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With the urgency of environmental protection, wind power and photovoltaic (PV) projects
are continued to be implemented, and the proportion of renewable energy in the power
grid will be higher and higher. Therefore, wind power and PV also began to participate in
the regional power grid frequency regulation (FR) and have gradually replaced the role of
thermal power units in the power grid. To study the characteristics of renewable energy in
frequency modulation, an automatic generation control (AGC) model of wind power and
photovoltaic participating in the power grid FR is established. At the same time, an
equilibrium optimization is proposed to allocate the total power in real-time so as to
improve the FR performance by quickly obtaining the optimal power distribution scheme.
The simulation results of the proposed model show that the proposed method is feasible.
At the same time, the proposed method is compared with the genetic algorithm (GA),
which proves the superiority of the proposed method.
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INTRODUCTION

At present, global energy demand is growing steadily. To achieve environmental protection and
sustainable development, a wave of renewable energy has been set off around the world. The grid
connection of a large number of renewable energy sources brings great operating pressure to the
stable operation of the power grid (Zhang et al., 2021; Zhang et al., 2022; Zhang et al., 2020a; Huo and
Xu, 2022; Li et al., 2022). At the same time, the International Energy Agency’s (IEA) electricity
market report, released in January, said strong economic growth in 2021 has led to a 6% increase in
global electricity demand, resulting in tight supplies of natural gas and coal, and record-high carbon
dioxide emissions from the global power sector. The results of the report attracted wide attention
from all countries, and at the same time, they further encouraged countries to speed up the
construction of renewable energy sources. Moreover, according to recent data from the IEA,
renewable energy construction has not been significantly affected by the pandemic, and global
renewable energy generation continues to grow rapidly (Electricity Market Report, 2022). Therefore,
to adapt to the trend of social development, it is essential to conduct relevant research on the
optimization of the frequency regulation (FR) of renewable energy. This will help improve the power
supply reliability and high-quality power supply of the power system and, meanwhile, reduce the
phenomenon of abandoning light and wind on the generating side, thus reducing the FR pressure of
traditional hydro/thermal power plants (Wu et al., 2021).

FR technology is critical to the power grid. Its purpose is to realize the output adjustment of each
generator set in the control area through the controller when the power grid is disturbed by load
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changes so as to ensure that the frequency of the power system is
always maintained in a safe range, which is the inevitable premise
for the power system to achieve quality and quantity assurance
and reliable power supply (Chen et al., 2020; Zhang et al., 2019).
The traditional power system FR task is mainly undertaken by
thermal power and hydropower units, whose inertia of regulation
is too large to quickly respond to the power input command.
Meanwhile, the response time of renewable energy is faster.

Therefore, from the point of view of the need and necessity of
social development, the participation of renewable energy in the
FR of a power grid is the general trend and the necessity of social
development. Renewable energy can participate in the FR of the
power grid by reserving part of the spare capacity, to improve the
FR response speed of the power grid.

At present, most of the research on the FR technology of
electric systems focuses on the design and improvement of

FIGURE 1 | AGC multi-source coordinated control model.

FIGURE 2 | Response models. GRC: generation ramp constraint.
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the controller (Li et al., 2020; Zhu et al., 2022; Arya, 2018).
To deal with the automatic generation control (AGC)
problem of a multi-area power system, a fuzzy integer
order PID controller is proposed by Arya (2018a). Liu
and Liu (2020) used adaptive proportional integral
differential (PID) control to improve the control accuracy
and response speed of the AGC system of PV stations. In the
study by Hasan et al. (2022), a robust self-tuned AGC
controller is proposed to effectively control the load
fluctuation and wind fluctuation of wind power. In the
study by Arya (2018), a fuzzy PID controller is proposed
to deal with the problem of the AGC system. At the same
time, sliding mode control (Mohanty, 2015), fuzzy logic
control, and other controllers have been studied and applied
to FR so as to improve the performance of FR of the power
grid (Yousef, 2015). In addition, the booming development
of intelligent optimization algorithms has brought more
choices to controller parameter settings (Çelik, 2020;
Nayak et al., 2022). In the study by Shanmugasundaram

