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Internet of things of cloud computing offers high-performance computing, storage and
networking services, but there are still suffers from a high transmission and processing
latency, poor scalability and other problems. Internet of things of edge computing can
better meet the increasing requirements of electricity consumers for service quality,
especially the increasingly stringent need for low delay. On the other hand, edge
intelligent network technology can offers edge smart sensing while significantly improve
the efficiency of task execution, but it will lead to a massive collaborative task scheduling
optimization problem. In order to solve this problem, This paper studies an ubiquitous
power internet of things (UPIoT) smart sensing network edge computing model and an
improved multi node cluster cooperative scheduling optimization strategy. The cluster
server is added to the edge aware computing network, and an improved low delay edge
task collaborative scheduling algorithm (LLETCS) is designed by using the vertical
cooperation and multi node cluster collaborative computing scheme between edge
aware networks. Then the problem is transformed based on linear reconstruction
technology, and a parallel optimization framework for solving the problem is proposed.
The simulation results suggest that the proposed scheme can more effectively reduce the
UPIoT edge computing latency, and improve the quality of service in UPIoT smart sensing
networks.
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1 INTRODUCTION

The ubiquitous power Internet of Things (UPIoT), which has an electrical system at its core, works
with technologies such as smart terminal sensors, communication networks and artificial intelligence
to link all parts of the power system (Wang and Wang, 2018). The UPIoT is a special IoT, and the
power grid is a specific application object of IoT technology, which covers all aspects of generation,
transmission, distribution, transformation and consumption for power or even energy networks; the
connected objects range from electrical equipment to household appliances. The UPIoT integrates
IoT technology with power systems to realize various types of information sensing devices and the
sharing of communication information resources (Reka and Dragicevic, 2018). The UPIoTs can
actualize holistic awareness, automatic control and smart decision-making of smart power grids by
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deploying hundreds of millions of sensing devices and smart
terminals, which is a key direction for current smart grid
development.

Once massive power IoT nodes (e.g., power terminals, smart
homes, other energy system equipment) are connected, the
sensed data volume and data type of UPIoTs will increase
sharply (Ge et al., 2016; Wang et al., 2018; Yang et al., 2019);
the demand of new electricity users for service will grow
continually; and the requirements for service quality, especially
the need for low latency, will become increasingly stringent. The
high processing delays resulting from the long distance from
cloud computing data centres to end users bring about long
transmission delays, which impairs the performance of latency-
sensitive applications (Pan and McElhannon, 2018); this is a
serious problem for smart grids.

In recent years, researchers have begun to study the
combination of edge computing and power systems (Okay and
Ozdemir, 2016; Shi et al., 2016; Li et al., 2018; Sun et al., 2019).
Reference (Jiang et al., 2013) presented a cloud/edge collaboration
architecture designed for advanced measurement systems, which
stores and analyses power status data (e.g., voltage, current, phase
angle) through a three-layer configuration (edge device-fog-
cloud), in which fog-layer devices implement all or part of the
processing features, thereby effectively enhancing the
computational performance of analytical processing of power
system data. References (Hagen and Kemper, 2010; Mori et al.,
2017) studied the task assignment strategies for the edge
computing of power systems. Reference (Hagen and Kemper,
2010) investigated the low-latency task assignment method for
power systems; the tasks for centre and edge nodes were
dynamically assigned based on the current computing power
and task load to effectively improve the computational
performance of the system. However, the aforementioned
studies focused on edge-edge or edge-cloud resource sharing
without considering the smart collaborative computing of
multiple nodes in the system. The increasingly enhanced
computing power of UPIoT sensing terminal devices can be
used to perform complex computing tasks (Mori et al., 2017).
However, terminal sensing devices are more resource-
constrained than edge servers because they have limited
computing resources and battery capacity (Chen et al., 2016).
Individual sensing devices struggle to efficiently process large
amounts of data; single edge computing nodes may fall short of
the requirements for task instantaneity in certain scenarios.
Furthermore, the user demand for resources is clearly
heterogeneous; for example, some devices are underresourced,
while others may be heavily overresourced. Fulfilling computing
tasks through the collaboration of multiple nodes of smart
sensing networks is a relatively promising approach.
Moreover, the increase in the number of sensing devices and
edge servers in power IoTs may bring about a massive
collaborative task scheduling optimization problem. Therefore,
designing a real-time effective, low-complexity task collaborative
scheduling and resource optimization strategy for massive edge
sensing tasks is absolutely essential.

