, respectively.

Equation 15 and constraints (26–28) explain the LCDR-

related constraints. Equation 15 calculates the response load

ΔPD,i,t of consumers, which is mainly influenced by three DR

signals. ΔPD,i,t is the controllable variable of the demand side.

Constraint (26) indicates the total load of consumers after the

LCDR, constraint (27) sets limits on the amount of load shifting,

and constraint (28) considers the total demand energy that

remains unchanged within 1 day.

In addition, ρe0i,t is calculated according to the method

proposed by Jin et al. (2013) in this study. The hours

within a day are divided into day and night. ρe0i,t is

expressed as the demand-weighted average price within all

the same type hours of consumers on the ith node before

implementing the LCDR:

TABLE 1 Parameters of generators and power plants in the modified IEEE 39-bus system.

Location Type Rated active
power (MW)

Ramping rate
(MW/min)

CEI (tCO2/MW) Generation cost
coefficients

ag bg cg

4 Wind -- -- 0.0 0.00 0 0.0

17 Solar -- -- 0.0 0.00 0 0.0

30 Hydro 1,040.0 5.20 0.0 0.00 0 0.0

31 Gas 646.0 3.23 0.4 0.02 20 2.0

32 Thermal 725.0 3.63 1.0 0.01 5 0.2

33 Thermal 652.0 3.26 1.0 0.01 5 0.2

34 Gas 508.0 2.54 0.4 0.02 20 2.0

35 Hydro 687.0 3.44 0.0 0.00 0 2.0

36 Gas 580.0 2.90 0.4 0.04 20 2.0

37 Gas 564.0 2.82 0.4 0.04 20 2.0

38 Thermal 865.0 4.33 1.0 0.01 5 0.2

39 Thermal 1,100.0 5.50 1.0 0.01 5 0.2
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ρe0i,t �
∑t∈ThP0

D,i,tρ
e,Pre
i,t∑t∈ThP0

D,i,t

(29)

In parallel, e0D,i,t is also expressed as the demand-weighted

CEI without implementing the LCDR:

e0D,i,t �
∑t∈ThP0

D,i,te
pre
D,i,t∑t∈ThP0

D,i,t

(30)

Furthermore, ρc0t is predicted based on day-ahead carbon prices.

For simplicity, it is assumed as the closing price of the previous-

day carbon market in this study.

Case study

The proposed EED model was simulated on a modified IEEE

39-bus system. Three cases were used to verify the superiority of

the proposed price-based LCDR mechanism in the carbon

emission reduction:

Case 1: EED model without DR as the benchmark.

Case 2: EED model with PBDR based on the integrated

electricity–carbon price.

Case 3: EED model with the proposed price-based LCDR based

on the integrated electricity–carbon price and nodal CEI.

The proposed EED optimization model can be established as

an MINLP problem and solved using a modified MATLAB-

MOST solver (Zimmerman et al., 2011).

Settings of modified IEEE 39-bus system

The modified IEEE 39-bus system is shown in Figure 1,

which includes four thermal generators, four gas generators, two

hydropower generators, one wind power plant, and one solar

power plant.

Table 1 shows the detailed parameters of these generators

and power plants, such as the type, rated active power, ramping

rate, generation CEI, and short-term generation cost coefficients

(U.S. Energy Information Administration, 2020). The wind and

solar plants are placed on nodes 4 and 17, respectively, and their

predicted output profiles are taken from Lee et al. (2021), as

shown in Figure 2.

The hourly load data within a day were selected from an

open-source synthetic representation of the Electric Reliability

Council of Texas power grid (Wu et al., 2021). It was assumed

that the load profiles are of the same typical waveform for each

node in this study. The load amount of each node was set to

0.9 times the original data in the IEEE 39-bus benchmark system

to better show the effect of the proposed LCDR mechanism. The

total demand-side energy remained at 138.31 GW h throughout

the studied day.

