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The performance of the actuator is becoming increasingly important in the ultra-precision
stage. However, the traditional Lorentz motors with given mechanical parameters cannot
provide enough force for the next-generation motion stage in the semiconductor industry
since they achieve a physical limit of power factor. To tackle this problem, this study
develops a novel-driven approach and its control strategy for high-dynamic stages.
Explicitly, the proposed method utilizes a linear reluctance motor as an actuator, which
could promote the continuous thrust significantly. A heuristic optimization-based
Bouc–Wen model is established to describe the nonlinear behavior of the novel
actuator. Also, a flux control algorithm based on the integral sliding mode is derived
and adjusted for precision thrust generation. Comparative simulations on a specific linear
reluctance motor confirm the effectiveness and superiority of the proposed method and
show that it has the ability to conquer the force nonlinearity of the novel actuator.

Keywords: reluctance actuator, Bouc–Wen model, flux control, integral sliding mode control, TLBO
(teaching–learning-based optimization)

1 INTRODUCTION

To increase the throughput, the precision motion stage in lithography machine has to operate at high
speed and high acceleration, which requires a lower movingmass or larger driven force (Boeren et al.,
2020; Kuang et al., 2020; Huang et al., 2021; Voorhoeve et al., 2021; Kuang et al., 2022). Voice coil
motor is widely used in nano-accuracy motion stages because of its advantages in high force linearity
and low stiffness as contactless direct actuators (Song et al., 2018; Li L. et al., 2019; Liu et al., 2020;
Song et al., 2022). However, this kind of actuator is reaching physical limits considering the
maximum force to the equivalent load ratio and the corresponding copper loss ratio. Thus, it is not
the best choice for driving the next-generation nano-positioning stage. For example, the reticle stage
of a state-of-the-art photolithography scanner must accelerate at tens of g’s. Thus, actuators that
deliver high force with high efficiency have to be developed.

Electromagnetic technology has been widely concerned because of its advantages of high output
density (Xu et al., 2022a; Xu et al., 2022b), a new type of reluctance motor is proposed. Different from
the Lorentz motor, the force of the reluctance motor is not linearly proportional but a square of the
excitation current. So it could bring about larger force to current ratio and achieve significantly
higher power densities and lower dissipations (Cigarini et al., 2020; Ito et al., 2020; Moya-Lasheras
et al., 2020; Burgstaller et al., 2021; Moya-Lasheras et al., 2021; Al Saaideh et al., 2022). As a promising
new candidate, the reluctance motor also brings various intractable issues. From the control point of
view, it includes a variety of nonlinear problems, including the output force proportional to the
square of the current, inversely proportional to the stroke of the motor, and the hysteresis effect with
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the multi-value rate. These strong nonlinearities make their
control difficult and the force output of reluctance motors
cannot be accurately predicted, thus limiting their application
in nano motion stages. Among them, the force hysteresis caused
by soft ferromagnetic materials is the most notable nonlinearity
that has to be considered in precision applications (Cigarini et al.,
2019). The idea of this paper is to deal with the multi-loop rate-
related hysteresis nonlinearity of the reluctance motor through a
smart method, that can achieve the purpose of high-precision
control of the flux. This kind of nonlinearity is rarely discussed in
permanent magnetic motors, but it exists in piezoelectric
actuators widely and attracts lots of attention (Adriaens et al.,
2000; Chen et al., 2017; Nie et al., 2022; Zhang et al., 2022). To
describe the characteristics of hysteresis, various model structures
are proposed. The most representative methods include physical
modeling, mathematical operator modeling, and intelligent
modeling (Li M. et al., 2019; Al Janaideh et al., 2021; Zhang
et al., 2021; Cheng et al., 2022; Flores et al., 2022; Otieno et al.,
2022). Specifically, the Bouc–Wen model sorted by the physical
method is the most popular one since its parameters have definite
physical meaning and are easily obtained (Ismail et al., 2009;
Hassani et al., 2014). Once the mathematical expression of the
hysteresis is obtained, the corresponding compensation algorithm
can be developed. Among the existing methods, one of the most
commonly used approaches is the inverse compensation. Qin
proposed an adaptive hysteresis compensation method to solve
the nonlinearity of PEAs at a high frequency for inexperienced
users (Rakotondrabe, 2011). Micky presented an inverse
multiplicative structure for the Bouc–Wen based model,
reducing the computation load of the preexisting methods (Qin
et al., 2022). Didace adopted the inverse Bouc–Wen model as
feedforward controller, and the proposed compensation strategy
was verified in a 3-DOF piezotube scanner (Habineza et al., 2015).
Although the inverse compensation scheme is useful to reduce
nonlinearity, a common drawback of this method is that a precise
inverse model has to be constructed to counteract the effect of
hysteresis. However, hysteresis usually contains more than one

