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To operate the power grid safely and reduce the cost of power production, power-
load forecasting has become an urgent issue to be addressed. Although many power
load forecasting models have been proposed, most still suffer from poor model training,
limitations sensitive to outliers, and overfitting of load forecasts. The limitations of current
load-forecasting methods may lead to the generation of additional operating costs for
the power system, and even damage the distribution and network security of the related
systems. To address this issue, a new load prediction model with mixed loss functions
was proposed. The model is based on Pinball–Huber’s extreme-learning machine and
whale optimization algorithm. In specific, the Pinball–Huber loss, which is insensitive
to outliers and largely prevents overfitting, was proposed as the objective function for
extreme-learning machine (ELM) training. Based on the Pinball–Huber ELM, the whale
optimization algorithm was added to improve it. At last, the effect of the proposed hybrid
loss function prediction model was verified using two real power-load datasets (Nanjing
and Taixing). Experimental results confirmed that the proposed hybrid loss function load
prediction model can achieve satisfactory improvements on both datasets.

Keywords: outliers, whale optimization algorithm, load forecasting, Pinball–Huber regression, extreme-learning
machine

1 INTRODUCTION

As an integrated system that can optimize the allocation of energy resources according to
the regional energy structure and energy reserves, integrated energy systems have become
an important way to accelerate the global sustainable energy transformation (Wu et al., 2019,
2021). Power-load forecasting is an important part of the power system (Ahmad et al., 2020;
Yang et al., 2022b). Accurate power-load forecasting can arrange the start and stop of generator sets
more economically and reasonably to maintain power supply and demand balance (Shi et al., 2021),
and maintain the safety and stability of power grid operation (Dynge et al., 2021). In addition,
it can effectively reduce the cost of power generation, transmission, and distribution; improve
economic and social benefits; and ensure the operation of the society (Chu et al., 2021; Lin and
Shi, 2022). The existing mainstream power load forecasting methods are mainly divided into two
categories: statistical (Rehman et al., 2022) and artificial intelligence methods (Aslam et al., 2021).
Factors such as seasons (van der Meer et al., 2018), climates (Alipour et al., 2019), and temperature
(Yang et al., 2022d) have a direct impact on power load. Statistical methods are a very effective
solution to such systems with trends, seasons, and periodic changes. Many scholars have carried
out research on power load forecasting based on these methods such as the auto regressive
(AR) (Louzazni et al., 2020), auto regressive moving average (Yan and Chowdhury, 2014), and auto
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regressive integrated moving average models (Asadi et al., 2012).
The statistical methods usually take power load or energy as
a single input series, while the artificial intelligence methods
consider the relationship between the output and multiple
influencing factors. Under the condition of sufficient historical
samples, artificial intelligencemethods usually have high forecast
accuracy and strong generalization ability, such as the support
vector machine (Yang et al., 2022a) and neural networks (NNs)
(Huang et al., 2002; Oreshkin et al., 2021). Extreme-learning
machine (ELM) is an emerging generalized single-hidden-layer
feed-forward neural-network-learning algorithm, which can
generate hidden variable parameters at random to calculate
output weights, and it is widely used in forecast. Liu and
Wang (2022) proposed a transfer-learning-based probabilistic
wind power forecasting method. Model-based transfer learning
is utilized to construct the multilayer extreme-learning machine.
The enhanced Crow search algorithm–ELM (ENCSA–ELM)
model was proposed to accurately forecast short-term wind
power to improve the utilization efficiency of clean energy in
Li et al. (2021). ELM is more efficient, has lower computational
costs, and has greater generalization than shallow learning
systems.

Both time series and artificial intelligence methods usually
take the loss function as the training objective. The existing
literature mainly uses the mean absolute error (L1 loss), mean
absolute percentage error (MAPE), and root mean square
error (RMSE) to evaluate the effect of power load forecasting.
Furthermore, to develop an algorithmic framework capable
of handling data containing outliers, a robust loss function,
Huber–Loss (Ge et al., 2019), has been introduced. Compared
with other loss functions, this function has different sensitivity
to abnormal data and is more tolerant to noise. Furthermore, the
loss function can adjust the robustness of the model according to
the tuning parameters 𝜏, and it can better suppress the influence
of outliers.

