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The increasing penetration of intermittent, non-synchronous generation has

led to a reduction in total power system inertia. Low inertia systems are

more sensitive to sudden changes and more susceptible to secondary issues

that can result in large-scale events. Due to the short time frames involved,

automatic methods for power system event detection and diagnosis are

required. Wide-areamonitoring systems (WAMS) can provide the data required

to detect and diagnose events. However, due to the increasing quantity

of data, it is almost impossible for power system operators to manually

process raw data. The important information is required to be extracted

and presented to system operators for real/near-time decision-making and

control. This study demonstrates an approach for the wide-area classification

of many power system events. A mixture of sequential feature selection and

linear discriminant analysis (LAD) is adopted to reduce the dimensionality of

PMU data. Successful event classification is obtained by employing quadratic

discriminant analysis (QDA) on wide-area synchronized frequency, phase

angle, and voltage measurements. The reliability of the proposed method

is evaluated using simulated case studies and benchmarked against other

classification methods.

KEYWORDS

event classification, dimensionality reduction, PMU data, machine learning, power system

monitoring

1 Introduction

Globally, electrical power systems are significantly changing, primarily driven by
the goal of reducing carbon emissions. In order to achieve renewable energy objectives,
generation from traditional synchronous power stations is being replaced with low
carbon alternatives. Renewable generation is often viewed as a supplement to traditional
generation, but as penetration increases, its effects need to be considered with regard
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to power system operation and protection. The renewable
generators being installed are typically small and decentralized
(compared to conventional plants). This, coupled with a
loss of control of dispatchable power (e.g., wind power
is considered highly intermittent and non-dispatchable) and
system services, means power system dynamics are changing
(Mukherjee et al., 2021).

Distributed generators (DG) can benefit power systems
(Morozovska et al., 2021). For example, when generating power
close to distributed loads, they can reduce transmission losses
and congestion and can defer investment in transmission
lines and substations. However, significant generation at the
peripheries of a network will lead to reverse power flows,
meaning traditional control and protection schemes can be
less effective. Another concern with the increasing installation
of DGs is the reduction of system inertia. The natural
inertia contributed by synchronous generators helps maintain
system frequency. Therefore, the reduction of synchronous
generation yields a system with increased sensitivity to sudden
changes. Coupling this with the requirement to operate power
systems close to their limit to meet demand increases its
susceptibility to the occurrence of system-wide events.Therefore,
schemes to detect, diagnose, and contain events in a timely
manner are required to minimize potential damage and
downtime.

Many countries have invested in smart grid technologies
to combat large-scale events, with an emphasis on installing a
network of PhasorMeasurement Units (PMUs) arranged to form
a wide-area monitoring system (WAMS). This improves legacy
SCADA systems by providing sub-second analysis of transient
behavior, with sub-second latency and granularity, which opens a
new window on power system dynamics. PMUs provide precise,
time-synchronized local measurements of system frequency and
rate of change of frequency (ROCOF) along with voltage and
current phasors for each bus bar and line measured. These data
are typically streamed to a central server, where it is combined
to give a wide-area perspective of the system. At this level, long-
standing power systemchallenges such as system-wide frequency
monitoring can quickly be solved (Liu et al., 2013). Our previous
work (Liu et al., 2015; Liu et al., 2016; Rafferty et al., 2016;
Rafferty et al., 2017) investigated the application of advanced
methods for rapid event detection on PMU data. Presently, these
methods are demonstrated on the historical and modeled PMU
data, but the intention is to utilize live PMU data in a control
room environment.

The volume of PMU data is to increase exponentially as the
number of PMUs and their reporting rates increase. Even at
present data streaming rates, it is a challenge to extract real-time
information. Consequently, tools from the field of “Big Data”
(Syed et al., 2021) are necessary to condense large amounts of
data into information useful to system operators. This motivates
the need to develop intelligent, automated techniques for the

wide-area monitoring and control (WAMC) of the system in real
time.

Building on our previous work (Liu et al., 2015;
Liu et al., 2016; Rafferty et al., 2016; Rafferty et al., 2017; Rafferty
and Liu, 2020), this study presents a novel method to address the
problem of distinguishing between several power system events
utilizing wide-area PMU data. A combination of dimensionality
reduction techniques is adopted to combat the high-dimensional
PMU data and reduce computation time.