The values of self-elasticity coefficients of the demand side at

different hours were set to −0.2 (Jin et al., 2013). The maximum

DR amount of consumers participating in DR programs was both

20%, that is, the value of Dmax
i was 0.2 p.u. The carbon price was

assumed to be a fixed value of 50 $/tCO2 within a day. The

bidding factor k was set to 1.5. Moreover, the power loss over

branches was not considered in this study.

Results and analysis

The hourly results of the EED with the proposed LCDR

model are illustrated in Figure 3, which include the hourly

generation power composition, electricity consumption costs,

and carbon emissions of the power grid. The results shows that

terminal and gas generators output more power in the time

periods of larger load, and there were higher average costs and

ACEIs for the power grid.

FIGURE 2
Typical profiles of load, wind power, and solar power.

FIGURE 3
Hourly results of the environmental–economic dispatch
(EED) with the proposed low-carbon demand response (LCDR)
model.
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The results of these three cases are shown in Table 1. Both the

proposed LCDR and the PBDR reduced the electricity

consumption costs of the demand side and the carbon

emissions of the power grid. The reductions caused by the

LCDR were more significant than those caused by the PBDR.

In particular, carbon emissions based on the LCDR were reduced

by 0.63% (376 tCO2) in a day, which can accumulate into a large

reduction amount in a long term. In addition, the electricity

consumption costs were reduced by 0.53% with the LCDR, which

was also better than the PBDR.

Figure 4 presents the hourly total load, hourly average

integrated price of the demand side, and hourly ACEI curves

of the power grid for cases 1, 2, and 3. The curve trends of the

load, price, and ACEI are basically the same. The price and the

ACEI both increase with the increase in load. However, they

decrease when the wind and solar powers are high.

It can be observed from the three load curves that

consumers mainly respond in the valley periods between

1:00 and 7:00 and the peak periods between 19:00 and 24:

00 in case 1. Compared with the PBDR, the LCDR can cause a

large range and quantity of load shifting by responding to the

integrated price and nodal CEI. The reference values of price

and CEI are low from 1:00 to 7:00 and high from 19:00 to 24:

00. These lead to large demand changes as consumers pursue

lower carbon emissions and electricity consumption costs

based on Eq. 15 when implementing the LCDR. For example,

the peak time of the load without DR occurs at 21:00, whereas

it shifts to 12:00 with LCDR in case 3. Similar LCDR

characteristics and demand changes can also be illustrated

by the load, integrated price, and nodal CEI curves of node 7,

as shown in Figure 5.

TABLE 2 Comparison of electricity consumption costs and carbon emissions of the demand side for cases 1, 2, and 3.

Cases Electricity consumption costs Carbon emissions

Total (M$) Unit (price)
($/MW·h)

Reduction (%) Total (tCO2) Unit (ACEI)
(tCO2/MW)

Reduction (%)

1 13.398 96.871 0 59,045 0.4269 0

2 13.378 96.727 0.15 58,947 0.4262 0.16

3 13.327 96.358 0.53 58,669 0.4242 0.63

FIGURE 4
Hourly total load, integrated price, and average carbon
emission intensity (ACEI) curves for cases 1, 2, and 3

FIGURE 5
Hourly load, integrated price, and nodal carbon emission
intensity (CEI) curves of node 7 for cases 1, 2, and 3

FIGURE 6
Carbon emission reductions and output changes of
generators and power plants with different carbon prices.
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Carbon emission sensitivity analysis

This study also analyzed the applicability of the proposed

LCDR mechanism. Three variables that mainly affect the carbon

emission reduction ability of the LCDR model were selected for

carbon emission sensitivity analysis. The variables included

carbon price, DR participation ratio of consumers, and the

proportion of renewable power to total power. The carbon

price was from $5 to $70 at intervals of $5, the DR

participation ratio was from 5 to 50% at intervals of 5%, and

the proportion of renewable power was from 10 to 80% at

intervals of 10%, respectively.

Carbon emission reductions with the change in the

aforementioned three variables of case 3 compared with case

1 are shown in Figure 6, Figure 7, and Figure 8, respectively.