However, these improved evaluation indicators are still mostly
based on the absolute value criterion, only considering the size of
the error, but not the direction of the error.They also do not fully
account for the different consequences of positive and negative
errors. In fact, the positive and negative errors of the power load
forecasting affect the reliability and economy of power differently,
so the error evaluation indicators should be differentiated. The
improvement of the abovementioned traditional indicators is
mainly reflected in the improvement of the mathematical form,
the introduction or construction of new statistics, and the
construction of a multiindicator evaluation system.

Hybrid algorithmic frameworks have been developed
and widely used in power-load forecasting. However, these
algorithmic frameworks have hyperparameters that need to be
carefully optimized before forecasting. The optimized values
of these algorithms determine the performance of the forecast
(Yang et al., 2022c). Grid search, gradient descent, and cross
validation are commonly used methods for optimizing the
parameters of forecast models. The studies have also proposed
nature-inspired meta-heuristic optimization algorithms to
efficiently optimize these parameters. Geng et al. (2015)
proposed a load-forecasting model hybridizing the seasonal

SVR and chaotic cloud simulated annealing algorithm to
receive more accurate forecasting performance. Xie et al. (2020)
proposed a method combined Elman neural network and the
particle swarm optimization for the short-term power load
forecasting. Heydari et al. (2020) proposed a hybrid model that
considers price and load forecasting, including variational mode
decomposition, generalized regression NNs, and gravitational
search algorithms.

In summary, the current requirement for power load
forecasting is increasing from the following perspectives:
1) the forecasting accuracy needs to be improved; 2) a
robust loss function is required to develop machine learning
framework that can fully account for the different consequences
of positive and negative errors and outliers; and 3) more
advanced optimization methods are needed to improve
model parameters. The contributions of this article are
the following: 1) A new hybrid model was proposed to
improve the load-forecasting accuracy and prevent overfitting,
which combines the Pinball–Huber–ELM with WOA. In
specific, in our proposed Pinball–ELM, WOA is employed
to search weights and thresholds, which provide good
training results for load prediction; and 2) an improved
ELM was developed to handle data with outliers. Due
to its excellent properties, the Pinball–Huber loss was
incorporated into the ELM as the objective function for its
training.

The rest of this article is organized as follows. In Section 2,
we review the basic ELM and propose our powerful ELM.
Next, Section 3 introduces WOA. Section 4 then illustrates
our proposed hybrid loss function load prediction model and
presents the model-training process for cross validation of
tuning parameters. In Section 5, the testing of the proposed
hybrid load-forecastingmodelWOA–Pinball–Huber–ELMusing
two datasets from Nanjing and Taixing is described. Section 6
concludes the article.

2 PINBALL–HUBER EXTREME-LEARNING
MACHINE

2.1 Extreme-Learning Machine
Unlike traditional NNs, ELM is a single-hidden-layer feed-
forward NN that randomly selects its input weights and
thresholds. The number of nodes in the input layer, hidden layer,
and output layer are N, L, and M, respectively. Under the action
of the activation function, the hidden layer output matrix H is as
follows:

H =
[[[

[

g (ω1 ⋅ x1 + b1) g (ω2 ⋅ x1 + b2) ⋯ g (ωL ⋅ x1 + bL)
g (ω1 ⋅ x2 + b1) g (ω2 ⋅ x2 + b2) ⋯ g (ωL ⋅ x2 + bL)
⋮ ⋮ ⋱ ⋮

g (ω1 ⋅ xN + b1) g (ω2 ⋅ xN + b2) ⋯ g (ωL ⋅ xN + bL)

]]]

]N×L,
(1)

where x is the input matrix, ω is the input weight matrix,
and b is the threshold in the hidden layer, which are
randomly generated in ELM. The output T of the ELM is then
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T = [t1, t2,…, tN]M×N =
[[[

[

t1j
t2j
⋮
tMj

]]]

]M×L

=
[[[[

[

∑t
i=1
βi1 ⋅ g (ωi ⋅ xj + bi)

∑t
i=1
βi2 ⋅ g (ωi ⋅ xj + bi)
⋮

∑t
i=1
βiM ⋅ g (ωi ⋅ xj + bi)

]]]]

]M×L

(j = 1,2,…,N) , (2)

where β is the correlation weight matrix between the hidden and
output layers.