To summarize, high event classification accuracy was
achieved through the following: 1) the development of a power
system event database, which was built on wide-area PMU
measurements of known event types; 2) utilizing the database
in conjunction with previously developed event detection tools
(Rafferty et al., 2016) to identify new events, data encapsulated
for analysis; 3) linear discriminant analysis (LDA) utilized as
a feature extraction technique to reduce the dimensionality of
the database while maximizing the discriminatory information
between the different event types; 4) a sequential forward
selection (SFS) technique employed to identify the most
important features necessary for the classification algorithms,
enabling the classifiers to train faster and making it easier to
interpret; 5) quadratic discriminant analysis (QDA) employed
in the event classification model due to its ability to efficiently
handle the nonlinear boundaries in the reduced event training
data set; and 6) the approach benchmarked against alternative
classification techniques, namely, decision trees (DT), k-nearest
neighbor (K-NN), LDA, and SVM.

2 Literature review

In machine learning, classification is the assignment of
data sets to categories, distinguished by some metric within
the data set or extrapolated from it. Many methods have
been investigated for the identification of power system
events, including DT (Bykhovsky and Chow, 2003; Dahal and
Brahma, 2012; Pandey et al., 2020), k-NN (Gaouda et al., 2002;
Biswal et al., 2016a; Biswal et al., 2016b; Brahma et al., 2017),
support vector machines (SVM) (Biswal et al., 2016a;
Brahma et al., 2017), neural networks (Gaouda et al., 2002;
Biswal et al., 2016b), unsupervised clustering methods
(Dahal et al., 2014; Klinginsmith et al., 2016), energy similarity
measure approach (Yadav et al., 2019), and Best Worth Method
(Vosughi et al., 1996).

Some methods focus exclusively on local measurements of
system frequency (Bykhovsky and Chow, 2003), whereas others
consider local voltage measurements (Gaouda et al., 2002).
Focusing on singular measurements is a method of reducing
dimensionality; however, using frequency and voltage
measurements can refine results (Dahal and Brahma, 2012;
Dahal et al., 2014; Biswal et al., 2016a; Biswal et al., 2016b;
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Brahma et al., 2017). Often, the use of current or power
measurements is avoided as these are either inapplicable to a
wide-area study or require very specific connections.

K-NN and SVM methods were compared by
Biswal et al. (2016a) and Brahma et al. (2017). This analysis
addressed testing accuracy but did not consider training speed
and prediction. When considering the suitability of a method
for on-line applications, training speed and prediction accuracy
are crucial. These studies also employed a strong signal-based
approach, which can be problematic during large disturbances.
This instability arises due to inaccuracies in PMUmeasurements
during transient conditions, especially those close to the source
of the event.

Although the method by Brahma et al. (2017) showed
excellent classification accuracy, only two classes were
considered; this accuracy dropped with the addition of
extra classes. The methods by Biswal et al. (2016a) and
Brahma et al. (2017) employed a defined 2 s window, 0.5
before and 1.5 s after event. A predefined event window is
not desirable for real-time event detection and classification.
Finally, a significant constraint of SVM-based methods is
computational inefficiency, leading to long training times
(Nalepa and Kawulok, 2018).

Bykhovsky and Chow (2003) used frequency data in a
rule-based decision tree to distinguish between different types
of events. Firstly, a historical data set was employed to
cluster events and determine decision tree rules. Secondly, the
decision tree was applied to pseudo-live data to test live event
classification performance. The magnitude of frequency change
and ROCOF were found to give the best event differentiation.
However, this study was limited as only a small selection
of disturbances were considered, and events that have a
small effect on frequency will go undetected or incorrectly
classified. Dahal and Brahma (2012) expanded the decision
tree approach to include voltage measurements. It was applied
to generation loss, line trip, and line to ground fault events;
however, only seven events were tested. Clustering takes a more
probabilistic approach than classification. Events can therefore
spread acrossmore than one cluster, often occurring during large
events with multiple consequences. The clustering methods by
Dahal et al. (2014), Klinginsmith et al. (2016), and Gharavi and
Hu (2018) observed the generation of unknown clusters. User
expertise was required to link a cluster of power system events to
the underlying causes and consequences. A further challenge is
that dimensionality increases with the number of event clusters.
More recently, deep learning-based methods involving long
short-term memory neural networks or convolutional neural
networks are employed for power system event classification
(Ahmed et al., 2021; Li et al., 2021; Ehsani et al., 2022).The deep
learning-based neural networks are excellent in dealing with
large data sets but suffer from significant computation costs due
to the large number of parameters turning at the training stage.