(2017), an artificial bee colony algorithm was used to set the
controller parameters of the PID controller so as to improve
the reliability of the system. In the study by Lal et al. (2016),
the gray wolf optimization (GWO) algorithm was used to
obtain the optimal gain of the PID controller for the
interconnected water-fire power system so as to improve
the overall performance of the system. In the study by Gupta
and Kumar (2018), the AGC of a multi-source power system
with an energy storage system was studied, and the
controller parameters were set by the particle swarm
optimization (PSO) algorithm. In addition, it also
contains the genetic algorithm (GA) (Al-Hamouz et al.,
2011; Hakimuddin et al., 2020) and differential evolution
(DE) algorithm (Gorripotu et al., 2016; Madasu et al., 2018;
Xi et al., 2022). However, most of the aforementioned kinds
of literature pay little attention to the synergistic control
between renewable energy and conventional FR units. In the
study by Cui et al. (2019), the objective function including
wind power, photovoltaic, and other resource income is
constructed so as to realize the collaborative control
between wind power, photovoltaic, and other FR
resources. Zhang et al. (2017) studied the coordinated
control of wind power, photovoltaic, and traditional FR
resources. However, it is difficult to achieve accurate
control of the power grid frequency due to simple modeling.

In general, AGC is a complex and difficult problem. In
practical engineering applications, power distribution is
usually carried out according to the adjustable capacity
rather than optimization, which cannot achieve the best

TABLE 1 | Transfer function.

Category Transfer function

Nonreheat steam 1
1+T1s

1
2

Reheat steam 1+T2s
(1+T3s)(1+T4s)(1+T5s)

Hydro (1−T6s)(1+T7s)
(1+0.5T6s)(1+T8s)

Wind turbine 1
1+T9s

FIGURE 3 | Optimization schematic diagram of the EO algorithm.
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control effect. In this study, the equilibrium optimizer (EO) is
used to optimize the FR instruction so as to achieve the optimal
cooperative control of AGC. Meanwhile, to prove the
feasibility and superiority of the EO, we compared EO with
the proportion method (PROP) and genetic algorithm (GA),
thus proving its superiority.

In the overall structure of this article, in the second section,
we introduced the FR model adopted in detail, which has been
recognized and adopted by the majority of scholars; in the
third section, the EO adopted is introduced in detail, and its
optimization process is given. The fourth section gives the
initial simulation data and simulation results and analyzes the
simulation results in brief. In the end, this article gives the
conclusion and expatiates on the main contributions of this
study.

MODEL

Control Framework
In this study, a two-zone load frequency control (LFC) model
based on extension is used to verify (Zhang et al., 2020b). The
model framework is shown in Figure 1. The framework has
two areas; each control area includes the proportional-
integral (PI) controller and power optimization
distribution two links. The frequency deviation and power
deviation of the link line are converted into regional control
deviation by the PI controller, which is taken as the input. In
addition, the total real-time regulated power (△P) of the
whole area is used as the output. Then, △P is allocated to
each AGC FR unit using a power allocation algorithm.
Compared with the AGC FR system dominated by
hydropower units and thermal power units, this study will
make full use of the regulation potential of renewable energy
with a fast response speed. Meanwhile, wind and light
abandonment and other phenomena are reduced so as to
improve the FR effect of the AGC FR system.

AGC Unit Dynamic Response Model
An appropriate dynamic model is very important to accurately
describe the power response process of the unit after receiving the

TABLE 2 | Parameters of transfer functions.

Unit Type Parameter

1 Coal T2 = 5, T3 = 0.08, T4 = 10, and T5 = 0.3
2 Liquefied natural gas T2 = 2, T3 = 0.05, T4 = 5, and T5 = 0.2
3 Hydro turbine T6 = 1, T7 = 5, and T8 = 0.513
4 Wind turbine T1 = 0.01
5 Photovoltaic T1 = 0.01

TABLE 3 | Main parameters.

