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Residential loads are essential resources, and they can participate in grid scheduling
through aggregation, with great potential. However, inherent uncertainties challenge the
realization of accurate load aggregation (LA), leading to the failure to fully play a role in grid
operation. In this context, this paper analyzes the influence of the probability of residents
participating in LA on the actual aggregation effect. Firstly, the LA problem is modeled, and
the optimization objective is equivalently transformed from minimizing the mismatch
between the actual load regulation and the target to minimizing the sum of variances
of the overall response probabilities. Response probabilities of residents are then simulated
based on the β distribution model, and various typical distributions can be generated by
modifying only two hyperparameters. In order to evaluate the actual aggregation effect, a
multi-armed bandit model that can be used for LA is adopted, and an evaluation
framework is designed. The simulation results show that for different probability
distributions, the smaller the sum of variances of all residents’ response probabilities
are, the more accurate aggregation can be achieved.
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1 INTRODUCTION

Modern power grids are transitioning to a low-carbon energy system, and traditional coal-fired units
are gradually retiring (Zhou et al., 2021). Renewable energy sources (RES) represented by
photovoltaics and wind power have gained unprecedented development opportunities.
According to IRENA, the total installed capacity of global RES in 2021 is 3064 GW, accounting
for 38%, with a year-on-year increase of 257 GW (IRENA, 2022). The widespread access of a high
proportion of RES will become the fundamental feature of new power systems in the future.
However, the output of RES is random and uncertain, and large-scale grid connections will bring
significant challenges to grid scheduling. In recent years, many severe power outages have occurred,
such as “2019·8·9” in the United Kingdom (Sun et al., 2019) and “2020·8·14” in California (Hu et al.,
2020).

To solve these problems, researchers pay attention to the flexible, controllable loads with
increasing proportion, which have great potential to regulate their operating power quickly
without affecting users’ comfort (Chen et al., 2018; Qi et al., 2020). In this context, load
aggregation technology emerged as the times required. Appropriate control strategies aggregate
many scattered demand-side resources into a whole managed by load aggregators (Burger et al.,
2017). Through specific electricity prices or incentives means, users are urged to regulate their power
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consumption patterns to assist grid scheduling (Sun et al., 2017).
For residential thermostatically controlled loads (RTCLs) with
energy storage properties (Hao et al., 2015), such as air
conditioners and water heaters, the power regulation speed is
faster than traditional thermal power plants and hydropower
plants. Moreover, RTCLs have flexible control methods and low
response costs, which are ideal for participating in LA (Gong
et al., 2020).

In order to fully utilize the effect of RTCLs on the grid, a vital
requirement is to achieve accurate and reliable load aggregation
(Saleh et al., 2017). However, this is a challenging problem: the
residents’ response behavior to the load regulation signal is
uncertain (Mathieu et al., 2013), which is affected by many
factors, such as incentives (Qi et al., 2020), weather (Kou
et al., 2021), electricity usage habits (Baek et al., 2021), and
the load aggregator’s knowledge of these factors is limited.
Accurately estimating these uncertainties is essential.
Overestimating will reduce the utilization of RTCLs while
underestimating will blindly send load regulation instructions,
which will cause the actual aggregation to deviate from the target
and bring risks to the power grid (Syrri and Mancarella, 2016).

Much research has been done on the uncertainty of residents’
response behavior. Li et al. (2017) derived the relationship
between aggregated power and temperature based on the first-
order thermal parameter model of RTCLs and established an
approximate aggregation model of RTCLs. Luo et al. (2020)
established the uncertainty model of the load regulation by
analyzing the characteristics of different types of loads and
using the probability method and fuzzy theory. Sun et al.
(2020) considered the uncertainty of electricity consumption
habits to establish a user preference model and obtained a
probability estimate of load regulation amount through
Bayesian inference. Gong et al. (2020) designed a hierarchical
robust control mechanism to achieve precise power tracking by
aggregating RTCLs in uncertain time-varying environments.

Load aggregation is a behavior that residents voluntarily
participate in. Most of the existing studies only model the
regulation power of residents in the LA scenario, ignoring the
relevant research on their response probabilities. In addition, in
existing pilots, in order to improve the probabilities of users
actively participating in LA, blind incentives such as currency
are often used, resulting in high costs. Therefore, analyzing the
impact of the residents’ response probability distribution on the
aggregation effect can provide a reference for load aggregators to
formulate plans and make more effective use of RTCLs.