ELM mainly uses the randomly generated ω and b, and
it selects the least square method to complete the calculation
of the β. The algorithm does not need to perform multiple
solving operations, which greatly reduces the complexity of the
operation.

According to the two theorems in Zhang et al. (2020), when
the activation function is differentiable, it is not necessary to
adjust all parameters in ELM. At last, the solution of β can be
obtained as follows:

β =H−1T
′
, (3)

where H−1 is the generalized inverse matrix of H.

2.2 Regression Loss Function
The regression loss function represents the gap between the
predicted and actual value. If the gap is larger, the value of the
loss function is larger; otherwise, its value is smaller. During the
optimization process, through continuous learning and training,
the value of the loss function is gradually reduced, so that the
performance of the model is continuously improved.

2.2.1 L2 Loss
In the training of forecast models, the most commonly used loss
function is L2 loss (mean squared error), which is defined as

L2 = 1
M

M

∑
i=1
(yi − ̂yi)

2, (4)

where M is the number of output samples in the training set,
yi represents the expected output of the training set, and ̂yi
represents the forecast output of the training set. For models
using the L2 loss, the convergence is fast when the error is large.
However, the L2 loss is sensitive to outliers, which affects the
performance of the forecast model.

2.2.2 L1 Loss
The L1 loss (mean absolute error) is more robust to outliers than
the L2 loss, which is defined as

L1 = 1
M

M

∑
i=1
|yi − ̂yi|, (5)

where M is the number of output samples in the training set,
yi represents the expected output of the training set, and ̂yi
represents the forecast output of the training set. Although the L1
loss enhances robustness, it is not smooth and nondifferentiable
at zero, and it converges slowly.

2.2.3 Huber Loss
Huber loss is a combination of the L2 and L1 losses, which
includes a parameter δ. δ determines the degree of inclination of
the Huber loss on the L1 and L2 losses; that is, it is used to control
the quadratic and linear range of the loss function.TheHuber loss
combines the advantages of the L1 and L2 losses, and it is more
robust to outliers than the L2 loss, while converging faster.

Huber loss reduces the penalty for outliers, so it is a commonly
used robust loss function. It is defined as

ρδ (r) =
{
{
{

1
2 r

2 |r| ≤ δ

|r|δ − δ
2

2 |r| > δ,
(6)

where r represents the absolute value of the difference between
the expected output and predicted output. δ represents the tuning
parameter, which is used to determine the behavior of the model
to deal with outliers.

2.2.4 Pinball Loss
Pinball loss is mostly used in regression analysis problems, which
is related to the quantile distance and is not sensitive to outliers.
The Pinball loss used is defined as

L𝜏 = {
(yi − ̂yi)𝜏 yi ≥ ̂yi
( ̂yi − yi) (1− 𝜏) yi < ̂yi,

(7)

where 𝜏 ∈ [0,1] is the target quantile to adjust for the positive
and negative errors in the forecast. yi and ̂yi are defined as above.
When 𝜏 = 0.5 , the Pinball loss is the same as the L1 loss, and it can
be considered as a generalized L1 loss. When 𝜏 ≠ 0.5 , the Pinball
loss has different penalties for positive and negative errors.