Figure 6 demonstrates that carbon emission reduction initially

increases with the increase in carbon price, then begins to

decrease when carbon price exceeds $50, and finally becomes

0. It is evident that only appropriate carbon prices can incent

consumers to reduce carbon emissions positively when

implementing LCDR programs. At low carbon prices,

consumers do not pay enough attention to nodal CEI. Load

shifting causes power to transfer from low- to high-CEI

generators, leading to an increase in carbon emissions. At

high carbon prices, carbon costs become the main part of

electricity consumption costs, and low-CEI generators have

priority to output more power. The power transfer caused by

the LCDR is mainly between high-CEI thermal generators; thus,

the emission reduction is very negligible.

The relationship between carbon emission reduction and

LCDR participation ratio is shown in Figure 7. With the increase

in the participation ratio, carbon reduction gradually increases,

but the marginal reduction decreases and finally becomes 0. The

maximum reduction is 436.83 tCO2 when the ratio reaches 45%.

It shows that only appropriate LCDR participation ratios can

effectively reduce carbon emissions. Extensive flexible load

participating in the LCDR induces limited reductions. This is

because when the reference price and CEI remain unchanged, the

maximum DR abilities of consumers are fixed. With the increase

in LCDR participation ratios, the abilities of consumers are

gradually released until their maximum values are reached

and they stop growing.

We added several renewable power plants to analyze the

sensitivity of carbon emissions to renewable power proportions.

There are three more wind power plants located at nodes 1, 12,

and 23 and two more solar power plants located at nodes 8 and

26. The different renewable power proportions were obtained

by changing the outputs of all wind and solar plants. Figure 8

demonstrates that carbon emission reductions initially increase

and then decrease with the increase in power proportions. This

is because when proportions increase at an early period, the

power transferred from high- to low-CEI generators or power

plants continues to grow, resulting in increased reductions.

Then, when proportions become very large, the outputs of

renewable plants become very high. On the contrary, the

outputs of carbon emission–produced generators continue to

decrease, resulting in decreased carbon reductions.

Conclusion

Benefiting from the development of IIoTs in the smart grid,

this study proposed a price-based LCDR mechanism based on

the integrated electricity–carbon price and CEI signals. Then, the

LCDR mechanism was verified using the EED optimization

model. Four main conclusions were drawn based on the case

study simulation: 1) Compared with traditional PBDRs,

appropriate LCDR programs can incent the demand side to

positively reduce electricity carbon emissions. 2) The carbon

price needs to be suitable for the current stage of the low-carbon

FIGURE 7
Carbon emission reductions and output changes of
generators and power plants with different LCDR participation
ratios.

FIGURE 8
Carbon emission reductions and output changes of
generators and power plants with different renewable power
proportions.
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transformation of power grids. Just with appropriate carbon

prices can consumers effectively reduce carbon emissions by

DR. 3) As the LCDR participation ratio increases, the marginal

benefit for carbon emission reduction decreases. 4) With the

increase in the renewable power proportion, carbon emission

reductions caused by the LCDR initially increase and then

decrease.

The proposed quantification method for carbon emission cost

conduction in the power grid can be extended to IBDR and other

fields in the electricity market. This study ignored the impact of

consumers’ utility function and also did not consider the DR costs,

uncertainty of renewable power output, and change in daily carbon

price. Therefore, further research on the LCDR considering the

aforementioned issues needs to be conducted.
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Appendix

According to the proposed LCDR mechanism, consumers

carry out their low-carbon response based on the nodal CEI. This

study quantified the impact of nodal CEI on the demand by

translating it into carbon emission cost. Based on Eqs. 8 and 10,

the second part of the DR is expressed as follows:

dPD,t � εt,τPD,t

ρτ
dρτ �

εt,τPD,t

ρcD,t
dρcD,t �

εt,τPD,t

eD,tρct
d(eD,tρct) (A1)

By using the multiperiod linear elastic load model, Appendix

Eq. A1 is derived as follows:

ΔP″D,i,t � ∑T
τ�1

εi,t,τ
P0
D,i,τ

e0D,i,τρ
c0
τ

(ρc0τ deD,i,τ + e0D,i,τdρ
c
τ)

