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Traffic information is collected from sensors in the urban road network, and

traffic information can be said to be a mapping of people’s activities, which are

difficult to model as a linear function, so this makes traffic information difficult

to be predicted. In other words, traffic information is difficult to build effective

models to predict traffic information because of its non-linear characteristics

that are difficult to capture. As researchers go deeper, researchers have

been able to extract good spatio-temporal features for modern urban road

networks. However, it is worth mentioning that most researchers have

neglected the importance of models for global potential features under the

topology map of urban road networks, yet this global potential feature is

very important for traffic prediction. In this paper, we propose a new spatio-

temporal graph convolutional network model A Pagerank Self-attention

Network (hereafter we abbreviate as PSN) in order to solve this problem based

on a full consideration of the urban road network topology features, in which

we employ a global spatio-temporal self-attention module to capture the

global spatio-temporal features well. and the graph wandering module is used

to propagate the spatio-temporal feature information effectively and widely. It

is worth mentioning that experiments on two well-known datasets show that

our proposed method achieves better prediction results compared to existing

baseline methods.

KEYWORDS

traffic forecast, spatio-temporal graph convolutional network, global spatio-temporal self-

attention module, graph wandering module, urban road network

1 Introduction

In many developed countries around the world (Tu et al., 2021), severe traffic
congestion has caused certain economic losses to them. Traffic congestion brings
not only the increase of transportation cost, the decrease of urban transportation
efficiency, and the increase of environmental pollution. And it seriously affects
people’s living standard (Belhadi et al., 2020). With the concern about traffic problems,
intelligent transportation in urban road networks has rapidly become an important
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research topic. Traffic information is an important data
for intelligent system analysis. Taking the famous PEMS
traffic dataset as an example, traffic information includes the
characteristics of three dimensions: traffic flow, traffic speed,
and traffic occupancy. If researchers can predict future traffic
data with historical traffic data collected in urban traffic road
networks, it can bring positive significance to traffic congestion
problems and rational travel planning in cities.

We are inspired by the combination of pagerank and graph
convolutional neural network, in order to further improve the
improvement of graph convolutional neural network for model
prediction, in other words, to improve the over-smoothing
problem in graph convolutional neural network. We propose the
PNT model to perform prediction.

2 Related work

In the early days of traffic flow forecasting, that is,
before the rise of artificial intelligence, most of the traffic
forecasting problems were studied using statistical methods.
For example, the autoregressive integrated moving average
(ARIMA) and its variants were proposed in 1976 and so
on (Ahmed and Cook, 1979) (Williams and Hoel, 2003),
including spatiotemporal ARIMA (Ding et al., 2011),
dynamic spatiotemporal ARIMA (Min et al., 2009), and local
spatiotemporal ARIMA (Cheng et al., 2014). However, due
to the explosive growth of traffic data in recent years, for
traffic forecasting, the previous statistical models can no
longer meet the current forecasting needs. Statistical models
usually have high computational complexity, but due to the
stochastic and nonlinear nature of traffic variables in urban
traffic road networks, the prediction effect of statistical models
is not satisfactory (Cui et al., 2019). With the development of
technology in recent years, the computing power of computers
has gradually increased, and machine learning methods have
made a splash in various research fields Wu et al. (2022);
Li et al. (2022); Fu (2022), and more and more researchers
have started to focus on using machine learning methods for
traffic prediction. In the field of traffic prediction, traditional
statistical models are also gradually replaced by big data
computational intelligence, or machine learning methods
(Vlahogianni et al., 2014). Machine learning methods, such
as KNN (Van Lint and Van Hinsbergen, 2012), and SVM
(Shuman et al., 2013) can model relatively complex data, but
they require delicate feature engineering. With the breakthrough
of deep learning in natural language processing and image
processing, more and more researchers are applying deep
learning methods to traffic prediction.

In general, traffic data are the trajectories of road users
flowing on urban road networks, so traffic data often exhibit
a high degree of spatial and temporal dependence due to

the complexity and regularity of human mobility. Therefore,
if the spatio-temporal correlation can be modeled effectively
(Tedjopurnomo et al., 2020), then it is possible to obtain accurate
traffic prediction results. Although researchers have invested a
lot of efforts on traffic prediction (Moreira-Matias et al., 2013)
(Zhang et al., 2018), there are still some challenges to be solved.