Based on the analysis above, this paper studies an edge
computing architecture for big data sensing by UPIoTs in

response to big data scenarios. In the architecture, edge
computing is used for UPIoT smart sensing network edge
nodes, including sensing devices and edge server clusters, to
construct an “edge computing” layer; migrating the processing
of UPIoT-sensed big data computing services to edge computing
devices reduces the UPIoT service processing latency, relieves the
computing load of cloud servers, and improves the overall
network robustness. To further optimize the service processing
latency of the above-noted network architecture, this paper
studies the collaborative task scheduling optimization and
resource allocation strategies of edge sensing nodes to
minimize the average task time, thereby balancing the UPIoT
smart sensing network edge load and improving the efficiency of
task execution. The goal of our research is to solve the problem of
limited network resources and insufficient computing power at
the edge of ubiquitous power Internet of things, effectively reduce
the task processing delay, and reduce the complexity of multi
node task intelligent collaborative scheduling optimization.

2 RELATED WORK

Task scheduling mechanisms are a key technology for computing
systems; traditional algorithms applied to task scheduling in local
computing include the heterogeneous earliest finish time (HEFT)
algorithm, the critical path on a processor (CPOP) algorithm
(Zhang andWen, 2018), the STARS algorithm (Chen et al., 2017),
the MOWS-DTM algorithm (Zhou et al., 2018), the artificial fish
swarm (AFSA) algorithm (Zhang et al., 2017), the sensing cache
task scheduling algorithm (Li et al., 2019), and the SA-DVSA
algorithm (Hu et al., 2017a); the optimization objectives of these
algorithms include reduction of the task scheduling time, latency
optimization, resource conservation, scheduling efficiency
improvement, and time and energy consumption constraint
integration. However, these algorithms are not satisfactorily
applicable to the collaborative task scheduling service between
edge computing nodes because of instantaneity and other factors.

Many researchers have studied collaborative task scheduling
for edge computing. Reference (Tran et al., 2017) summarized the
collaboration between edge computing servers and mobile
devices with respect to mobile edge coordination, collaborative
cache processing and multilayer interference cancellation and
proposed a real-time context-aware edge computing
collaboration framework. Reference (Cao et al., 2019)
proposed a method for constructing a collaborative service for
mobile edge computing systems, constructed collaborative
communication links through user nodes, collaboration nodes
and access points connected to the edge server (AP) nodes,
optimized the allocation of computing and communication
resources of user and collaboration nodes, and minimized the
total energy consumption under given computing latency
constraints. Reference (Hu et al., 2018) proposed a new edge
computing collaboration approach and a two-stage approach for
the offloading realized by constructing relay cooperative
communication links through APs and mobile devices,
optimized offloading decisions and saved energy, and
minimized the total energy emissions of APs. Considering the
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collaborative compatibility between executors, Reference (Hu
et al., 2017b) proposed a task assignment model based on
collaborative compatibility and load balancing, improved the
execution efficiency of the entire process instance and kept the
loads balanced for executors using the task assignment method
based on multiobjective joint optimization. Reference (Chai et al.,
2007) proposed the design of a new cluster-architecture edge
streaming media server and proposed the MCLBS cache
replacement algorithm for adaptive optimization of edge server
loads against the load balancing in cluster servers to reduce the
service bandwidth consumption. In response to the unbalanced
loads resulting from the skewed distribution of data and the
instantaneity, dynamics and unpredictability of the data stream in
distributed parallel processing architectures, Reference (Fang
et al., 2017) proposed a lightweight balance adjustment
method through Key granular migration and tuple granularity
split to ensure a balanced system load.

References (Chai et al., 2007; Hu et al., 2017b; Fang et al., 2017;
Tran et al., 2017; Hu et al., 2018; Cao et al., 2019) studied edge
computing networks consisting of certain devices and edge nodes.
Some studies have considered more realistic task scheduling
problems in three-tier computing networks, which comprise
terminal devices, edge computing servers and cloud servers.
Given the finiteness of edge device resources, Xu (Xu et al.,
2019) employed edge devices and cloud devices to reduce the
waiting time for tasks and to minimize the latency by finding the
best scheduling destinations. To address the host selection
problem in task deployment of the joint edge computing
centre and cloud data centre for an overall prolonged load
balance, Dong et al. (Dong et al., 2019) proposed a
deployment strategy based on an analysis of the heuristic task
clustering method and the firefly swarm optimization algorithm;
that is, joint load balancing was realized between the edge
computing centre and the cloud computing centre by locating
the best host for the task to be handled in the set. Huang et al.
(Huang et al., 2020) used the software-defined network (SDN)
technology to propose a service orchestration-based cloud mobile
edge computing collaborative task offloading solution, which
solves key problems in task offloading decisions and specific
offload terminal selection; the multiaccess edge computing
(MEC) server that minimizes the weighted sum of energy
consumption and latency was chosen as the offload terminal
based on the task latency and energy estimation for MEC servers,
thereby achieving a balanced load and communication load
optimization. The aforementioned studies suggested that three-
tier task processing architectures offer more computing resources
for multiuser edge computing offload systems, but three-tier
processing architectures are confronted with more complex
computing offload decisions and resource allocation problems.
When load balancing is considered in three-tier computing
networks, each task has more offload options and the resource
management of multiple edge nodes affects other nodes, making
it even more challenging to implement load balancing for three-
tier computing networks.