loop (Liu et al., 2016). Thus, the corresponding inverse model with
high accuracy is hard to establish.

Different from the inverse compensation method, this paper
treats hysteresis as a model uncertainty or a kind of internal
disturbance, and develops a robust controller to obtain a precise
force output from the reluctance motor. As a popular variable
structure control algorithm, the sliding mode control (SMC)
makes the system states move towards a predesigned sliding
surface and then maintains their movement on the surface (Gu
et al., 2015). Once the states reach the sliding surface, the system
dynamics is determined by the sliding mode and has a certain
robustness to the external disturbance and model variations.
Since SMC is easy to implement in embedded systems, this
paper will develop an SMC-based control strategy.

The rest of the paper is organized as follows: a novel precision
motion stage driven by the linear reluctance motor is described in
section 2, and the force performance is determined. Then, a
Bouc–Wen model is established by using the simulation data and
the heuristic algorithm to express the hysteresis relationship
between magnetic flux B and current I in section 3. Based on

FIGURE 1 | A sketch of the nano-positioning stage driven by the reluctance motor.

FIGURE 2 | The schematic diagram of Bouc–Wen model identification.
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the established model, an integral sliding mode controller is
designed in section 4. Afterward, simulation studies were
carried out in section 5, where PI with the inverse hysteresis
compensation composite controller was used for comparison.
Finally, section 6 concludes this research.

2 WORKING PRINCIPLE AND
REQUIREMENT OF LINEAR RELUCTANCE
MOTOR IN THE NANO-POSITIONING
STAGE

The nano-positioning stage in the lithography machine usually
adopts a long-stroke and short-stroke combined structure. The
positioning accuracy of the stage is ensured by the short-stroke
module, while the long-stroke module provides a large motion
range. During the scanning process, the short stroke and long
stroke should move coordinately. So, the short-stroke stage also
requires high acceleration as well as high accuracy. As mentioned
in section 1, the linear reluctance motor is a novel candidate
actuator in the IC manufacturing field. A testbed driven by a
reluctance motor is designed and shown in Figure 1.

As seen from Figure 1, the mover I-beam installed on the
motion stage is installed opposite to the stator part of the
reluctance actuator. In practice, the two reluctance actuators
are energized in turn, and an attractive force is generated
between the stator E-core and the mover I-beam, which
provides the thrust required for high acceleration. According
to the magnetic simulation by COMSOL, the attractive reluctance
force between the stator and the I-beam is determined by the
magnetic field distribution in the air gap of the linear reluctance
motor. As expected, most of the magnetic field distributes around
the E-core. If the leakage flux is ignored, the reluctance force F
exerted on the mover is described by the following equations:

B � μ0NI

2g
, (1)

F � B2A

2μ0
, (2)

F � μ0AN
2I2

8g2
, (3)

FIGURE 3 | Dynamic simulation model implemented with Matlab/Simulink.

TABLE 1 | Set parameters of the TLBO.

Parameter Value Meaning

Gm 100 Iteration time
NP 50 Population quantity
D 6 Optimization dimension
Ge 0.001 Stop criterion

TABLE 2 | Identified parameters of the classical Bouc–Wen model.

Parameter Value Unit

a0 −1318.4 [-]
a1 1650.6 [-]
a2 −635.8727 [-]
α 0.9195 [-]
β 0.5174 [-]
γ 0.2448 [-]
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where µ0 denotes the permeability of air,N denotes the number of
coil turns at the center of the E-core, A denotes the area, and g
denotes the air gap. It is a lumped model which disregards flux
leakage, fringing, and saturation.