2.2.5 Proposed Pinball–Huber Loss
To implement different penalties for positive and negative errors
during training, and enhance the robustness of the loss function,
thereby improving the accuracy, the proposed improved loss
function named the Pinball–Huber loss is

V (r) =

{{{{{{{{
{{{{{{{{
{

1
2𝜏r

2 −δ ≤ r < 0
1
2 (1− 𝜏) r

2 0 ≤ r ≤ δ

𝜏(|r|δ − δ
2

2 ) r < −δ

(1− 𝜏)(|r|δ − δ
2

2 ) r > δ,

(8)

where 𝜏 ∈ [0,1] is the target quantile to adjust for the positive
and negative errors in the forecast. δ represents the threshold,
which is used to determine the behavior of themodel to deal with
outliers. r represents the absolute value of the difference between
the expected output and predicted output. Compared withHuber
loss, the Pinball–Huber loss maintains its low sensitivity to
outliers in the data and implements different penalties for positive
and negative errors, considering the direction of errors. In power
load forecasting, since there are often outliers in power load data,
and positive and negative errors should be distinguished, our
proposed Pinball–Huber is expected to improve the forecasting
accuracy and convergence speed.
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2.3 Pinball–Huber–Extreme-Learning
machine
The presence of data outliers can affect the prediction
performance of ELM. The Pinball–Huber loss obtained by
introducing the pinball feature based on the Huber loss can
effectively distinguish the effects of positive and negative
errors and further improve the accuracy of prediction, while
maintaining robustness. Therefore, this study introduces the
Pinball–Huber loss into the traditional ELM and uses the
Pinball–Huber loss as the objective function to train the ω and b
of ELM. When dealing with power data with outliers, the model
shows quite good robustness, and greatly improves the ELM
effect regarding the prediction accuracy. The improved model
named the Pinball–Huber–ELM is as follows:

minω,b MHL = 1
M ∑

M
i=1V (ri)

s.t. V (r) =

{{{{{{{{
{{{{{{{{
{

1
2𝜏r

2 −δ ≤ r < 0
1
2 (1− 𝜏) r

2 0 ≤ r ≤ δ

𝜏(|r|δ − δ
2

2 ) r < −δ

(1− 𝜏)(|r|δ − δ
2

2 ) r > δ
ωi = [ωi1,ωi2,…,ωiN]

T

b = [b1,b2,…,bL]T .

(9)

3 WHALE OPTIMIZATION ALGORITHM

The whale optimization algorithm was inspired by the
unique bubble net prey method of the whale population
(Mirjalili et al., 2016). It searches for the optimal solution
through the following three mechanisms: surrounding the prey,
searching for the prey, and attacking the prey by the spiral bubble
net.

3.1 Surround Prey
1) Whale swimming toward the optimal position

Whale groups can find out the coordinates of their prey and
surround them during hunting. In WOA, it is assumed that the
position of the optimal individualwhale in the current population
is the position of the prey, and the optimal whale is surrounded
by other whales. The mathematical model is

D = |C ⋅X∗ (t) −X (t)| , (10)

X (t + 1) = X∗ (t) −A ⋅D. (11)

In Eqs. 10 and 11, t is the current iteration; X∗(t) is the best-
obtained solution in the previous iteration; X(t) is the solution in
the current iteration; andX(t) is the solution in the next iteration.
The specific formulas of the coefficient vectors A and C are

A = 2a ⋅ r2 − a, (12)

C = 2 ⋅ r1. (13)

In Eqs. 12 and 13, r1, r2 are the two numbers randomly
selected in the range of [−1,1], and a is the convergence factor.
As the solution is updated, the value of a decreases linearly from
2 to 0. The formula is

a = 2− 2( t
tmax
), (14)

where tmax is the maximum number of iterations.
Equation 11 shows that it can be updated on the basis of the

current optimal individual position (X∗,Y∗) and continue to
search for the individual position (X,Y). Y∗ represents the fitness
value obtained from position X∗. Y represents the fitness value
obtained from position X. By adjusting the values of the A and C
vectors, we can achieve various positions around the best position
relative to the current position. Any individual whale is allowed to
update its position near the current optimal solution and simulate
surrounding the prey.

2) Whales swimming toward random locations
In the process of searching for prey, the method that the

vector A changes with the iterative process can be used. In effect,
humpback whales randomly explore the solution space based
on each other’s positions. Therefore, A is used in the global
exploration phase to update the whale position so as to stay away
from the current individual when the random value is >1 or <1.