Challenge 1: It is still difficult to effectively extract the
potential global spatio-temporal features of the traffic road
network. For example, the locations where some regions in
the urban traffic road network are located may present similar
traffic patterns due to the intersection of people’s habits,
even if these two regions are far apart in the urban traffic
road network topology graph (Zhang et al., 2017). The traffic
similarity between regions is widely present in the urban traffic
road network topology, which can also be called as a potential
global spatio-temporal feature in the urban traffic road network
topology. In order to solve this problem, a global spatio-temporal
self-attentive module is designed in our proposedmodel to focus
on the global spatio-temporal features in the urban traffic road
network topology and extract them effectively.

Challenge 2: Time-varying traffic data based on the spatial
characteristics of urban traffic road networks poses difficulties
for traffic prediction. For time-series information such as traffic
data, the traffic data on a road depends to a large extent on
its past traffic conditions. However, the variation of traffic data
is extremely unstable and nonlinear (Zhao et al., 2019). Most
previous studies use graph convolution to process traffic data to
obtain spatial features, and then use (recursive neural network)
RNN (Graves, 2012) and its variants GRU (Van Lint et al., 2002)
or LSTM to obtain temporal features to perform traffic
prediction. However, it is often limited by the over-smoothing
problem caused by the stacking of graph convolution layers,
leading to the use of only a few graph convolution layers in
the model. For example, the T-GCN (Zhao et al., 2019) model
combines two layers of graph convolutional neural network
and GRU to extract the spatial and temporal characteristics of
road speed respectively. The AST-GCN model (Guo et al., 2019)
also applies the graph convolutional neural network to traffic
data prediction. According to the results of our experiments,
it does not perform as well as our proposed PSN model
for predicting the traffic speed of PEMS04 and PEMS08. We
believe that this may be due to the fact that the traffic speed
features are not sufficiently diffused in the urban traffic network
topology. It is well known that the essence of graph convolutional
neural network is to aggregate and update the information
of neighboring nodes. Therefore, our proposed PSN model is
designed with a graph wandering module to spread the traffic
speed features extracted by our model sufficiently over the traffic
topology. Experimental data show that ourmodel achieves better
results on two datasets, PEMS04 and PEMS08.

The main contributions of this paper are as follows. In
graph neural networks, the core idea of graph convolutional
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neural networks is to aggregate node information using edge
information to generate new node representations, but each
layer of the graph convolutional neural network can only
aggregate and update the first-order nodes around its nodes. If
we want to propagate the node information more widely, we can
superimpose multiple layers of the graph convolutional neural
network, but thiswill lead to the problemof oversmoothing of the
graph convolutional neural network. In order to spread the node
information more effectively as well as update it. Inspired by the
combination of pagerank and graph neural network, this paper
proposes a new PNT model, whose main feature is to bind each
sensor node in the urban road network graph with its own traffic
information relatively, while using the global spatio-temporal
attentionmodule to capture the hidden features behind the traffic
information, and then using the GRU framework to filter all
the historical data in a certain way, and finally All nodes in the
road network graph diffuse the relatively important information
effectively. This makes the information of the graph nodes to
update themselves effectively and flexibly.

3 Methodology

3.1 Definition

Definition 1: PNT summarizes the spatial information
between roads in an urban traffic network by modeling each
road as a node in an undirected graph with N roads, which is
described in Figure 1. We use G = {V,E} for the description, by
treating each road as a node and V as the set of this node. where
V = {V1,V2,V3,…,Vn−1,Vn}, n is the number of nodes. E is a set
of edges. We use the adjacency matrix AϵRN×N to represent the
connectivity between these nodes. Each value in this adjacency
matrix is calculated based on the distance of the road network
between sensors. The specific description of the elements in the
adjacency matrix can be found in (Guo et al., 2019).

Definition 2: In the urban road network traffic system
sensors collect a large amount of traffic information, taking the
pems dataset as an example, there are three dimensional features
of road flow, occupancy rate and road speed. We can choose
any one dimension of traffic information to construct the feature
matrix. But in this thesis, we choose road speed in the city to
construct our feature matrix xN×T respectively, and we use the
road speed on the city road network to be the attribute feature
of the nodes in the city road network, denoted as xϵRN×T , and
T denotes the number of information collected by a sensor at a
fixed time interval of a node (for example, in the classical pems
dataset we choose both pems04 and pems08 traffic speed data
are sampled using a 5 min interval, so we can understand that
the sensor sampled a total of T times, each time at an interval
of 5 min). xtϵRN×i is used to represent the speed on each road at
moment i. In this article xt = Input [t].