Because there is no theoretical conclusion on whichmachine
learning classifier method is superior, several methods are
required to be evaluated to determine which classification
algorithm is more appropriate in predicting the event types
from the obtained PMU event database. For the construction of
an on-line power system event classifier, utilizing a significant
number of PMU variables recorded from multiple locations
simultaneously, which can be trained (and retrained after
successful classification) in a timely manner with a low
misclassification rate, dimensionality reduction techniques are
required. Techniques for reducing dimensionality have many
benefits, such as reducing time and space complexity and
allowing more interpretable data by the removal of noise and
less important features. An optimal number of variables is
required for model construction, and a trade-off between speed
and accuracy is required. In contrast to existing literature,
the rejection of power system variables is not used as a
method to reduce the dimensionality of the problem. Systematic
consideration of the frequency, voltage, and phase angle signals
and the difference and rate of change to these variables
between buses is proposed. The desired computation efficiency
is achieved via a combination of LAD and sequential forward
selection to extract and select the variables contributing most
to classification accuracy. Also, in this investigation, the window
length is determined by the event detection algorithm in
Rafferty et al. (2016). The detection algorithm captures the
event data and separates them from those recorded under
normal operating conditions, providing a crucial step for event
classification.

3 Methodology

3.1 Dimensionality reduction

Construction of an on-line power system event
classifier, utilizing a significant number of PMU variables
recorded from multiple locations simultaneously, which
can be trained rapidly, requires dimensionality reduction
techniques to be implemented. Dimensionality reduction
(Van Der Maaten et al., 2009) is the process of using statistical
techniques to reduce the number of features (or variables) in
a data set by transforming the original data set into a lower
subspace.

Typical applications of dimensionality reduction include data
compression for storage purposes and as a pre-processing step to
machine learning algorithms. An optimal number of dimensions
is required formodel construction; the inclusion of toomany can
decrease performancewith respect to computation efficiency and
prediction accuracy. However, the inclusion of too few can also
result in lower accuracy.
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3.1.1 Feature extraction
LAD is a feature extraction technique whose objective

is to find a linear combination of features that preserves as
much of the class discriminatory information as possible. The
resultant combinations can be utilized for linear classification
(this application is presented in Section B) or dimensionality
reduction purposes. LDA is a supervised learning technique that
reduces the dimensionality in the data set to C− 1 dimensions,
where C = number of classes.

Denote amatrix of PMUdataX, whereX ∈ IRn×m, consisting
ofmmeasurement variables, with each row representing a sample
(n = number of samples), which is attributed to one of C-classes
of event type, whereC > 2.The objective of LDA is to obtainC− 1
projections of y bymeans ofmultiple projection vectorswi, where
i = 1…C− 1:

yi = w
T
i X, (1)

where wi can be arranged by columns into a projection matrix,
W. The distance, d, between the projected class means, is a good
starting point to maximize the difference between the centers of
both classes. However, this measurement does not consider the
variance of the data within each class and can cause overlapping
between classes.

Therefore, Fisher’s proposed method (McLachlan, 2004)
maximizes the distance,d, between the classes but alsominimizes
the variance v within them:

J (W) = d2

v1 + v2
=

wTSBw
wTSWw
, (2)

when C = 2, where SB and SW represent the between-class
scatter matrix and the within-class scatter matrix, respectively.
Therefore, a projection that maximizes SB while minimizing SW
is sought. When C > 2, the projection is now C− 1 dimensions,
and the determinant of the scatter matrices is used to obtain a
scalar objective function, transforming Eq. 2 to

J (W) =
∣WTSBW ∣
∣WTSWW ∣

, (3)

with SB and SW given, respectively, as

SB =
C

∑
i=1

ni (μi − μ)(μi − μ)
T (4)

and

SW =
C

∑
i=1
∑
i∈Ci

ni (xi − μi)(xi − μi)
T, (5)

where ni represents the total number of samples in the ith class,C
the number of classes, μi the mean of the samples in the ith class,
and μ the overall mean of the data.

The optimal projection matrixW* is given as the one whose
columns are the eigenvectors that correspond to the largest
eigenvalues of the generalized eigenvalue problem:

S−1WSBwi = λiwi (6)

or

S−1WSBW = λW, (7)

where λi = J(wi) and i = 1…C− 1.The optimal projectionmatrix,
W*, is given by

W∗ = argmax
W

J (W) . (8)

3.1.2 Feature selection
There are three different types of feature selection techniques:

filter methods (e.g., Euclidian distance, t-test), wrapper methods
(e.g., SFS, Genetic algorithms), and Embedded methods (e.g.,
DT and SVM) (Ladha and Deepa, 2011). Sequential forward
selection (Ladha and Deepa, 2011) is employed here as the
simplest greedy search algorithm compared tomachine learning-
based methods. This method starts with zero features selected
and tests each one individually against an objective function.This
process is repeated using the previously selected feature(s) and
the remaining unselected features in the data set until a stopping
criterion is reached. For this methodology, the stopping criteria
are based on the cross-validation error of the classifier.Therefore,
features are selected consecutively until the cross-validation error
ceases to decrease or increases again.