In order to fill the above research gap, aiming at the scenario of
residential loads aggregation, this paper derives and verifies the
mapping relationship between the response probability and the
actual aggregation effect. The main contributions of this paper
include the following:

1) A response probability generation model based on the β
distribution is proposed, which can simulate a variety of
typical distributions by modifying only two
hyperparameters, and derives the relationship between the
aggregation effect and the response probability distribution
through theoretical analysis.

2) An evaluation framework of the load aggregation effect based
on the multi-armed bandit (MAB) model is designed, which
can be utilized to analyze the effect of response probability on
the aggregation effect.

The rest of the paper is organized as follows: Section 2models the
load aggregation problem fromaprobabilistic perspective and derives
a preliminary theory. In Section 3, a simulation method of residents’
response probability distribution is proposed, and the corresponding
analysis is carried out. Section 4 designs a framework for evaluating
the effect of LA, and based on this, a case study is carried out to verify
our theory in Section 5. Section 6 concludes this work.

2 LOAD AGGREGATION MODEL

Residents’ response to aggregation instructions is uncertain,
influenced by various factors, such as age, education, and
temperature. The concrete manifestation of this uncertainty is
whether the user agrees to regulate the load. This paper abstracts
it from the perspective of probability and sets the probability that
user i agrees to regulate as pi, that is, the response probability, and
can regulate the load of 1 unit. The binary variable Xi is
introduced to characterize the response result. Obviously, Xi

obeys the Bernoulli distribution, that is, Xi ~ Bern(pi):

Xi � { 1 pi

0 1 − pi
(1)

According to the properties of Bernoulli distribution, when the
instruction is issued to resident i, the expected value of its load
regulation E (Xi) = pi, and the variance σ2i � pi(1 − pi).

We consider such a scenario: in the t-th event, the power
system needs to curtail the loadD, and the load aggregator should
select a subset St ⊆ [n] among all n users in the area An to send
instructions. The goal is to minimize the deviation Gt(t) between
the actual curtailment and D:

minGt(t) � (∑
i ∈ St

Xt,i −D)2

(2)

Since Xt,i is a random variable, Eq. 2 should be modified to
minimize the mathematical expectation of Gt(t). Moreover, the
expectation operator can be removed by rigorous derivation, and
the simplified result is as follows:

min
St⊆[n]

EGt(t)5min
St⊆[n]

⎛⎝ ∑
i ∈ St

pi −D⎞⎠2

+∑
i∈St

pi(1 − pi) (3)

Eq. 3 is a combinatorial optimization problem, and the
decision variable is the set St of selected residents. However, it
is NP-hard, and only approximate algorithms can be adopted.
Especially when the number of residents n and the target D are
large, many residents need to be selected each time, which will
produce a “Combinatorial Explosion.”

It can be seen from Eq. 3 that the actual load aggregation
deviation Gt(t) at the t-th event is affected by three factors, the
target D, the selected set St, and the response probability set Pt =
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{pi: i∈St}. These three are not independent of each other becauseD
affects the determination of St, and St determines Pt. It should be
noted that the power grid may be in various working states, such
as different levels of frequency fluctuations, which results in a
time-varying value of D issued to the load aggregator in An rather
than a fixed value. Under this background, in order to minimize
Gt(t) for any D, two critical aspects should be considered: 1) the
determination of St, that is, the users’ selection algorithm, mainly
affects the first term on the right side of Eq. 3; 2) the set of
response probabilities of all residents in An: P = {pi: ∀ i ∈[n]},
affecting the second term.

The core of this paper is not how to solve St accurately but
mainly focuses on analyzing the effect of P on the
aggregation effect, which is essentially more fundamental
than studying the precise selection strategy. For the
convenience of analysis, intuition is to approximately
transform Eq. 3 into the following optimization problem
and propose our theory:

min ∑
i∈[n]

pi(1 − pi)5min ∑
i∈[n]

σ2i � f(P) (4)

Theorem 1. For M different P residents groups Ψ = {P1, P2, . . . ,
PM}, the one with the smallest sum of variances can achieve the
most accurate load aggregation, defined as the optimal response
probability distribution P*:

Pp � {Pu|∀Pv ∈ P: f(Pu)≤f(Pv)} (5)
For rigorous analysis, the probability sets ∀ P∈Ψ studied in this

paper should all have the same mean pmean,
�P1 � �P2 � . . . � �PM � pmean, which is an important constraint.
For instance, for two probability sets �P1 and �P2 with mean values
of 1 and 0.1, respectively, given the same regulation targetD, it is clear
that the response of the latter will be poor or even no response,
resulting in a high aggregation mismatch. In this case of inequality, it
is pointless to analyze still the effect of the probability distribution on
the aggregation, so it should be restricted to have the same mean.