3.2 PSN model details

In this paper, our prediction task is to extract spatio-temporal
features from a period of historical traffic speed information and
learn the relevant features to predict the traffic speed information
in the future period. The formula is expressed as:

[Xt+1, Xt+2, … Xt+p−1, Xt+p]

= f(A; (Xt−n, Xt−1, Xt)) (1)

Here n is the length of the historical series used and p is the
length of the time series to be predicted.

In this article, the total PNTmodel equation is shown below:

rt = σ(Wr ∗[
GWM
ht−1
]) (2)

zt = σ(Wr ∗[
GSSM
ht−1
]) (3)

̃ht = tanh(Wh̃ ∗[
GWM
rt ∗ ht−1
]) (4)

ht = zt ∗ ht−1 + (1− zt) ∗ ̃ht (5)

Briefly, our PNT model consists of two major modules and
a final fully connected module, which are the graph wandering
module and the global spatio-temporal self-attentivemodule.We
improve the GWM and GSSM combined with GRU to generate
a new recursive module. In the following we introduce these two
modules of the PNT model separately.

3.2.1 Global spatio-temporal self-attention
module:GSSM

For the extraction of global spatio-temporal information,
many previous studies have been done. For example, k-
hop adjacency matrices (Zhang et al., 2019) or k-pop Laplace
matrices (Diao et al., 2019) have been used to describe fixed k-
hop connections in urban road networks. These “connectivity”
approaches have the advantage of considering the location of
connections in the urban road network, but unconsciously
ignore the global relationships behind the roadways in the
traffic network. Generally, if the spatio-temporal features of the
road network are simply extracted and the relevant features
are neglected, then the training may lead to missing features
and affect the prediction results. To solve this problem,
we propose a global spatio-temporal self-attentive module
(Vaswani et al., 2017) to extract potential features in urban road
networks. As shown in Figure 2 and Figure 3, we are inspired
by transformer as well as graph attention, and we use the
global spatio-temporal self-attentive module to compute local
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FIGURE 1
Internal structure of the PNT model.

FIGURE 2
Self-attention module.

and global spatio-temporal correlation information of each node.
We use the road speed in the urban road network to construct the
query matrix, key matrix and value matrix. In order to alleviate
the problems caused by gradient disappearance and gradient
explosion in the model, we introduce the residual module to
improve the model.

Q = xt ∗Wq (6)

K = xt ∗Wk (7)

V = xt ∗Wv (8)

Att = Q∗ kTr (9)

∗ in this article all mean matrix multiplication

Att
′

ij =
exp(Attij)

∑N
j=1
exp(Attij)

(10)

SA = S
′

a = σ(Att
′
V) (11)

GSSM =
(xt ∗ SA) + xt

2
(12)

Here, Wq, Wk, and Wv are learnable weight matrices. ∗
denotes matrix multiplication. Tr denotes matrix transpose,
and σ denotes Softmax function. Att denotes the measure of
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FIGURE 3
Global spatiotemporal self-attention module.

FIGURE 4
Graph Walk module.

similarity between Q and K. Att
′

ij denotes the coupling strength
between road i and road j, which is obtained by performing
Softmax calculation on Att. S

′

a represents the spatio-temporal
coefficient matrix and thus will enable the model to notice the
underlying spatio-temporal information behind the traffic speed
information.

3.2.2 Graph walking module:GWM
In the field of traffic flow prediction, temporal feature

extraction and spatial feature extraction are two key parts.
Thanks to the rapid development of hardware devices and deep
learning in recent years, deep neural network models have
gained attention in the field of traffic prediction because of their
excellent results. Generally speaking, to achieve accurate traffic
prediction, not only the temporal and spatial features in traffic
data have to be extracted effectively, but also their propagation
has to be performed efficiently. It is well known that the core
idea of graph convolutional neural network is to use the edge
information to aggregate the node information to generate new

node representations, and some studies have applied on this basis
to use node representations to generate edge representations or
graph representations (Yu et al., 2017) to accomplish their tasks.
However, graph convolutional neural networks have a limitation
that a node can only be influenced by its surrounding first order
neighboring nodes. However, we only need to superimpose K
such graph convolutional layers to extend the influence of a
node to K-order neighbor nodes. But in fact, stacking multiple
layers of first-order graph convolution leads to another problem,
namely, the oversmoothing problem. By nature, each layer of
a graph convolutional network is a special kind of Laplacian
smoothing, but Laplacian smoothing makes a point as similar as
possible to its surrounding points, with each node’s new feature
being the mean of its surrounding nodes’ special rules. Going
back to the road network topology diagram, let’s consider each
monitoring point in the traffic network as a point. Intuitively, if
we want the information of each monitoring point to be fully
absorbed by all neighboring nodes for aggregation and update,
we need to superimpose N-layer graph convolutional neural
network, but it will cause the above-mentioned over-smoothing
problem.