� ∑T
τ�1

εi,t,τP
0
D,i,τ(ρc0τ deD,i,τe0D,i,τρ

c0
τ

+ e0D,i,τdρ
c
τ

e0D,i,τρ
c0
τ

)
� ∑T

τ�1
εi,t,τP

0
D,i,τ(eD,i,τ − e0D,i,τ

e0D,i,τ
+ ρcτ − ρc0τ

ρc0τ
)

� ∑T
τ�1

εi,t,τP
0
D,i,τ(eD,i,τe0D,i,τ

+ ρcτ
ρc0τ

− 2)⎤⎦

(A2)

Furthermore, omitting the relevant parts of εi,t,τ, the

secondary demand deviation responding to nodal CEI can be

finally denoted as follows:

ΔP″D,i,t ≈ εi,t,tP
0
D,i,t(eD,i,te0D,i,t

+ ρct
ρc0t

− 2) (A3)
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Nomenclature

Indices and sets

a, b Index of two end nodes on branches

g, G Index and total number of generators and power plants

h, Th Index and set of diurnal hour types

i, N Index and total number of power grid nodes

k Bidding factor

l, L Index and total number of branches

t, τ, T Index and total number of time periods

Parameters

ag , bg, cg First-, second-, and third-order cost coefficients of

generator g

Dmax
i Bound of the DR amount for node i

eG , eG,g Carbon emission intensity (CEI) for generators and

generator g

Pmin
G,g , Pmax

G,g Upper and lower output limits for generator g

Pmin
L,l , Pmax

L,l Upper and lower capacity bounds for branch l

Rup
g , Rdown

g Ramp-up and ramp-down rate limits for generator g

Variables

Cc
t Carbon emission cost at time t

Ce
G,g,t , C

c
G,g,t Fuel and carbon emission costs for generator g at

time t

Cc
D,t Carbon emission cost for consumers at time t

et , eACEI,t CEI and average CEI (ACEI) of the power grid at time t

eD,t , eD,i,t Demand-side CEI for nodes and node i at time t

e0D,i,t , e
0
D,i,τ Reference CEI for node i at time t and τ

epreD,i,t Predicted CEI for node i at time t based on EED without DR

Et , EG,t, ED,t Carbon emission, carbon emission for generators,

and consumers at time t

Pt Power or load amount at time t

PD,t , PD,i,t Demand-side load of nodes and node i at time t

P0
D,i,t Reference load of node i at time t

PG,t , PG,g,t Power output of generators and generator g at time t

PL,l,t Power flow in branch l at time t

PW,g,t , PS,g,t Output of wind and solar power plant g at time t

Ppre
W,g,t , P

pre
S,g,t Predicted output of wind and solar power plant g at

time t

ΔPD,i,t , ΔP′D,i,t, ΔP″D,i,t Total and first and second parts of the

DR amount of node i at time t

xl Reactance of branch l

γcD,i,t Carbon price conductivity for node i at time t

εt,t , εt,τ Self-elasticity and cross-elasticity coefficient at related

time t and τ

εi,t,τ , εi,t,t Self-elasticity and cross-elasticity coefficient for node i

at time t and τ

θa , θb Voltage-phase angle of nodes a and b

ρt , ρτ Price at time t and τ

ρcD,t Conducted carbon price for consumers at time t

ρct , ρ
c
τ Carbon price at time t and τ

ρc0t , ρc0τ Reference carbon price at time t and τ

ρei,τ , ρei,t Integrated electricity–carbon price of node i at time t

and τ

ρe0i,t , ρ
e0
i,τ Reference integrated price of node i at time t and τ

ρe,Prei,t Predicted integrated price of node i at time t based on EED

without DR

Matrices

B Node admittance matrix for power grids

eD,t Vector for the CEI of consumers at time t

eG,t Vector for the CEI of generators at time t

P9B,t Matrix for branch power outflow distribution at time t

RC,t Vector for the ejected CEF rate of generators at time t

PD,t Matrix for the power demand of consumers at time t

PG,t Matrix for the power output of generators at time t

PInj Vector for power injection

θ Vector for nodal voltage phase
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