From the non-negativeness of the variance σ2i , it can be seen
that the sum f(P) ≥ 0, if and only if pi is 0 or 1, the equal sign is
true, as shown in Eq. 6. Therefore, for sets with the mean pmean,
the optimal distribution P* that can achieve the minimum
aggregation mismatch is given by Eq. 7.

f(P) � 05pi ∈ {0, 1},∀pi ∈ P (6)
Pp � {Pu

∣∣∣∣P1
u � RPu

P0
u:

∣∣∣∣P1
u

∣∣∣∣ � [npmean], ∣∣∣∣P0
u

∣∣∣∣ � n − ∣∣∣∣P1
u

∣∣∣∣} (7)
where the symbol " R" represents the complement, and Ψ1

u and Ψ0
u

represent the subsets inPuwhose values are 0 and 1, respectively. “|·|"
is defined as the cardinality of a finite set, and " [·]" means rounding.

3 RESPONSE PROBABILITY SETS
GENERATION METHOD

The core of this paper is to analyze the impact of residents’
response probabilities set P on the actual aggregation effect,

and a response probability generation model should be
designed to simulate P. The shape of the probability
distribution is infinitely different, not all cases can be
obtained, and it is not necessary. Therefore, this paper
adopts the β distribution, which is vital in the field of
machine learning, which is a parametric probability
distribution model that only contains two parameters, α and
β > 0, usually denoted as Y ~ Be (α, β). By setting the
parameters, a variety of typical probability distributions can
be simulated, all within the interval (0, 1), and then M × n
random sampling is performed to generate a set Ψ containing
M kinds of P. Some properties of the β distribution are as
follows:

3.1 Probability Density Function

f(Y; α, β) � Γ(α + β)
Γ(α)Γ(β)Yα−1(1 − Y)β−1 (8)

where Γ(z) is the Γ function.

3.2 Expectation and Variance

μ � E(Y) � α

α + β
(9)

Var(Y) � E(Y − μ)2 � αβ(α + β)2(α + β + 1) (10)

Assuming that the elements P withinΨ have the same mean μ,
combined with Eq. 9, we can derive the relationship between α
and β:

β � α(1
μ
− 1) (11)

Therefore, a probability set P is generated based on the β
distribution, denoted by P ~ Be [α, α(1/μ-1)]. Only by
modifying the parameter α, the set Ψ of M probability
distributions can be obtained. In addition, the β distribution
has another property: as α increases monotonically, the variance
Var(P) of ∀ pi ∈ P will decrease monotonically according to the
trend of the inverse proportional function, which means that pi
gradually approaches the fixed mean μ, and the degree of
dispersion decreases. The relationship between the two is as
follows:

Var(P) � αβ(α + β)2(α + β + 1) � μ2(1 − μ)
α + μ

(12)

Further, when the number of residents n is large enough, we
can simplify Eq. 4 to eliminate the summed symbol Σ and
analyze the analytical relationship between Eqs 4, 12. Before
that, two assumptions are listed first due to the limited
sample size.

Assumption 1. The mean of the probability sample pi is equal to
the expectation of the β distribution, which P follows:
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∑
i∈[n]

pi/n � μ

Assumption 2. The sample mean of the probability square p2
i is

equal to the expectation of the distribution, which follows:∑
i∈[n]

p2
i/n � E(p2)

Theorem 2. The relationship between the sum of variances f(P) of
the probabilities and the variance Var(P) of the β distribution is:

f(P) � n[μ(1 − μ) − Var(P)] � nμ(1 − μ)
1 + μ

α

(13)

As can be seen from Eq. 13, the trend of change between the
two is precisely the opposite. f(P) is a monotonically increasing
function of α, which means that the aggregation mismatch
becomes larger and less precise as the α increases.

4 EVALUATION FRAMEWORK OF LOAD
AGGREGATION EFFECT

In this section, we first introduce a CUCB-Avg algorithm that
can be adopted to select user sets in load regulation events,
and based on this, we design a framework to evaluate the

impact of the residents’ response probability set P on the LA
effect.

4.1 Users Selection Algorithm
The response probability set P of residents is unknown to the
load aggregator, and it is a complex problem how to select
appropriate users to send the regulation instructions in load
regulation events. This is similar to the setting of the classic
MAB problem: for a slot machine with multiple arms, after each
arm is pulled, it will obtain a payoff that obeys an unknown
distribution. How can the gambler obtain the maximum
cumulative payoff within a limited number of pulls? If each
resident corresponds to an arm, its actual curtailment Xi can be
regarded as the reward of this arm. The common denominator is
to understand the uncertainty of an arm/user to make a choice.
Unlike the MAB problem, the goal of LA is to minimize the
mismatch Eq. 2.