Cross-validation is a method used to evaluate the accuracy
of classifiers by employing the classifier on the training data
to allow the misclassification rate, E, to be determined. k-fold
cross-validation (Kohavi, 1995) is implemented to assess the
generalization performance of different classifier configurations.
The K-fold method works by dividing the training data set into
K subsets (folds) and uses all, bar 1, of the folds for training the
classifier, with the remaining fold used for testing. This process
is repeated until all the folds have been used for testing. The
cross-validation error, CVE, is calculated using

CVE =
1
K

K

∑
k=1

Ek, (9)

where Ek is the misclassification rate for each fold, and K are the
total number of folds. This method allows all samples in the data
set to be used for both training and validation, with each sample
used for validation only once. A common value for the number
of folds, K, is 10.

3.2 Classification: discriminant analysis

An on-line, adaptive event classifier consists of three main
stages: separation, allocation, and update. In the separation stage,
the objective is to find functions that maximize the difference
between the event type classes in the labeled training data set, X.
The focus of the allocation stage is to assign unclassified samples
(from newly detected events) into one of the known classes, C,
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based on the functions obtained in the separation stage. Finally,
the update stage adds the successfully classified event to the
training data set, X, and retrains the classifier for when it is
required again.

Discriminant analysis (DA) (Fisher, 1936) is a supervised
machine learning technique used to find linear combinations of
features in a data set that best discriminates between mutually
exclusive groups on the basis of predefined features. A common
method for generating the discriminant functions is by using
linear methods, such as LDA andQDA, presented in Section B.1
and Section B.2, respectively.

3.2.1 Linear discriminant analysis
The objective of LDA for classification is to determine the

maximum posterior probability (denoted as Ĝ) of a sample, xi,
belonging to each event type class, C = c1,c2,…cn (where n =
the number of classes in the data set). Let πc1 and πc2 denote
the prior probability that a randomly selected sample comes
from the c1− th and c2− th class, respectively, calculated from
π = No. samples in class

Total No. samples
, and denote fC(xi) as the density function of xi

belonging to classG = c1. From the Bayes theorem, the following
can be stated (Yan and Dai, 2011):

Pr(G = c1|X = xi) =
fc1 (xi)πc1
∑C

c2=1
fc2 (xi)πc2

, (10)

where X is the training data set, which is assumed to follow a
multivariate normal distribution (James et al., 2013). The class-
conditional density function, fc1(xi), is given as

fc1 (xi) =
1

(2π)
p
2 |Σc1|

1
2
exp(−1

2
(xi − μc1)

TΣ−1c1 (xi − μc1)) , (11)

where μc1 and Σc1 are the mean vector and covariance matrix for
class c1, respectively. An underlying assumption of LDA is that
all classes share a common covariance matrix, Σc1 = Σ∀C. Thus,
the linear discriminant function for each classC can be expressed
as (James et al., 2013)

δC (xi) = xTi Σ
−1μC −

1
2
μTC Σ
−1μC + log πC. (12)

Sample xi is determined as the class C, which maximizes Ĝ:

Ĝ(xi) = argmax
C

δC (C) . (13)

3.2.2 Quadratic discriminant analysis
QDA is an extension of LDA and again assumes multivariate

data, following a normal distribution. However, unlike LDA, it
is assumed that each class, c1,c2,…,cn, has a separate covariance
matrix. This yields the quadratic discriminant function for each
class C as (James et al., 2013)

δC (xi) = −
1
2
log |ΣC| −

1
2
(xi − μC)

TΣ−1C (xi − μC) + log πC, (14)

with classification determined by maximizing Ĝ (from Eq. 13).

3.3 Power system event classifier

The process for the proposed wide-area power system event
classifier (PSEC) scheme involves three main stages: off-line
classifier construction, on-line wide-area event classification,
and classifier retraining. A process flowchart of PSEC is
depicted in Figure 1. A fourth stage, on-line monitoring
(Rafferty et al., 2016; Rafferty et al., 2017), is also included in
Figure 1.

Theoff-line construction of the initial event classifier requires
a sample of historical data of past events, with corresponding
event type label recorded from a wide-area network consisting
of n PMUs. The labeled, historical event data are used to train
the initial PSEC model by determining the boundaries between
each event type class. The trained model is applied to newly
detected events to allow the event to be classified. Denoting
fi, ϕi, and vi as the current sample of frequency, phase angle
difference, and voltage recorded from a single PMU, respectively,
the change in each variable, Δf, Δϕ, and Δv can be calculated
by subtracting the i–th from its corresponding previous sample
(fi−1, ϕi−1, and vi−1). The rate of change (ROC) for each variable
over time, Δf

Δt
, Δϕ

Δt
, and Δv

Δt
, respectively, is also calculated.