Google’s founders Larry Page and Sergey Brin invented
this technology in 1998 at Stanford University. pagerank was
earlier used by Google to reflect the relevance and importance
of web pages, and is often used in search engine optimization
operations to assess the effectiveness of web optimization as one
of the factors. In the early days of search engine development,
it was common for people to manually categorize web pages
and sort out high quality sites. With more and more web
pages, the search engine entered the era of text search, manual
classification has clearly can not meet the demand. So pagerank
came into existence (Klicpera et al., 2018) proposed to link graph
convolutional networks with personalized pagerank in order
to solve the over-smoothing problem of graph convolutional
networks. Since graph convolutional neural networks have
received more attention, previous studies in the literature
have usually adopted graph convolutional neural networks
or their alternative form of Chebyshev networks to process
information based on urban road network monitoring sites,
and all of them only used single-digit graph convolutional
network superposition (An et al., 2021) to process information
from trafficnetworkmonitoring sites.However, thismay result in
each point only being able to utilize a portion of its neighboring
nodes’ information for aggregation updates. To solve the above
problem, we propose a graph wandering module inspired by
pagerank to perform aggregated updates of traffic information,
which is described in Figure 4.

Ã = A+ I (13)

D̃ =∑
j
Ãij (14)
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FIGURE 5
PEMS04-sensor 1 traffic speed.

FIGURE 6
PEMS04-sensor 307 traffic speed.

FIGURE 7
PEMS08-sensor 1 traffic speed.
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FIGURE 8
PEMS08-sensor 170 traffic speed.

FIGURE 9
pems04-30 min.

Laplacian = Â = D̃
−12 ÃD̃

−12 (15)

GWM = xt ∗ Laplacian (16)

I is the unit matrix of the corresponding dimension.

3.2.3 Loss function section
In the PNT model training process, our optimization

objective is tominimize the error between themodel’s prediction

and the actual traffic speed on the road. the loss function of the
PNT model uses the following equation:

Loss = ‖yt − ̃yt‖ + λL2 (17)

We use yt and ̃yt to represent the real traffic information and
the predicted traffic information, respectively. The first term of
Eq. is used to minimize the error between the predicted traffic
information and the real traffic information, the second term L2
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FIGURE 10
pems04-60 min.

FIGURE 11
pems08-30 min.
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FIGURE 12
pems08-60 min.

is the L2 regularization term that helps to avoid the overfitting
problem, and λ is the hyperparameter.

4 Experiments

In this section, we describe the experimental setup, including
data description, evaluation metrics, parameter settings, and
comparison methods.

4.1 Description of experimental data

The experiments of our PNT model are carried out on top
of two real highway datasets from the well-known pems in
the traffic domain, i.e., pems04 and pems08. The two datasets,
pems04 and pems08, are collected in real time on the highway by
loop detectors. We selected the traffic speeds from January 1 to
28 February 2018 (speed information collected every 5 minutes)
for 307 sensors of pems04 and from July 1 to 31 August 2016
for 170 sensors of pems08, respectively. The whole pems04
data is divided into two major parts in total, one part is the
characteristic information of three dimensions, which are the
flow, occupancy and speed of the road. The other part is the
adjacencymatrix composed of the adjacency elements calculated
from the adjacency relationship between each sensor, for this part
of the information of the adjacency matrix, one can read this
paper by ASTGCN [24] for understanding. In ourexperiments,

we normalize the input traffic speed data to the interval [0,1] and
invert it. In addition, we used 80% of the data as the training
set and the remaining 20% as the test set and trained the PSN
model using the Adam optimizer. We predict the road speed
information of these sensors for the next 30 and 60 min.

Next, we give a partial view of the pems04 and pems08
datasets available. From the above, we can see that the pems04
and pems08 datasets are collected from 307 sensors and 170
sensors, respectively. We give the first sensor data and the
last sensor data viewable in the pems04 and pems08 datasets,
respectively, which are described in Figures 5–8.

4.2 Evaluation metrics

To evaluate the prediction performance of the proposed
model, we use the following metrics to evaluate the prediction
results.