Unit Td (s) △Prate △Pmax (MW) △Pmin

1 60 30 MW/min 50 −50 MW
2 20 18 MW/min 30 −30 MW
3 5 150 MW/min 20 −10 MW
4 1 - 15 −5 MW
5 1 - 10 −10 MW

FIGURE 4 | Result of optimization when △PL = 80 MW. ACE: area
control error; CPS: control performance standard.
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power regulation instruction. According to different types, the
dynamic response model includes not only the common links
such as capacity adjustment, climbing rate, and FR delay but also
the transfer links with energy conversion (Yu et al., 2011; Datta
and Senjyu, 2013). In this study, the frequency-domain model is
shown in Figure 2. Td is FR delay. Its general form is shown in
Table 1. The power output in the time domain can be obtained by
calculating the input power, as shown as follows:

ΔPout
i (t) � L−1⎡⎣ Gi(s)

s(1 + Ti
ds) ·∑

N

k�1[e−ΔT·(k−1)s ·Din
i (k)]⎤⎦, (1)

Din
i (k) � ΔPin

i (k) − ΔPin
i (k − 1), (2)

ΔPout
i (k) � ΔPout

i (t � k · ΔT), (3)
where i is the ith unit; k is the kth discrete control cycle; ΔT is the
AGC control period, which is generally 1–16 s.

Optimized Mathematical Model
In the AGC optimal cooperative control model established in this
study, its optimization objective is to improve performance. In
order to achieve the aforementioned objectives, the control
objective is to minimize the power response deviation, as
shown in the following figure.

minf � ∑N

j�k∑n

i�1
∣∣∣∣ΔPin

i (j) − ΔPout
i (j)∣∣∣∣. (4)

For the aforementioned considerations, various constraints are
required, as shown as follows.

ΔPin(k) � ∑n
i�1
ΔPin

i (k), (5)

ΔPin(k) · ΔPin
i (k)≥ 0, i � 1, 2, L, n, (6)

ΔPmin
i ≤ΔPin

i (k)≤ΔPmax
i , , i � 1, 2, L, n, (7)∣∣∣∣ΔPin

i (k) − ΔPin
i (k − 1)∣∣∣∣≤ΔPrate

i , , i � 1, 2, L, n, (8)
where ΔPin is the power regulation instruction, and ΔPrate

i is the
maximum climbing rate of AGC units.

EQUILIBRIUM OPTIMIZATION

The EO used in the study is a heuristic algorithm (Faramarzi
et al., 2020). The algorithm is mainly inspired by the control
volume mass balance model. Compared with other heuristic
optimization algorithms, the EO algorithm effectively balances
the relationship between exploration and exploitation and has
attracted extensive attention since its appearance

(Ahmadipour et al., 2022; Wang et al., 2021; Soliman et al.,
2021; Alham et al., 2022). The optimization principle of the EO
algorithm is similar to the PSO algorithm. The mathematical
representation of the optimization process of the EO algorithm
is as follows:

Step 1. Initialization

The first step in the optimization process of EO is initialization
as shown as follows:

Cinitial
i � Cmin + randi(Cmax − Cmin), i � 1, 2, , n, (9)

where n is the number of total particles.

Step 2. Equilibrium pool

In general, the equilibrium state is considered to be globally
optimal. The algorithm determines equilibrium candidate
solutions when searching in the search space. These candidate
particles are the four currently best-performing particles with the
arithmetic mean of the four particles. The four equilibrium
candidate solutions are helpful to improve the exploration
ability, and the arithmetic mean is helpful in improving the
mining ability. The five equilibrium candidates form the
equilibrium pool:

�Ceq,pool � { �Ceq(1), �Ceq(2),, �Ceq(3), �Ceq(4), �Ceq(ave)}. (10)

Step 2. Exponential term(F)

�F � e− �λ(t−t0), (11)

t � (1 − Iter

Max iter
)(a2 Iter

Max iter)
, (12)

where a2 is a constant value. In addition, to ensure convergence,
the algorithm is also considered:

�t0 � 1
�λ
ln( − a1sign( �r − 0.5)[1 − e− �λt]) + t, (13)

where a1 � 2 and a2 � 1. According to Eqs 11, 12, Eq. 10 can be
expressed as follows:

�F � a1sign( �r − 0.5)[e− �λt − 1]. (14)

Step 4. Generation rate (G)

TABLE 4 | Result of optimization.

△PL (MW) Algorithm |Δf | |ACE| CPS1 (%) Accuracy (%) Power error
(MW)

80 PROP 0.0356 Hz 7.7678 MW 194.69 82.83 630.05
GA 0.0331 Hz 7.4915 MW 195.53 86.43 275.53
EO 0.0323 Hz 7.4895 MW 195.82 86.67 264.01
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In the EO algorithm, G is the most important one. Its update
rules are as follows:

�C � �Ceq + ( �C − �Ceq). �F + �G
�λV

(1 − �F). (15)

Thecollaborationof all equilibriumcandidateparticles on sampleparticles
in the optimization process of the EO algorithm and how they affect
concentration update are shown in Figure 3 as a conceptual sketch.