MAB is an essential framework for dealing with uncertainty
problems, and typical sub-methods include CUCB (Chen et al.,
2013), UCB1 (Auer et al., 2002), and LinUCB (Li et al., 2010),
etc., For the LA scenario, this paper introduces an improved
CUCB, the CUCB-Avg algorithm (Li et al., 2020), to select the
residents set St. This method considers the sample mean �pi of pi
and assigns it a confidence interval. From an optimistic point of view,
the actual value of pi is estimated with upper confidence bound and
bounded to [0,1],

Gi(t) � min⎛⎝�pi(t − 1) +
���������

α ln t
2Ti(t − 1)

√
, 1⎞⎠ (14)

where α is a positive constant used to weigh the sample mean and
confidence interval. Ti (t-1) is the number of times user i has been
selected in the past (t-1) events. Based on Eq. 14, the CUCB-Avg
algorithm mainly includes three steps to select users: 1)
calculating Gi(t) for each user i, 2) selecting the highest mt

users in descending order and sending instructions, 3)
updating incrementally according to the actual response
feedback. The specific process of the algorithm is as follows:

Algorithm 1. CUCB-Avg

4.2 Evaluation Framework
In load regulation events, due to the uncertainty and randomness
of residents, CUCB-Avg’s estimation of the actual probability pi is
not entirely accurate, and there is still a mismatch between the
actual aggregation amount and the target D. In this paper, the

FIGURE 1 | Evaluation framework.
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normalized root mean square error (NRMSED) is adopted to
evaluate the effect of aggregation, where Dact,k is the actual
aggregation amount of K times for the target D.

NRMSED �

�������������∑K
k�1

(Dact,k −D)2
K

√√
/D (15)

Based on this, we propose a framework for evaluating the
impact of response probability on the aggregation effect, as shown
in Figure 1.

Step 1. Set M values {α1, α2, ..., αM } of the parameter α, and
calculate β according to Eq. 11. Generate the corresponding sets
of response probabilities for all residents based on the β
distribution Ψ = {P1, P2, . . . ,PM};

Step 2. Train the CUCB-Avg model with different P as inputs;

Step 3. Based on the algorithm’s understanding of uncertainties,
the Monte Carlo method is adopted to perform K events, and
NRMSED is calculated according to Eq. 15;

Step 4. Compare NRMSED corresponding to different α, and
evaluate the effect of P on the aggregation effect.

5 CASE STUDY

To verify the theories derived in the previous section, we
conduct simulations based on the proposed evaluation
framework to analyze the impact of different sets P of
response probabilities on the actual aggregation effect. We
focus on the area An with n = 1000 residents, equipped with
intelligent terminals that can participate in LA, and the
adjustable capacity contracted with the load aggregator is
2.5 kW, which is equivalent to 1 unit load.

5.1 Setting of Response Probability Sets
Before analysis, Ψ should be generated containing various
probability distributions based on the β distribution model.
Additionally, we set all distributions with the same mean
pmean = μ = 0.7. Specifically, it includes the following steps:

1) Set the parameter α in the interval [0.01, 5], and take M = 20
values in equal steps;

2) Calculate β based on Eq. 11;
3) Generate n random numbers following the β distribution,

which correspond to the response probabilities of n residents,
and the set is Pj, j = 1, 2 . . . , M;

As α increases,Var(P) is shown in Figure 2. It can be seen from
the figure that Var(P) is monotonically decreasing and similar to
the hyperbolic function, which is consistent with Eq. 12.

Through the above steps,Ψ ofM probability distributions with
the same mean μ is generated. Due to a large amount of data, it is
not clear to visualize the dataset with a histogram. Therefore, we
adopt a curve graph and heat map as follows:

FIGURE 2 | The variance of different β distributions.
FIGURE 3 | Curve graph.

FIGURE 4 | Heat map.
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1) Curve graph. For Pj, sort the response probability pi in
descending order, and draw M curves. The horizontal axis
represents the residents, and the vertical axis represents the
response probability, as shown in Figure 3:

It can be seen that as α increases, the curve gradually slopes
and approaches the horizontal dashed line with a mean μ = 0.7.
This is because the variance Var(P) gradually decreases, and the
value of pi shrinks to 0.7.