(1)Root Mean Squared Error (RMSE):

RMSE = √ 1
MN

M

∑
j=1

N

∑
i=1
(y j

i −
̃y j
i )

2
(18)

(2)Mean Absolute Error (MAE):

MAE = 1
MN

M

∑
j=1

M

∑
i=1
|y j
i −
̃y j
i | (19)
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(3)Mean Absolute Percentage Error (MAPE):

MAPE = 1
MN

M

∑
j=1

M

∑
i=1
|
y j
i −
̃y j
i

y j
i

| (20)

where y j
i and ̃y j

i represent the real traffic information and
prediction information of the jth time sample on the ith road,
respectively.M is the number of time samples;N is the number of
roads.

Specifically, RMSE, MAE and MAPE were used to measure
the prediction error: the smaller the value is, the better the
prediction effect is.

4.3 Model parameters

In our model, we have a number of hyperparameters to
determine to ensure that the model will run best. Briefly, the
parameters that are relatively important for the PNT model
include: learning rate, batch size, and training epoch. In this
experiment, we manually set the learning rate to 0.001, the batch
size to 32, and the training epoch to 500, and we run the model
under NVIDIA-SMI 450.142.00 Driver Version: 450.142.00
CUDA Version: 11.0 python = 3.6. The hardware configuration
is three V100 graphics cards. It is worthmentioning that we use a
sliding windowmechanism for the input data, thus extending the
two parameters seq-len and pre-len that vary flexibly according
to the prediction task. seq-len indicates the length of the data
we obtain from the dataset each time, and pre-len indicates the
length of the data we want to predict. For example, in this paper,
we make traffic speed predictions for the next 30 min and the
next 60 min for the pems04 and pems08 datasets based on seq-
len = 12, pre-len = 6 and seq-len = 12, pre-len = 12, respectively,
which means we take traffic speed information from the dataset
for 1 h at a time to predict the future pre-len time steps (5 min for
each time step interval in the pems04 and pems08 datasets). Our
experimental results show that the model takes about 3 h to run
for 500 training epochs. We currently use runtime to evaluate
the computational complexity of algorithms, and we will explore
further the computational complexity of algorithms in future
work.

4.4 Comparison method

In our experiments, we compare our model with the
following methods:

HA:Historical average, inwhichwe calculate the average road
speed at the historical moment as the predicted value for the
current time step.

SVR: Train the model using historical data, get the
relationship between input and output, and then predict future

traffic data for the training model. We use a linear SVR in this
model.

ARIMA: differential autoregressive moving average model,
The ARIMA model is used to first make the non-stationary
data stationary and later to process the stationary data. For
more information about ARIMA, please refer to this paper
(Gilbert, 2005).

T-GCN: This model combines the graph convolutional
network GCN and the Gated Recurrent Unit GRU. In this case,
the GCN is used to learn the complex topology to obtain spatial
correlation, while the Gated Recurrent Unit is used to learn
the dynamics of the traffic data to obtain temporal correlation.
For details of the T-GCN model, please refer to this paper
(Zhao et al., 2019).

ASTGCN:The ASTGCN model mainly consists of
three independent components, by simulating the three
temporal dimensional properties of traffic flow separately,
i.e., weekly cycle, daily cycle, and recent cycle. Each of
these components contains a spatio-temporal attention
mechanism and a spatio-temporal convolution. For details of
the AST-GCN model, please refer to this paper (Guo et al., 
2019).

4.5 Analysis of experimental results

We compared our proposed PSN model with the three
baseline methods as well as the T-GCN model and AST-GCN
model proposed by previous authors, and the experimental
results are shown in Tables 1–4, and the visualization plots
are shown in Figures 9–12. By our observation of the
PEMS04 table data, we can see that our proposed PSN model
achieves the best performance under all evaluation metrics.
We can clearly see that the three traditional time series
analysis methods, HA, SVR, and ARIMA, do not have good
prediction results. This may be due to HA’s neglect of temporal
features, which leads to poorer prediction results. For ARIMA,
because of the structure of its model, it does not capture the
nonlinearity and uncertainty of the datawell, and the SVRmodel,
although a classical regression algorithm, does not achieve
good results for traffic data prediction, which may also be
due to the time-varying and nonlinear characteristics of traffic
data.

