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INTRODUCTION

Flexible electronics may lead to a novel technological revolution with the upcoming 5G information
era (Wang et al., 2019; Zhang et al., 2021). However, the traditional power supply with batteries
cannot match the needs of flexible electronics. Hence, an advanced power source with flexibility,
non-environmental dependency, and user-friendliness is urgently needed (Suarez et al., 2017; Fan
et al., 2021). Immense but largely untapped low-grade heat from the human body, industry (e.g., data
centers), and the environment (e.g., solar energy) is emerging into the research spotlight (Duan et al.,
2021). Thermoelectric energy conversion technology is an approach for reusing the widely available
low-grade heat, which has the potential to optimize energy efficiency and reduce energy
consumption (Fan et al., 2021). Among the state-of-art options, thermogalvanic cells can
generate electricity by the gain and loss of electrons at the two same electrodes under the action
of a temperature-dependent redox ionic reaction (Lei et al., 2021; Li et al., 2021). In comparison with
the conventional electronic thermoelectrics (Taroni et al., 2018; Chae et al., 2020) and ionic thermos
capacitors (Al-zubaidi et al., 2017;Wu et al., 2021), thermogalvanic cells based on redox reactions are
not only noise-free and environmentally friendly, but also they enable continuous conversion of low-
grade heat to electricity (Gao et al., 2022). Moreover, the thermogalvanic cells hold the potential to
enable an efficient, lightweight, continuous flexible power supply for the burgeoning flexible
electronics (e.g., flexible screens and wearable medical electronics) (Liu et al., 2022; Peng et al.,
2022; Zhang et al., 2022). This imposes the challenge of durably optimizing the performance of
thermogalvanic cells in terms of thermopower (Duan et al., 2018), mechanical properties (Lei et al.,
2021; Gao et al., 2022; Lei et al., 2022), and anti-freezing (Gao et al., 2021), among others. Although
the previous researchers presented significant advances, thermogalvanic cells still have challenges in
the field of low-grade heat harvesting and flexible power sources.

This article intends to summarize the potentials of the thermogalvanic cells from the working
mechanism, and strategies for performance enhancement. In the end, the challenges of
thermogalvanic cells in further applications are also comprehensively presented.

THE WORKING MECHANISM OF THERMOGALVANIC CELLS

The thermogalvanic cell is assembled by two identical electrodes and an electrolyte with a redox
couple. The liquid-state electrolyte mainly comprises an organic ionic liquid or salt solution
containing redox couples, such as Fe2+/Fe3+, I−/I3

−, and Fe(CN)6
3-/Fe(CN)6

4−. The quasi-solid
electrolyte includes gel matrix (gelatin, PVA, PAAM, etc.) and the doped redox couples mentioned
previously. There are two main approaches for obtaining the quasi-solid electrolyte: (1) first, doping
the redox couple into precursor solution and then gelling the solution and (2) first, obtaining the gel
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matrix and then immersing the redox couple. Once the two
electrodes are given a temperature gradient, thermopower can be
generated by the temperature-dependent redox reaction,
AOx + ne5BRed. Temperature gradients cause two main
sources of thermally induced voltage: 1) the entropy change of
the redox reaction and 2) the thermodiffusion of all ions. The
thermopower is denoted according to the Nernst equation as:

Si � −E
0(TH) − E0(TC)

TH − TC
� −SB − SA

nF
+ 1
nF

(ŜB − ŜA − n�Selectron),

(1)
where S, Ŝ, and �S represent the partial molar entropy, Eastman
entropy, and transport entropy, respectively. The standard
electrode potential at the hot side (Th) is denoted by E0(Th)
and E0(Tc) for the cold side (Tc). F and n represent Faraday’s
constant and the number of electrons, respectively. In the
aforementioned equation, the first term is the contribution
from the redox couple and the second corresponds to the
thermodiffusion of all ions and electrons.