The linear reluctance motor is driven by the power amplifier.
The current command could be derived from Eq. 3 as

I �
������
8g2 · F
μ0AN

2

√
. (4)

Because the features printed on the IC can be as small as tens of
nanometers, the position accuracy of the reticle and wafer during
exposure must be accurate to a few nanometers or better. The servo
bandwidth is limited by stage dynamics, so the majority of the
position accuracy comes from the force feedforward accuracy,
which must be better than 99.9% accurate for a typical trajectory
(Ian, 2015). Therefore, the fluctuation range of the force must be
within the range of 0.1%. Further, the force F is proportional to the
square of the magnetic flux B, as shown in Eq. 3. So the fluctuation
range of the magnetic flux is defined as 0.316%. Therefore, when the
reluctance actuator is controlled by magnetic flux feedback, the
error is limited to 0.316%, which can meet the requirements.

3 HYSTERESIS MODEL

3.1 Bouc–Wen Model
The Bouc–Wen model was proposed in 1976 and is widely used
for describing hysteresis nonlinearity because of its advantages of
simple structure and few parameters to be identified. At present,
the model is expressed as follows:

⎧⎪⎪⎨⎪⎪⎩ x(t)
• � a0x(t) + a1I(t) + a2h(t)

h(t)
• � αI(t)

• − β
∣∣∣∣I(t)• ∣∣∣∣h(t) − γI(t)∣∣∣∣•

h(t)∣∣∣∣
B(t) � x(t)

, (5)

where x(t) is the state variable of the system and B(t) is the output
flux, α, β, γ and a0, a1, a2 are the model parameters. I(t)
represents the input current.

3.2 Parameter Identification of Hysteresis
Loop
Due to the nonlinearity, it is still a challenge to determine the
parameters in the Bouc–Wenmodel. As an intelligent optimization
algorithm, the teaching-learning-based optimization (TLBO) is a
preferred method. According to Eq. 5, the parameters to be
identified are defined by the vector V � {a0, a1, a2, α, β, γ}. For
the sake of brevity, Eq. 5 is rewritten in discrete form:

BBW(k + 1) � F(k, BBW(k), I(k), V), (6)
where BBW(k) ∈ Rq stands for the Bouc–Wen model output. The
cost function for model identification is the mean square error
(MSE), as shown in Eq. 7.

JMSE � 1
N
∑N
i�1
(Bi

act(k) − Bi
BW(k))2, (7)

where N is the total number of samples, Bi
BW(k) and Bi

act(k) are
the Bouc–Wen model output and simulation result, respectively.
The model parameters are searched by the TLBO to make the
simulated response track the measured data. The identification
principle of the hysteresis parameters is shown in the Figure 2.

FIGURE 4 | (A) Hysteresis loop obtained by experiments and the identified Bouc–Wen model. (B) Bouc–Wen model error respect to experimental data.

TABLE 3 | Parameters of ISMC.

Controller Parameter Value

ISMC λ 3000
ks 1.2
Δ 0.1
ε 0.2
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The process of model construction is carried out offline as
follows:

(1) Data collection: The simulation data including output flux
and input current of reluctance motors are obtained by
multiphysics simulation software COMSOL.

(2) Model implementation: The Bouc–Wen model is
constructed in the Maltab/Simulink, as shown in Figure 3.

(3) Parameter identification: The simulation data are loaded, and
then the model parameters are optimized by the TLBO.

(a) The dynamic model for the linear reluctance motor.
(b) Bouc–Wen model implemented with the Maltab/Simulink

block.

4 CONTROLLER DESIGN OF THE
RELUCTANCE MOTOR

In this article, we adopt the variable structure control method to
solve the nonlinear problem in the reluctance motor caused by
hysteresis. Without considering external disturbances, it is
assumed that the established Bouc–Wen model can accurately
describe the hysteresis characteristics of the reluctance motor. To
reduce the adjusting effort of PID, a control algorithm based on
the integral sliding mode has been developed.