ROC values were calculated over 100 ms and averaged over a
500 ms sliding window, as recommended for ROCOF (Energy, 
2013).

In order to compile the training data set, the event database
is split into smaller subsets relating to each variable recorded. In
the case of this investigation, there are nine subsets, as detailed
in the previous paragraph, including all the relevant samples,
m, from the n PMUs arranged to form a m× n matrix. LDA is
employed on each subset, reducing the dimensionality from n
to a C− 1 subspace while maximizing separability between each
event type. The calculated projection matrix,W, for each subset
is saved to allow newly detected events to be reduced to the same
space.The extracted features from the nine subsets are combined
before employing the CVE-based SFS technique to select the
features which best contribute to the accuracy of the classifier.
Finally, to conclude the off-line training process for PSEC, QDA
is employed on the reduced event training data set to calculate
the class boundaries.

Once trained, PSEC can be used to classify newly detected
events on the power system. During the on-line monitoring
process, the change and rate-of-change values for each
measurement variable are continuously calculated. Once an
event has been detected on the system, the data from all
connected PMUs are isolated from nonevent data and used
to classify the event type occurring. During training, the
same subset splitting is adhered to before dimensionality
reduction is conducted. In order to extract features that
will be in the same subspace as before, each subset is
reduced using its corresponding projection matrix, W. The
same selected features, SF, are again chosen to classify the
end.
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FIGURE 1
Power system event classification (PSEC) process flowchart.

Each sample in the event is classified iteratively by
maximizing Ĝ, from Eq. 13. This process is repeated until each
sample in the event has been assigned a class type,with the overall
event class determined by calculating the maximum occurrence
of each event class type in the event data as a percentage of total
event samples.

A confusion matrix is often utilized to evaluate a
classificationmodel’s performance, which leads to the calculation
of many metrics according to the values in the confusion matrix,
such as accuracy, precision, recall, Specificity, and F1 score. A
more detailed explanation can be found in Singh et al. (2021).
Accuracy as a measure of all the correctly identified events is
employed due to its simplicity. In order to reduce the likelihood
of misclassification, a threshold is implemented based on
the accuracy of the current classifier model, with accuracy
determined by

Accuracy (%) = TP+TN
Total
× 100%, (15)

whereTP,TN, andTotal represent the true positive, true negative,
and the total number of samples in the training data, respectively.
The initial threshold is calculated during the off-line classifier
construction phase and automatically recalculated during each
classifier retraining phase. If an event type achieves ≥ the
threshold, the event is automatically added to the database.
Otherwise, the event cannot be classified, and manual user

interaction is required to add the event to the database before
retraining occurs.

4 Evaluation with wide-area PMU
data

4.1 Data acquisition

In order to demonstrate the capability of PSEC, several
dynamically simulated case studies were conducted on the
standard IEEE-39 Bus Test System (Athay et al., 1979) using
DigSilent PowerFactory. This test system represents part of the
US power system and consists of 10 synchronous generators, 19
loads, and 36 transmission lines. In order to simulate capacitor
switching and motor start events, each was connected, via a
circuit breaker, to each bus in the system. A PMU was placed
at each bus in the system not directly connected to a generator,
equating to 29 PMUs in total. Each connected PMU has a
sampling rate of 100 Hz. For this investigation, it was assumed
that all connected PMUs in the system are on-line and do not
experience any noise or information loss.

Case studies consisted of 133 generation dip (GD), 114 loss
of load (LL), 33 line trip (LT), 78 capacitor switching (CS), and
39 synchronous motor start (MS) events, 397 events in total.
Of the simulated events, an 80%–20% split between training
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(322 events) and test (75 events) events was implemented
for each event type. Typical waveforms for each event type
under consideration are illustrated in Figure 2. As event locality
dictates severity on system measurements, it is important to
include data from each PMU for the duration of the event.

4.2 Construction and evaluation of PSEC

In order to construct the initial PSECmodel, 80%of the event
database consisting of the six aforementioned event types was
utilized as input data. The remaining 20% will be used to test the
accuracy of the PSEC model for data it does not have experience
with. In this study, the event database contains measurements

from each installed PMU, which equates to 261 features (29
installed PMUs × 9measurement variables per PMU). Following
the measurement subset creation procedure described in Section
C, each subset consists of 29 features. By employing LDA on each
individual subset, the dimensionality will be reduced from29 to 5
features (equating to C-1, where, in this study, C = 6). Therefore,
the dimensionality of the event database has been reduced from
261 to 45 features (5 extracted features per subset × 9 subsets).