As shown in the mechanism diagram of Figure 1A, for the
thermogalvanic cell with the redox couple, ferric/ferrous (Fe3+/
Fe2+), the thermopower is zero without a temperature gradient.
The redox couple (Fe2+/Fe3+) doped in the electrolyte of quasi-
solid thermocell based on the thermogalvanic effect undergoes
spontaneous redox reactions when heat flows across the cell. At
the hot electrode, Fe3+ gains electrons from the electrode and is
reduced to Fe2+, which leads to an increase in the standard
potential E0(Th). In contrast, the reverse oxidation reaction

occurs at the cold electrode, where Fe2+ is oxidized to Fe3+,
accompanying the release of electrons to the electrode, lowering
the standard potential E0(Tc) at the cold electrode. The redox
reactions at two terminals of the cell form a potential difference
between the electrodes. Moreover, the redox reactions generate an
ion concentration gradient inside the cell, which promotes the
migration of ions and thus achieves continuous working.

PERFORMANCE ENHANCEMENT OF
THERMOGALVANIC CELLS

For thermogalvanic cells, redox couples with different entropy
differences can output a certain thermopower under a
temperature gradient. Therefore, liquid thermogalvanic cells
with different thermoelectric performances can be fabricated
with electrolytes of organic solvents or aqueous solutions
(Fe(CN)6

4−/3−, Fe2+/3+, and I−/3−). For example, the
thermopower of thermogalvanic cells using ferricyanide/
ferrocyanide (Fe(CN)6

4−/3−) and ferric/ferrous (Fe3+/2+)
electrolyte solution as electrolytes is ~1.4 mV/K and ~1.0 mV/
K. In order to enhance thermoelectric performance, two strategies
have been reported in thermogalvanic cell systems through two
distinct mechanisms (Duan et al., 2021). One strategy is to
increase the solvation structure entropy difference. Jiao et al.
(2014) reported thermopower up to ~2.65 mV/K using pure ionic
liquids or ionic liquid mixture electrolytes, which is mainly
attributed to the different solution environments between ionic
liquids and aqueous systems. Moreover, the introduction of ionic

FIGURE 1 | Mechanism and strategies for performance enhancement of thermogalvanic cells. (A) Low-grade heat sources and mechanism of thermoelectric
energy conversion via thermogalvanic cells (Fe2+/Fe3+, n-type). (B) Strategy of enhancing concentration ratio differences. (C)Strategy of reorganizing the solvated shell of
the redox couple. (D) Synergistic effect of thermodiffusion and thermogalvanic effects (Fe(CN)6

3−/Fe(CN)6
4−, p-type).
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liquids and the addition of organic solvents with appropriate
solubility can also contribute to thermoelectric performances.
The combination of 15 wt% methanol and Fe(CN)6

4−/3− exhibits
a thermopower of ~2.9 mV/K (Kim et al., 2017). Duan et al.
(2018) tripled the thermopower to 4.2 mV/K by adding Gdm+

and urea, reorganizing the solvated shell of Fe(CN)6
4−/3− based on

the chaotrope–chaotrope ionic bond interaction (Figure 1B). In
addition to the approach of increasing the redox entropy
difference, enhancing concentration ratio differences between
redox species is another strategy. It has been reported that the
introduction of thermosensitive nanogel
(poly(N-isopropylacrylamide), PNIPAM) (Duan et al., 2019)
(Figure 1C) and supramolecular (α-cyclodextrin) (Zhou et al.,
2016) can boost the thermopower by establishing a lager redox
species concentration difference across the cell.