In contrast, deep learning-based methods obtain better
prediction results with traditional time-series methods. both T-
GCN and AST-GCN models consider the potential temporal
and spatial characteristics of the traffic data. However, as the
prediction step increases, the prediction accuracy of these two
models starts to lag behind that of the PSNmodel.This is mainly
because the propagation of traffic information over the road
network topology graph becomes particularly importantwith the
accumulation of time, and the ensuing uncertainty problem is
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TABLE 1 PEMS04-30 min

HA SVR ARIMA T-GCN ASTGCN PSN

RMSE 4.5264 5.2506 6.7964 3.6679 4.7900 3.3453
MAE 1.9745 2.5948 4.8356 1.7689 2.3000 1.5840
MAPE (%) 3.91 5.21 8.03 3.70 4.88 3.22

The bold values indicate the optimal value for each of the evaluated metrics.

TABLE 2 PEMS04-60 min.

HA SVR ARIMA T-GCN ASTGCN PSN

RMSE 5.2749 5.6984 6.7964 4.5607 5.3700 4.3651
MAE 2.2712 2.9803 4.8356 2.0996 2.6000 2.0594
MAPE (%) 4.61 5.67 8.03 4.63 5.53 4.43

The bold values indicate the optimal value for each of the evaluated metrics.

TABLE 3 PEMS08-30 min.

HA SVR ARIMA T-GCN ASTGCN PSN

RMSE 3.6596 3.2057 5.0271 2.8036 4.4500 2.7965
MAE 1.5668 1.6711 3.5872 1.3338 1.9701 1.3171
MAPE (%) 2.94 2.91 5.90 2.54 4.38 2.52

The bold values indicate the optimal value for each of the evaluated metrics.

TABLE 4 PEMS08-60 min.

HA SVR ARIMA T-GCN ASTGCN PSN

RMSE 4.2203 4.8524 5.0271 3.5927 4.9710 3.5614
MAE 1.7883 2.3973 3.5872 1.6818 2.2002 1.6321
MAPE (%) 3.41 4.28 5.90 3.51 4.90 3.36

The bold values indicate the optimal value for each of the evaluated metrics.

TABLE 5 PEMS04-30 min.

Without-GWM Without-GSSM PSN

RMSE 3.3572 3.4386 3.3453
MAE 1.5889 1.6221 1.5840
MAPE (%) 3.23 3.28 3.22

The bold values indicate the optimal value for each of the evaluated metrics.

TABLE 6 PEMS04-60 min.

Without-GWM Without-GSSM PSN

RMSE 4.3884 4.5097 4.3651
MAE 2.1413 2.1002 2.0594
MAPE (%) 4.58 4.60 4.43

The bold values indicate the optimal value for each of the evaluated metrics.

TABLE 7 PEMS08-30 min.

Without-GWM Without-GSSM PSN

RMSE 2.8289 2.7863 2.7965
MAE 1.4573 1.3095 1.3171
MAPE (%) 2.76 2.55 2.52

The bold values indicate the optimal value for each of the evaluated metrics.

TABLE 8 PEMS08-60 min.

Without-GWM Without-GSSM PSN

RMSE 3.5799 3.5908 3.5614
MAE 1.6513 1.6617 1.6321
MAPE (%) 3.39 3.37 3.36

The bold values indicate the optimal value for each of the evaluated metrics.
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further amplified. However, because our proposed PSN model
has better results for the propagation of graph information
based on road network topology, it performs better on the
dataset.

To further illustrate the role of GWM and GSSM modules
in the PNT model. We performed ablation experiments
and the experimental results are shown in Tables 5–8. In
the table, Without-GWM and Without-GSSM represent
the PNT model with the GWM module removed and
with the GSSM module removed, respectively. We can find
from the table that both the GSSM module and the GWM
module contribute to the prediction effect of the model.
However, we can see that the GSSM module improves the
prediction of the model more than the GWM module. We
speculate that the global spatio-temporal attention module
can capture the hidden information behind the data with
spatio-temporal characteristics, but the graph information
diffusion performed by the graph wandering module may
diffuse some redundant information, which leads to the weak
improvement of the GWM module on the prediction of the
model.

5 Conclusion and future work

In this paper, we propose a new spatio-temporal attention-
based model PNT and apply this to traffic speed prediction.
This model is inspired by the pagerank algorithm and proposes
a new idea of combining traffic data and graph structure
information, which not only avoids the complex operation of
graph convolution, but also smoothly aggregates and updates the
traffic information based on the graph structure, and achieves a
certain traffic prediction accuracy. Our experiments show that
our proposed model PNT performs well on both pems04 and
pems08 datasets.

In the future, we plan to delve into feature propagation based
on topology graphs of urban road networks. Specifically, we will
try to explore the impact of other peripheral information (e.g.,
POIs near roads, road types, etc.) in the urban road network on
traffic information.
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