In the design of the sliding mode controller, the dynamic
performance of the system is determined by the sliding
mode surface. The sliding mode surface with integral term is
widely used since it can effectively eliminate the steady-state
error and improve the robustness of the controller.

Therefore, an integral–derivative type of sliding surface is
defined as follows:

s(t) � e(t) + λ∫t

0
e(τ)dτ, (8)

e(t) � xd(t) − x(t), (9)
where e(t) stands for the flux error between the desired flux
trajectories xd(t) and actual flux trajectories x(t). λ> 0 are
control gains.

Considering the system described by Eq. 5 and the sliding
mode expressed by Eq. 8, if the controller lim

s(t)→0
s(t) · s(t)· ≤ 0

with Eq. 10 is employed, then the flux tracking error Eq. 9
converges to zero asymptotically.

I(t) � 1
a1

[xd(t)
• − a0x(t) − a2h(t) + λe(t)

+ ks
∣∣∣∣s(t)∣∣∣∣εsgn(s(t))], (10)

where sgn(·) is the symbolic function, ks > 0 represents the rate at
which the controller state approaches the sliding surface. ε is an
arbitrary positive constant and 0< ε< 1. Furthermore, the
robustness and anti-disturbance performance of the sliding
mode controller are determined. When t → ∞ the synovial
control rate can ensure the stability of the control system and
e(t) → 0.

A Lyapunov function is adopted to verify the stability of the
closed-loop control system, which is shown as

V(t) � 1
2
s2(t). (11)

Then, taking the time derivative of the sliding function Eqs.
8, 11:

s(t)
• � e(t)

• + λe(t), (12)
V(t)

• � s(t)•s(t)
•

. (13)

FIGURE 5 | The schematic diagram of the combined strategy of PI controller and inverse model compensation.

TABLE 4 | Parameters of contrastive controller.

Controller Parameter Value

Combination of PI and Hysteresis compensation kp 0.8
ki 5000
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Substituting Eq. 12 into Eq. 13 and taking consider of the
control input Eq. 5, it leads to

V(t)
• � s(t)•(e(t)• + λe(t)),

� s(t)•(xd(t)
• − x(t)

• + λe(t)),
� s(t)•(xd(t)

• − (a0x(t) + a1u(t) + a2h(t)) + λe(t)).
(14)

Finally, taking the designed sliding mode control rate Eq. 10
into Eq. 14,

V(t)
• � s(t)•(xd(t)

• − (xd(t)
• + a0x(t) + a2h(t) + λe(t)

+ks
∣∣∣∣s(t)|εsgn(s(t)) + a0x(t) + a2h(t)) + λe(t)),

≤ s(t)•( − ks
∣∣∣∣s(t)∣∣∣∣εsgn(s(t))), ≤ |s(t)|•( − ks|s(t)|ε)≤ 0. (15)

In order to reduce the jitter of the sliding mode control system
during the control process, the saturation function sat ( ) was
adopted to replace the sign function sgn ( ).

sat(s(t)) � { sgn((s(t)) if |s(t)|>Δ
s(t)/Δ if |s(t)|≤Δ , (16)

where Δ is positive constant and stand for boundary layer
thickness for saturation function.

5 SIMULATION

To verify the feasibility of substituting voice coil motors with
reluctance motors, a testbed is designed according to the desired
performance. A prototype of a reluctance motor with specified

FIGURE 6 | Sinusoidal Trajectory Tracking Results of an Integral Sliding Mode Controller. (A) Desired and actual flux trajectories. (B) Actual versus desired flux. (C)
Sliding surface variable. (D) Control effort of the controller.
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parameters is designed and tested in COMSOL, and the exported
data is used to construct the motor model.

To establish the model of the reluctance motor, the Bouc–Wen
structure is selected and the corresponding coefficients are

obtained by TLBO. The parameters needed in the optimization
is set as Table 1:

The identification results are listed in Table 2. Comparing the
actual data and the fitting data using the estimated Bouc–Wen

FIGURE 7 | Sinusoidal motion tracking results of (A),(B) pure PI, (C),(D) PI and inverse model compensation compound control, and (E),(F) ISMC.
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model, the curves are depicted in Figure 4. Due to the model
error, the maximal mismatching deviation is 0.005333.