To further reduce dimensionality, the k-fold cross-
validation-based SFS technique was utilized. This technique
selected the features that contribute the most information for
classification, thus yielding the lowest cross-validation error
CVE. The results for the SFS process are illustrated in Figure 3,
which highlights that the optimal number of features from the

FIGURE 2
PMU recordings for different event types.
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FIGURE 3
Cross-validation error for the number of features included in the classifier.

reduced event database to be used for PSEC training is 8, as,
beyond this,CVE begins to increase.The combined LDA and SFS
process reduces the dimensionality of the original event database
from 261 features to a smaller event training data set of eight
features.The eight selected features, SF, are presented in Table 1.
The subscript number relates to the feature extracted using LDA
for that variable. In other words, f3 relates to the third feature
extracted from the frequency subset. The features were chosen
in the following order: f1, Δϕ1, Δf1, Δf2, f3, Δv5,

Δϕ
Δt 4

, and Δf
Δt 1

.
The eight selected features were used as inputs to construct the
initial QDA-based PSEC model. To illustrate, conceptually, the
output of the initial PSECmodel, a two-dimensional scatter plot,
is presented in Figure 4. The scatter plot illustrates the reduced
event training data set for the first two features selected, f1 and
Δϕ1. The calculated event type class boundaries are illustrated
by the dashed black lines. It can be observed from Figure 4 that
each event type has it is own unique area. However, the three
inner event type classes (capacitor switching in/out and motor
start) have a small number of samples that overlap between
classes because these events have a limited effect on the f1 and
Δϕ1 variables and more on voltage variables, as illustrated in
Figure 2.

Numerical results for PSEC evaluation with regard to the
training time and accuracy are highlighted in bold typeface
in Table 2. Additionally, several different configurations of the
event training data set are presented, including the proposed
combination of LDA and SFS (eight features), the raw event
database (261 features), and LDA only (45 features). All
simulations were carried out in MATLAB 9.3 (R2017b) on a
third-generation Intel Core i5 processor with 12 GB RAM.

TABLE 1 Selected Features (SF) using CVE-based SFS method for
training data consisting of 80% of the data (322 events).

f Δf Δf
Δt

ϕ Δϕ Δϕ
Δt

v Δv Δv
Δt

SF f1 Δf1
Δf
Δt 1

Δϕ1
Δϕ
Δt 4

Δv5
f3 Δf2

From the results for the QDA-based PSEC presented in
Table 2, it can be observed that training time significantly
decreases from 32.8 s, using the raw event database, to
6.12 s, when solely LDA is employed. As expected, the fastest
configuration occurs when a combination of LDA and SFS is
employed on the event database, which yields a time of 3.06 s.
Regarding classification, it can be observed that there is a loss
of 0.02% in accuracy between using the raw event database and
the proposed combination of LDA and SFS, which is minimal.
Accuracy in this investigation is determined by the number of
correct classifications as a percentage of the total number of
classifications utilizing the training event data set.

As there is no theoretical conclusion on which classification
algorithm is superior, many algorithms are required to be
evaluated using the training data set. Therefore, Table 2 presents
a comparative study of numerical results for several classification
algorithms.These algorithms includeDT, LDA, SVM, andK-NN.

As the proposed method adopts an adaptive training
approach, which involves retraining after a successful
classification, the training speed is very important. Therefore,
as observed from Table 2, when using the raw event database,
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FIGURE 4
Conceptual two-dimensional results for the calculated event type class boundaries for the six event types included in the event database.

TABLE 2 Comparative study, evaluating the speed and accuracy ofmultiple classification techniques with different dimensionality reduction techniques
using 80% of the data (322 events) for training and 20% of the data (75 events) for testing.