Although the ionic mobility of liquid-state thermocells is more
prominent, the leakage risk of electrolyte solutions poses
challenges for thermogalvanic cell packaging (Gao et al., 2021).
To this end, quasi-solid-state thermogalvanic cells (e.g., hydrogel
with redox couples) emerge due to the decoupling of mechanical
and ionic properties of solid and liquid, respectively. Wu et al.
(2017) and Yang et al. (2016) fabricated the quasi-solid
thermocell based on Fe(CN)6

4−/3− (p-type), using poly(sodium
acrylate) and PVA, which obtained the different thermopower of
−1.09 and −1.21 mV/K, respectively. These values exhibit a slight
decrease compared to the equivalent condition in an aqueous
solution, attributed to the poor ion transport in the gel matrix. On
the contrary, Zhou et al. (2018) introduced the polymer–ion
interaction between I3

− and the polymer containing starch and
polyvinylpyrrolidone (PVP), achieving the enhancement of
+0.86 mV/K in liquid I−/ I3

− solution to +1.54 mV/K. In
addition, Taheri et al. (2018) further studied the relationship
between PVDF, PVD-HFP, and cobalt bipyridyl redox. Results
show that only strongly interconnected polymer chains and redox
reactants affect entropy changes of the redox reaction. Otherwise,
the change of thermopower is negligible. However, the maximum
power densities obtained with PVDF (6 mW/m2) and PVDF-
HFP (4.5 mW/m2) are significantly reduced compared to liquid
MPN-based electrolyte (48 mW/m2), which is mainly due to the
limited convection that impairs the mass transport. Zhou and Liu,
(2018) achieved a high thermopower as high as −9.9 mV/K first
through the combination of acetone and isopropanol. This report
demonstrates the evaporation phase transition of acetone on the
boost of entropy and the enhancement of the concentration
gradient, which verifies the possibility of enhancing the
thermoelectric performance through the vapor–liquid phase
transition. Based on the gelatin containing KCl, NaCl, KNO3,
and Fe(CN)6

4−/3−, Cheng-Gong et al. (2020) gained a prominent
thermopower of +17 mV/K through the thermodiffusion of KCl,
NaCl, and KNO3, as well as the thermogalvanic effect of
Fe(CN)6

4−/3− (Figure 1D). In addition to the studies on the
enhancement of thermoelectric performance, the anti-freeze
performance (Gao et al., 2021), mechanical properties (Gao
et al., 2022), and p-n-type conversion (Duan et al., 2019) are
also the focus of research.

In addition, electrode materials are also critical to realizing
the thermoelectric performance enhancement. Compared with
the commonly used metal electrodes, carbon-based electrodes
and conducting polymer electrodes have high-efficiency and
flexibility advantages. The Carnot efficiency of the
thermogalvanic cells with multi-walled CNTs is 200%
superior to that of platinum (Hu et al., 2010). By adjusting
the composition of the CNTs and GO composites, an output
power of 460 mW/m2 and a Carnot efficiency of 2.6% were
obtained (Romano et al., 2013). Moreover, the PEDOT-Tos
conductive polymer electrodes also demonstrated comparable
electrical properties to platinum (Wijeratne et al., 2017).
Benefiting from the intrinsic flexibility and stretchability,
the non-metal electrode enlarges the potential of
thermogalvanic cells in the field of flexible electronics
benefiting from the intrinsic flexibility and stretchability.

CONCLUSION

This study briefly describes the mechanisms and the potential of
thermogalvanic cells in low-grade heat harvesting. The trend
from liquid-state cells to quasi-solid-state cells and two key
factors affecting thermoelectric performance are summarized.
Several strategies are introduced for improving thermoelectric
performance in the liquid-state and quasi-solid-state
thermogalvanic cells. Although current research has yielded
advances such as excellent thermoelectric performance output
and flexible mechanical properties, there are still some overlooked
challenges to address:

1) Poor ionic conductivity: in comparison to conventional solid-
state thermoelectric materials, the ionic thermoelectric
electrolytes exhibit insufficient conductivity because the
ionic mobility is lower than that of electrons. In particular,
the weakening of convection in the quasi-solid-state matrix
results in much lower ionic conductivity than that of liquid
electrolytes.

2) Mismatched thermopower of n-type thermogalvanic cells:
the series connection of p-type and n-type cells is a
common assemble method, which can enlarge the
capacity of the modules for practical applications.
However, the current reports mainly focus on the
performance enhancement of p-type thermocells. The
scarcity of n-type thermocells sufficiently matching the
thermopower of p-type thermocells remains to be further
investigated.
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