In the simulation, it adopts the flux trajectory as the reference
input directly, expressed as Bd � A sin(wt) � 1.83p sin(7.8125pt),
where A denotes the maximum value of input and is calculated by
mass and maximum acceleration value and Eq. 2, w stands for
frequency and it is calculated by maximum acceleration value and
maximum jerk value. The relationship between the maximum
acceleration and the maximum jerk is Jmax � wpamax. Considering
that the maximum acceleration is 12.8 g, the maximum jerk is
1000m/s3 Then, w � 7.8125rad/s. Based on the obtained
Bouc–Wen model, an integral sliding mode controller is
designed to reduce the influence of the nonlinearity, including
the hysteresis and uncertainty, then the robustness of the system is
enhanced. After constant attempts, the control parameters are
determined by learning algorithms (Xu et al., 2021). The results are
shown in Table 3.

For comparison, the combined strategy of PI controller and
inverse model compensation is selected. The schematic diagram
is shown in Figure 5 and the relevant parameters are shown in
Table 4.

With the proposed ISMC, the output of the simulated reluctance
motor is shown in Figure 6A. As seen from Figure 6B, the width of
the hysteresis loop has been reduced, which means that the
hysteresis effect has been compensated significantly. In addition,
Figure 6C depicted the sliding variable, implying that the sliding
surface is maintained within the boundary layer Δ (i.e., 0.1).
Moreover, the control signal is described in Figure 6D.
Obviously, there is no chattering in the designed controller.

The flux tracking error results between the input Bd and
output B with the two controllers are compared in Figure 7. As
seen from Figures 7B,D,F the performance of the proposed
ISMC is superior to that of both conventional PI controllers
and combined controllers with PI and feedforward hysteresis
compensation in terms of tracking errors. When using a PI
controller, the flux tracking error ranges from −0.0041T to
0.0056 T. Therefore, the required magnetic flux requirements
can not be met. When using PI and hysteresis inverse model
compensation control, the flux tracking error ranges
from −0.000395T to 0.0029 T. Although inverse hysteresis
compensation is employed to counteract the nonlinearity,
whereas, when using the proposed ISMC, flux tracking error
substantially reduces from 6.287e-06 T– to 0.0027 T. Compared
with the combined controller, the error is not only small in
amplitude but also has a more stable change trend. Therefore, the
integral sliding mode controller has better robustness.

In order to explore the influence of different controllers on the
flux tracking performance, the error data obtained by the
simulation is analyzed, and the average value, maximum value,
and standard deviation of the magnetic flux error under different
controllers are obtained. The analysis results are shown in
Table 5.

When using different feedback controllers, the tracking error
of the magnetic flux is shown in Figure 7 and described in
Table 5. When using the integral sliding mode controller,
compared with the PI controller and the inverse model
compensation joint control, the mean, maximum, and
standard deviation of the flux tracking errors are reduced by
99.3%, 6.9%, and 68.19%, respectively. Hence, compared with the
PI controller and the PI and hysteresis inverse model
compensation controller it can be seen that the flux with
Integral Sliding Mode Control has better tracking performance
and robustness.

6 CONCLUSION AND DISCUSSION

In this paper, the reluctance actuator driven nano-positioning
stage was designed and the precision motion control scheme with
ISMC was applied. Based on the Bouc–Wen model identified by
experimental data and TLBO, the ISMC was designed and the
hysteresis characteristics of the reluctance actuator is treated as
the internal disturbance. The simulation results show that the
proposed method is effective in overcoming the hysteresis
without accurate parameters and it is promising in high-
precision control applications.

This paper also provides a technical solution in other precision
machine tools and related equipment with hysteresis.
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TABLE 5 | Control performance of different controllers.

Controller Mean error (T) Maximum error (T) Standard deviation (T)

Pure PI control 5.0823e-4 0.0056 0.0028
Combination of PI and hysteresis compensation 1.1222e-5 0.0029 1.1381e-4
ISMC 7.8513e-8 0.0027 4.1896e-5
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