Classifier Training Testing

Time (s) Accuracy (%) Accuracy (%)

Raw data LDA LDA + SFS Raw data LDA LDA + SFS Raw data LDA LDA + SFS

DT-100 Splits 29.62 10.40 5.12 100 99.98 99.96 100 98.67 100
DT-20 Splits 26.85 9.39 3.79 100 99.95 99.66 100 98.67 100
DT-4 Splits 27.86 7.75 3.39 97.8 94.83 94.83 90.67 77.33 77.33
LDA 33.40 6.28 2.96 100 99.95 99.48 100 97.33 97.33
QDA 32.80 6.12 3.06 100 99.92 99.98 90.67 98.67 100
SVM-Linear 235.16 124.61 108.2 99.99 99.99 99.98 100 96.0 97.33
SVM-Quadratic 213.09 118.13 95.3 100 100 100 100 96.0 97.33
1-NN 1568.66 247.42 4.67 100 100 100 97.33 96.0 93.33
10-NN 1559.73 236.63 9.52 99.98 99.95 99.96 97.33 96.0 90.67
100-NN 1388.81 235.21 32.97 98.92 99.23 99.45 96.0 94.67 84.0

The bold values represent the results of the proposed method.

all of the evaluated algorithms are too computationally expensive
but return highly accurate models (>97.8%). The DT and DA
approaches are comparable in computation speed and accuracy.
The computation cost for SVMandk-NNalgorithms is very high,
greater than 3.5 min for the SVM approaches and substantially
over 20 min for each k-NN approach. This reinforces the
requirement of dimensionality reduction techniques as a
pre-processing step for on-line PSEC.

When LDA was employed on the event database, it can
be observed from Table 2 that the computation time for each
classifier reduces significantly.However, in the case of theDAand

DT, this reduction in computation cost comeswith a reduction in
accuracy. This loss is minimal (<0.1%) except for a four-split DT
(2.97%decrease). It should be noted that the accuracy of the SVM
and k-NN either stay the same or increase slightly, but these still
experience high computation costs, ≈ 2 and 4 min, respectively,
and therefore could not update PSEC in a desirable time frame.

Finally, when a combination of LDA and SFS was
implemented, it can be observed that the discriminant
analysis techniques, LDA and QDA, are the fastest for model
construction, ≈ 3 s. Although these returned slightly lower
accuracy (0.02 and 0.52% for QDA and LDA, respectively)
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TABLE 3 PSEC results using 80% of the data (322 events) for training and 20% of the data (75 events) for testing.

Event No. events Event classification results (%)

CS-In CS-Out GD LT LL MS I

CS-In 7 100 0 0 0 0 0 0
CS-Out 7 0 100 0 0 0 0 0
GD 26 0 0 100 0 0 0 0
LT 6 0 0 0 100 0 0 0
LL 22 0 0 0 0 100 0 0
MS 7 0 0 0 0 0 100 0

FIGURE 5
PSEC classification results for six simulated case studies.

compared to quadratic SVM and 1-NN, the computation time
is less. The DT approaches all offer similar computation costs
to QDA and LDA. However, their accuracy has reduced. Finally,
althoughQDA ismarginally slower than LDA for training (0.1 s),
it has benefits over it with regard to its training accuracy (0.5%)
and was, therefore, chosen to be implemented in PSEC.

4.3 Classification of new events

After the construction of the initial PSEC model, it can now
be used to classify newly detected events in the power system.
Once an event has been detected in the system, the event data
are isolated at each PMU in the power system. During the
training stage, each sample from the newly detected event for
each PMU is arranged into measurement variable subsets. Using

the projectionmatrices,W, obtained in the training process, each
variable subset is reduced from 29 to 5 features. The features,
SF, selected in the training process using the SFS technique are
selected again and utilized as inputs to PSEC to predict the class
of each individual sample, xi, in the event, with each event sample
determined by the event type class whichmaximizes the function
Ĝ. Finally, the overall event is determined by the maximum
percentage of occurrence of each event type for the total samples
in the event, with a threshold of ≥99%, calculated based on the
accuracy of the QDA model, implemented to reduce the chance
of misclassification.

Full classification results achieved with PSEC for a number
of each simulated event type are displayed in Table 3. A
further column (I) has been added to the table to indicate the
percentage of events tested that returned inconclusive (i.e., the
max percentage of samples is <99% of all samples). Table 3
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FIGURE 6
PSEC results highlighting the effect of event severity.

concludes that the classification accuracy for each event type
implemented in the event database by the QDA-based PSEC
method is highly accurate (100%). Conceptual two-dimensional
results for an example of each event type considered in PSEC
are presented in Figure 5, presenting the previously calculated
event type class boundaries, calculated in Section B and depicted
in Figure 4. From Figure 5, it can be observed that, for each
of the six event types tested, PSEC could successfully be
classified, as all event samples are located within their respective
regions.

For completeness, the benchmarking evaluations on the
classification algorithmanddimensionality reduction techniques
conducted in Section B were also conducted to classify newly
detected events.This is provided in the testing column ofTable 2.
As dimensionality is reduced, the accuracy for newly detected
events experiences a decrease except forQDA,which experiences
an increase (from 90.67 to 98.67%).This rate is further increased
when incorporating SFS with LDA for dimensionality reduction.
Classification accuracy increases in an SVM, 100 and 20 split
decision tree-based approaches, when incorporating SFS with
LDA. LDA and a four-split decision tree classification approach
remain the same. Finally, as the dimensionality is reduced, all the
k-NN-based approaches decrease in accuracy.