In contrast to the local development phase, in the global
exploration phase, the positions of individual whales are
upgraded based on randomly selected individuals, rather than
the best whales found so far. This mechanism focuses on
exploration. Thus, when |A| > 1, the WOA algorithm performs
a global exploration operation. During the prey-hunting phase,
the location of the prey is unknown to the whale population.
This mechanism focuses on optimization. Thus, when |A| < 1,
the whales obtain the location of the prey through collective
cooperation. Whales use random individual positions in
the population as navigation targets to find food, and the
mathematical model is described as follows:

D = |C ⋅Xrand −X| , (15)

X (t + 1) = Xrand −A ⋅D. (16)

In Eqs. 15 and 16, Xrand represents the position of the whales
randomly selected in the current whale population.

The WOA algorithm begins execution with a random set of
whale swarm locations. The shrinking envelope is achieved as
the convergence factor a decreases. The fluctuation range of the
coefficient vector A also decreases as the convergence factor a
decreases. That is, when the convergence factor a decreases from
2 to 0 during the iteration, the fluctuation of the coefficient vector
A also decreases; its range is [−a,a].

In each iteration, the whale individual updates its position
using the randomly selected whale position information or the
whale individual position information with the best fitness value
obtained so far. As the parameter a decreases from 2 to 0,
the transition of the algorithm between the global exploration
phase and local development phase is realized. When |A| > 1, we
randomly select a whale in the population; when |A| < 1, we select
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the currentwhalewith the best fitness value to update the position
of the individual whale. Given the value of p, WOA has the ability
to swap between helical or circular motion. At last, satisfying a
termination condition terminates the WOA algorithm.

3.2 Bubble Net Chase
Two methods were used to build a mathematical model of the
predation behavior of whales in bubble nets. The first is the
reduction of the wraparound mechanism, which is achieved by
reducing the value of a in Eq. 14, where the fluctuation range
of A also decreases accordingly. In other words, A represents
a random value in the interval [−a,a], where a decreases from
2 to 0 during the iteration. Defining a random value of A in
[−1, 1], the new position of the individual whale can be defined
somewhere between the whale’s original position and the current
best whale position. The shrinking and wrapping mechanism of
whale group predation can be represented by a two-dimensional
space (0 ≤ A ≤ 1). This space contains all possible positions to
transform from (X,Y) to (X∗,Y∗).

The second is the spiral update position mechanism. The
method first calculates the distance between the whale located
at (X,Y) and the prey located at (X∗,Y∗). Between the location
of the whale and prey, the researchers used a spiral equation
to mimic the spiral of a humpback whale shape motion. Its
mathematical model is described as

X (t + 1) = D
′
⋅ ebl ⋅ cos (2πl) +X∗ (t) . (17)

In Eq. 17, D
′
= |X∗(t) −X(t)| represents the distance between

the optimal whale individual and current whale individual in the
tth iteration; b represents the constant of the logarithmic spiral
equation; l is the random value between [−1, 1] number; and “⋅”
is element-wise multiplication.

Whales follow a spiral path while swimming around their
prey in a shortened circle. To obtain a model that simulates this
behavior, it is assumed that there is a 50% probability during the
optimization process to randomly choose between the encircling
mechanism and spiral updating position mechanism to update
the positions of individual whales. Its mathematical model is

X (t + 1) = {
X∗ (t) −A ⋅D, p < 0.5
D
′
⋅ ebl ⋅ cos (2πl) +X∗ (t) , p ≤ 0.5. (18)

In Eq. 18, p represents the random number between [0, 1].
After the bubble net chase pattern, the humpback whales begin
to randomly search for prey.

4 PROPOSED FORECASTING MODEL

In this section, we propose a hybrid loss function power load
forecastingmodel.Thismodel combines a powerful ELMwith an

improved Pinball–Huber loss function. To optimize the effect of
the improved algorithm,weneed to obtain the optimal solution of
the tuning parameters of Huber loss through two cross validation
in advance.

At last, the implementation flow of our hybrid loss function
prediction model is as follows:

1) We obtain the original data and preprocess them. We divide
the data into training and test sets appropriately.