CASE STUDIES

Simulation Model
In this study, simulation verification is carried out in the two-
region load frequency control model under IEEE standards,
and a single equivalent unit in control area A is replaced with
five FR units of different types, as shown in Figure 1.
Meanwhile, Tables 2, 3 give the main parameters. The
AGC control period is set to 4 s. To verify the superiority
of the EO algorithm, PROP and GA are introduced to
compare. To ensure a fair comparison of control effects
between algorithms, the population size of GA and EO
algorithms was set to 10, respectively.

Step Power Disturbance of −80MW
To test the optimization performance of EO, the step power
disturbance of △PL = 80 MW is applied to region A in this
example. The comparison of online optimization results between
the EO algorithm and PROPmethod is shown in Figure 4. As can
be seen from Figure 4, after power instruction allocation is
optimized by the EO algorithm, the variation range of regional
control deviation decreases due to changes in the regulating
output of the unit, resulting in changes in the tracking curve
of regional total power regulation, making the actual total output
curve closer to the command output curve. At the same time,
compared with the PROPmethod, the EO algorithm can obtain a
smaller power deviation and avoid an overshoot of total power
instruction. Meanwhile, wind power and PV with fast response
speed can quickly balance power disturbance by assuming more
power disturbance.

In this study, in order to verify that EO is better than other
methods, EO is presented in Table 4; the optimized result with
the other two methods, including |ACE|, |Δf|, and CPS1, said the
average in the process of simulation, respectively. As shown in
Table 4, the intelligent optimization algorithm can greatly reduce
the power bias, thus significantly improving the response
performance. At the same time, compared with the GA
algorithm, the optimization results of the EO algorithm are
more excellent, which proves that the EO algorithm is more
suitable for solving the optimal cooperative control problem of
renewable energy participation in the FR process.

Step Power Disturbance of −50MW
The step power disturbance of △PL = −50 MW is applied to
region A in this example. The comparison of online optimization
results between the EO algorithm and PROP method is shown in
Figure 5. As can be seen from Figure 5, after power instruction
allocation is optimized by the EO algorithm, the variation range
of regional control deviation decreases due to changes in the

FIGURE 5 | Result of optimization when △PL = −50 MW. ACE: area
control error; CPS: control performance standard.
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regulating output of the unit, resulting in changes in the tracking
curve of regional total power regulation, making the actual total
output curve closer to the command output curve. At the same
time, compared with the PROP method, the EO algorithm can
obtain a smaller power deviation and avoid overshoot. In
addition, wind power and PV with fast response speed can
quickly balance power disturbance by assuming more power
disturbance.

In this study, in order to verify the EO is better than other
methods, EO is presented in Table 5; the optimized result with
the other two methods, including |ACE|, |Δf| and CPS1, said
the average in the process of simulation, respectively. As
shown in Table 5, the intelligent optimization algorithm
can greatly reduce the power bias, thus improving the
response performance index of the system. Moreover,
compared with the GA algorithm, the optimization results
of the EO algorithm are more excellent, which proves that the
EO algorithm is more suitable for solving the optimal
cooperative control problem of renewable energy
participation in the FR process.

CONCLUSION

To deal with the control problem of renewable energy
participation in FR of the regional power grid, an optimal
cooperative FR method based on the EO algorithm is
proposed in the study.

1) The multi-source cooperative FR control model of the
regional power grid is constructed, which provides a
reference model for renewable energy to participate in the
regional power grid FR. In order to improve the dynamic
response performance, renewable energy is preferentially

involved in the secondary FR of the regional power grid at
the initial stage of FR.

2) An optimization method of regional power grid multi-source
optimal cooperative control based on an EO algorithm is
designed. This method can not only meet the real-time control
requirements of AGC but also obtain a high-quality frequency
control scheme stably and quickly, thus effectively improving the
dynamic response performance of computers in the whole area.
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NOMENCLATURE

AGC automatic generation control

EO equilibrium optimization

FR frequency regulation

GWO grey wolf optimizer

IEA international energy agency

LFC load frequency control

PROP proportion method

PV photovoltaic
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