2) Heat map. It is similar to the previous graph but is equivalent
to looking down on the X-Y plane on the Z-axis of the three-
dimensional coordinate system. M curves are arranged in
parallel at equal intervals. Different colors represent the value
of pi. Y-axis represents α, and the corresponding M color
bands are drawn, as shown in Figure 4:

Figure 4 shows the distribution of each Pj more intuitively.
When α = 0.01, P1 has almost only probability values at both ends
of the color band, namely 0 and 1. As α grows, the probabilities
corresponding to the color of the middle segment gradually
increase and approach 0.7.

In addition, the variation of f(P) with the parameter α should
also be supplemented, as shown in Figure 5. It should be noted
that although Figures 2, 5 are both about variance, their
meanings are entirely different: the former means that α will
produce different β distributions, and Var(P) of the distribution
is calculated based on Eq. 10; the latter is related to the setting that
the load regulation follows the Bernoulli distribution, and the
sum f(P) of variances is calculated based on Eq. 4. The
mathematical relationship between the two is shown in Eq. 13.

5.2 Load Aggregation Deviation
CUCB-Avg model is trained for T = 1000 times and performs
K = 300 Monte Carlo simulations to calculate NRMSED.
Additionally, to highlight the superiority of CUCB-Avg,
here we introduce a conventional random selection (RS)
method as the benchmark (Chen et al., 2020). RS only

focuses on the average pmean of P. For a given target D,
calculate the number of users NRS to be selected based on
Eq. 16, and then send instructions randomly.

NRS � D/pmean (16)
The relative relationship between the target D and the number

of residents n (or the maximum adjustable capacityQ) also affects
the aggregation mismatch. To eliminate this effect and purely
analyze the function of P, we set D to be 0.8, 1.2, and 1.6 MW,
respectively. NRMSED is calculated based on CUCB-Avg and RS,
as shown in Figures 6–8.

As can be seen from the three figures,

1) The curve obtained by CUCB-Avg is significantly lower than
RS, achieving smaller NRMSED and better performance.

2) The curve corresponding to CUCB-Avg rises significantly,
consistent withTheorem 1 andTheorem 2: a larger αwill lead
to a larger f(P) and a worse aggregation accuracy. Especially

FIGURE 5 | The sum of variances corresponding to different α FIGURE 6 | NRMSED of D = 0.8 MW.

FIGURE 7 | NRMSED of D = 1.2 MW.
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when α is 0.01, the error achieved by CUCB-Avg is only
0.15%. Moreover, as α increases, the two curves gradually
approach because the variance of the β distribution decreases,
making all pi close to μ, and St selected by the two methods are
similar, resulting in an approximate aggregation effect.

3) The curve corresponding to RS fluctuates wildly, and there is no
apparent upward trend when D is small. This does not mean
that P does not affect the aggregation effect. It is because RS has
been randomly selected without a strategy, and a different set of
users is determined in eachMonte Carlo simulation. WhenD =
1.6 MW is close to the maximum adjustable capacity Q �
2.5npmean kW = 1.75MW, almost all users are selected to
send instructions. Therefore, the effect of P on the aggregation
effect is more prominent, showing a slight upward trend.

4) As D increases, the gap between the two curves gradually
narrows. When D is small, only a part of users need to be
selected to send instructions, and CUCB-Avg strategically
determines St, so it has more obvious advantages than RS.

6 CONCLUSION

With the transition from modern power grids to low-carbon energy
systems, residential load resources on the demand side play an

increasingly important role. Aiming at the uncertainty of residents’
response behavior in the LA scenario, this paper first models the
problem. In order to facilitate the analysis of the response probabilities,
the optimization objective is equivalently transformed from
minimizing the mismatch between the actual load regulation
amount and the target to minimizing the sum of variances of the
overall response probabilities. Then a response probability generation
model based on the β distribution is proposed, which can simulate a
variety of typical distributions only by modifying two
hyperparameters. Moreover, explore the connection between the β
distribution and the sum of probabilities variances.

Furtherly, this paper adopts a CUCB-Avg algorithm whose
performance is better than the conventional random method,
which can be utilized to select appropriate users to send
instructions in each event. Based on this, a framework for
evaluating the effect of the sum of variances on the
aggregation effect is designed. The simulation results show
that the smaller the sum of variances for different probability
distributions, the more accurate load aggregation can be achieved.

Residents’ response probabilities can be improved through
incentives. Future work will study incentives allocation strategies
for limited costs to improve the probability distribution and
further enhance the aggregation effect.
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