2) The training set is then divided into five subsets. Any
nonrepetitive part of the five subsets (i.e., any subset) is
used as the training set; the remaining four parts of the
training set (i.e., the remaining subsets) are used as the
test set. We compute MSEi using the test set and employ a
different subset as the test set each time. We use five-fold
cross validation for parameters δ and 𝜏. We divide the value
range of a into five equal parts. Then we randomly pick
a value from each interval and obtain five values, denoted
as [0,0.2] , [0.2,0.4] , [0.4,0.6] , [0.6,0.8] , [0.8,1]. Experiments
were performed five times with different values for each test
set used.We use five δ-values and five 𝜏-values to combine 25
experimental data.

3) We first assign empirical parameter values, then apply 2 five-
fold cross-validations to average the 25 values of MSEi to
obtain the final averageMSE, calledCV,CV = (∑ki=1MSEi)/k.
Twenty-five MSEi’s were compared, and the minimum value
of MSE is selected to be substituted into the Pinball–Huber
loss regression function.

4) In the training set, we take the minimum value of the
Pinball–Huber as the goal, use WOA to solve the optimal
parameters ωi,bj of ELM, and substitute them into formula
to obtain βjk.

5) The input weight of the model, the threshold of intermediate
nodes, and the output weight of the model are all brought
into the ELM model, and then the input of the test set is
substituted into the model to obtain the prediction output of
the test set.

5 CASE STUDIES

We performed power-load forecasts for Nanjing and Taixing
power data. We recorded Nanjing’s power load data (total load
power of the grid/MW every 15 min) every half an hour. Nanjing
data have 1920 data points (2003.2.18.00:00–2003.3.29.23:30).
The training set included 1,152 data points, and the test set
included 768 data points. We record Taixing’s electricity load
data (daily electricity consumption/10,000 kwh) every other day.
Taixing data have 1,175 data points (2018.5.13–2021.8.2). The
training set includes 705 data points, and the test set includes 470
data points. The specific situation is shown in the Table 1.

An evaluation is performed in this subsection; the
performance of our proposed WOA–Pinball–Huber–ELM
algorithm is evaluated using the power load data of Nanjing and
Taixing, as shown in Tables 2 and 3. The actual electrical load
power and the WOA–Pinball–Huber–ELM-based electrical load
forecast result graph forNanjing’s data are shown in Figure 1.The
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TABLE 1 | Characteristics of experimental data in Nanjing and Taixing.

Dataset Size Min Max Median Mean Std.

Nanjing Total data 1920 2,362.152 5,276.500 3,879.217 3,802.732 607.709
Training data 1,152 2,564.228 5,151.652 3,991.129 3,860.526 635.217
Testing data 768 2,362.152 5,276.500 3,775.403 3,716.042 553.120

Taixing Total data 1,175 1,210.872 2,875.318 1,893.728 1,902.926 249.797
Training data 705 1,210.872 2,516.598 1,799.584 1,795.856 203.690
Testing data 470 1,424.918 2,875.318 2,040.657 2,063.533 225.466

TABLE 2 | Evaluation index of Nanjing data is obtained from three prediction algorithm experiments.

Train Test

RMSE MAE MAPE RMSE MAE MAPE

WOA-ELM 191.52 178.92 0.04 202.42 187.02 0.04
WOA-L1-ELM 168.93 120.63 0.04 194.06 155.35 0.04
WOA-L2-ELM 161.20 120.82 0.04 193.94 152.58 0.04
WOA-Pinball-ELM 182.92 141.66 0.04 192.49 150.48 0.04
WOA-HUBER-ELM 172.50 136.45 0.04 188.21 149.17 0.04
WOA-Pinball-Huber-ELM 153.69 115.11 0.03 186.05 146.58 0.04

TABLE 3 | Evaluation index of Taixing data is obtained from three prediction algorithm experiments.

Train Test

RMSE MAE MAPE RMSE MAE MAPE

WOA-ELM 58.56 43.78 0.02 74.04 60.25 0.02
WOA-L1-ELM 59.50 41.47 0.02 69.67 58.04 0.02
WOA-L2-ELM 57.71 41.68 0.02 73.91 57.45 0.02
WOA-Pinball-ELM 58.49 42.00 0.02 70.79 51.62 0.02
WOA-HUBER-ELM 57.44 41.30 0.02 73.36 54.72 0.03
WOA-Pinball-Huber-ELM 57.62 41.58 0.02 69.57 51.48 0.02

actual electrical load power and theWOA–Pinball–Huber–ELM-
based electrical load forecast result graph for Taixing data are
shown in Figure 2.