The results in Table 2 show that when using a reduced
data set, QDA provides the greatest accuracy for testing (100%)
and can be trained in 3.06 s. This is 0.1 s slower than the
quickest classifier to be trained, LDA, but returns higher accuracy
using the training data set (0.5%) and testing data set (2.67%).

Considering computation cost and accuracy, QDA has the
potential to be improved and implemented in real time on live
PMU data.

5 Discussion

The proposed systematic approach for classifying
power system events has several advantages; namely, the
implementation of an adaptive method that allows the event
database to be updated and self-trained after the successful
classification of an event occurs. Also, the introduction of
dimensionality reduction techniques has been shown to reduce
the computational speed during the training of PSEC with a
minimal loss in classifier accuracy, 0.02%. It should be noted that
a detailed inspection of individual PMU signals would allow
the discrimination between each type of event. However, if
there are many PMUs to monitor, this becomes cumbersome.
Furthermore, determining an accurate threshold between each
of the events to allow automatic classification in real time is
not an easy task. The proposed automatic approach for event
classification has the potential to be used as input knowledge
for an intelligent control system to assist real-time decision-
making.

As mentioned previously, all PMUs in the system will
experience some disruption to power system measurements
during an event, with PMUs located closer to the event
experiencing greater change.Therefore, by using a representation
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of data from the whole system, local inaccuracies are smoothed,
making classification independent of PMU locations. Also, the
utilization of data frommultiple PMUs simultaneously increases
the reliability of the method compared to an individual PMU
approach. Additionally, as each event sample is determined,
PSEC allows automatic classification to begin as received at the
PDC, where the data transportation is in the sub-second range.
This could be beneficial as an early warning system to predict the
type of event occurring in the first number of samples before final
determination utilizing full event data.

An investigation into event severity on successful
classification is presented in Figure 6, where a large load loss
represents a loss of 993.6 MWof load; a small load loss represents
a loss of 112.4 MWof load; a large generation dip represents a loss
of 628 MW of generation; and a small generation dip represents
a loss of 98.7 MW of generation. Figure 6 shows that a small loss
leads to the power system measurements varying less and thus
being closer to other event-type classes. However, the larger the
loss, the easier the classification due to its location in relation
to the class boundaries. This makes the classification of smaller
events more challenging.

6 Conclusions and future work

This study presents a proposed methodology for classifying
wide-area power system events for several regularly occurring
power system events. The methodology was based on QDA and
utilized a statistically obtained subset of wide-area synchronized
measurements collected from a network of PMUs located on a
power system. The methodology is extensively tested for a large
number of simulated case studies. Results are presented and
compared with other classifiers, including SVM, k-NN, DT, and
LDA.

The proposed method utilizes a systematic consideration
of the frequency, voltage, and phase angle signals, as well as
the difference and rate of change to these variables between
buses, to achieve successful classification. In order to optimize
performance, with respect to speed and accuracy, a combination
of LDA (to maximize the discriminatory information between
event classes) and SFS (to select variables that contribute the
most information) techniques are utilized. By considering the
results for accuracy and training speed presented in Tables 2,3,
the QDA-based PSEC method has the potential to be improved
and implemented in real time in future work.

It is worth noting that the sequential forward selection
method can identify the most important features and buses
(eight features and five buses in this case) that are necessary

for the classification algorithms. These simulation results
demonstrated that there is no need to have PMU installed in
each bus in a practical power system for event classification
purposes.

More specifically, future work will look at enhancing some
aspects of the classifier. Firstly, the focus should be on improving
and expanding the simulated power system event database by
including other events, such as transformers energizing, BESS
charging/discharging, and the simulation of specific faults in the
power system. Secondly, the training time for the construction
of the initial PSEC model is presented in Table 2, illustrating
a training time of ≈3 seconds. However, this will increase
dramatically with retraining occurring after each event. One
possible solution for reducing this training time is implementing
a recursively trained classifier. This will allow the previously
trained classifier model to be used in retraining the new
classifier instead of beginning from the start each time.Therefore,
implementing recursive learning algorithms will be investigated
to further optimize PSEC. Finally, the proposed method can
be considered moderately theoretical due to its use of off-
line simulated PMU data only. Therefore, future work will
investigate the response of PSEC to live real-world PMU
data.
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