As far as the power load data in Nanjing are concerned,
we use the proposed algorithm (WOA–Pinball–Huber–ELM)
and the compared algorithms (WOA–ELM, WOA–L1–ELM,
WOA–L2–ELM, WOA–Pinball–ELM, WOA–Huber–ELM) for
experiments, and the experimental results are shown in Table 2.
From the experimental results of the test set in Table 2, the four
(improved based on the basic WOA–ELM) algorithms and the
basicWOA–electric power data predicted by ELMalgorithm.The
above four improved algorithms corresponding to the calculated
three evaluation indicators (RMSE, MAE, and MAPE) data are
mostly better than the three calculated by the basic WOA–ELM
algorithm.

The Pinball–Huber loss function is obtained by
combining the Pinball and Huber loss. We improved
the WOA–Pinball–Huber–ELM, WOA–Pinball–ELM,

WOA–Huber–ELM, WOA–L1–ELM, and WOA–L2–ELM
algorithms from the Pinball–Huber, Pinball loss, Huber loss,
and L1 and L2, respectively. Furthermore, we used these
algorithms to predict the electric power data and calculate the
corresponding three evaluation indicators. The three evaluation
indexes calculated by the WOA–Pinball–Huber–ELM algorithm
were better than the three evaluation indexes calculated by
the improved WOA–Pinball–ELM and WOA–Huber–ELM
algorithms. In addition, the three evaluation indexes calculated
by the WOA–Pinball–Huber–ELM algorithm were better
than the three evaluation indexes calculated by the improved
WOA–L1–ELM andWOA–L2–ELM algorithms.

Considering the power load data of Taixing, the experimental
results are presented in Table 3. From the experimental results
of the test set in Table 3, it can be seen that the four improved
algorithms and the basicWOA–ELMalgorithmpredict the power
load prediction power data. The power data obtained by the
above four improved algorithms correspond to the calculated
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FIGURE 1 | Actual power and prediction result graph based on WOA–Pinball–Huber–extreme-learning machine (ELM) in Taixing.

FIGURE 2 | Actual power and prediction result graph based on WOA–Pinball–Huber–ELM in Taixing.

three evaluation indicators RMSE, MAE, and MAPE data than
the three calculated using the basic WOA–ELM algorithm. The
evaluation index data are small, and the effect is better.

It is obvious from Table 3 that the three evaluation indexes
calculated using the WOA–Pinball–Huber–ELM algorithm
were better than the three evaluation indexes calculated by
the improved WOA–Pinball–ELM and WOA–Huber–ELM
algorithms. At last, the three evaluation metrics calculated by
the WOA–Pinball–Huber–ELM algorithm are better than those
calculated by the improved WOA–L1–ELM and WOA–L2–ELM
algorithms.

6 CONCLUSION

To ensure the safe operation of the grid, we must confirm
that the power-load forecast is accurate and effective. However,
the complexity of the grid structure brings many difficulties
to future power-load forecasting, and the current popular
forecasting methods cannot handle all the difficulties. To
address this challenge, this study proposed a new hybrid loss
function load predictionmodel, theWOA–Pinball–Huber–ELM.
It is a combination of the Pinball–Huber ELM and whale
optimization algorithm. The Pinball–Huber loss, which is
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insensitive to outliers and largely prevents overfitting, is treated
as the objective function for our optimized ELM training.
Based on two real power load forecasting datasets in Nanjing
and Taixing and comparative experiments with two improved
algorithms, our WOA–Pinball–Huber–ELM model shows great
advantages in handling outliers and improving forecasting
accuracy.

In future work, our proposed framework can be employed
for other forecasting problems in environmental science
(Zhang et al., 2021, 2022) and bioinformatics (Miao et al., 
2022).
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