Based on the aforementioned studies, this paper proposes a
collaborative task scheduling and optimization assignment
scheme in a multitier computing network, considering the

characteristics of big data sensing by UPIoTs; the proposed
scheme works with optimized scheduling decisions and
computing resource allocation to minimize the total task time
and improve the QoS of UPIoT edge networks. The research of
this paper is of great significance to promote the development of
edge computing technology of ubiquitous power Internet of
things, and to guide the practical application.

3 SYSTEM ARCHITECTURE

Typical scenarios for the smart sensing of UPIoTs include sensing
and diagnostics of electricity anomalies at low-voltage residential
users, smart homes, and electrical appliances, escrow services for
smart communities and smart buildings, optimization of electric
vehicle (EV) charging and switching, and integrated metering for
multienergy systems. Smart sensing terminals generate massive
amounts of sensing data every day, featuring diversified and
complex types, large volumes, a high heterogeneity and
complex processing; as a result, traditional power systems
struggle to store and process relevant data in a timely and
efficient manner.

Most of the smart sensing terminal-sensed data are basic small
data, which are of tremendous value. For instance, the vast
amount of sensed data produced by smart terminals such as
EVs, distributed photovoltaic (PV) cells, smart homes, and power
distribution terminals on distribution and user access sides enable
grid companies to gain a good understanding of user
characteristics and provide these companies with novel means
of technical support for peak load shaving, grid utilization
improvement, energy conservation and consumption
reduction, power stealing prevention, low-voltage O&M, and

FIGURE 1 | Edge computing architecture of a UPIoT smart sensing
network.
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system planning. However, the large volumes and types of edge
sensed data and the limited computing and storage capacities of
the edge network sensing devices that may be in use pose
stringent requirements for service processing times, especially
for latency-sensitive services.

This paper studied an edge computing architecture for UPIoT
smart sensing networks based on the IoT edge computing
reference model (Cisco S ystems Inc, 2014), with consideration
of the aforementioned characteristics of UPIoT-sensed big data.
The architecture is divided into three layers from the top down:
the traditional power big data cloud computing layer, the cluster
edge server layer with certain computing, storage and
communication capabilities in power communication systems,
and the smart sensing terminal layer with edge computing
capabilities, as shown in Figure 1. The cloud computing layer
deals with highly complex non-real-time global data services; the
edge server layer supports small real-time local data services,
which makes it economical without incurring high device costs in
terms of computing and storage. The smart sensing terminal layer
consists of a variety of different smart sensing devices deployed
where power is consumed, e.g., various sensors, smart
concentrators, and robots, and principally collects given status
parameters. This layer produces a large number of pending tasks
and can judge, process or transfer tasks based on certain
scheduling strategies.

Cluster servers and smart sensing terminals constitute the
edge-aware computing network of this architecture. Due to the
limited computing and storage resources for edge-aware
computing network devices, individual computing devices
cannot handle all big data tasks independently. Therefore, to
fulfil different tasks in real time, the architecture adopts edge-
cloud collaboration and the multinode cluster collaborative
computing scheme between edge sensing networks. The
multinode cluster collaborative processing strategy is intended
to reduce the data processing latency through the collaboration of
multiple nodes of IntelliSense networks, so as to improve the QoS
and effectively handle latency-sensitive services. This scheme
chooses different scheduling strategies depending on the
various types of tasks produced by smart sensing devices
(SSDs). Communication-intensive tasks can be fulfilled in real

time autonomously using the SSD resources. Tasks that cannot be
fulfilled on their own are assigned to other SSDs with idle
resources for resource sharing and rational scheduling between
sensing devices. Computationally intensive tasks are dispatched
to the edge server layer or remote cloud computing layer for
execution. General types of tasks decide whether to execute
autonomously or to schedule further depending on the load
on the sensing device, which is dependent on the computing
power of the device. The task scheduling decision in the edge
server layer is dependent on the computing and memory
resources of the server. The detailed collaborative task
scheduling model is shown in Figure 2, where the orange
solid line represents the multinode cluster collaborative
scheduling between edge sensing networks. The green solid
line represents edge-cloud collaborative scheduling, and the
serial numbers represent the task decision scheduling sequence.

Multinode collaborative computing is a way to break the
bottleneck of edge terminal computing; dynamically organized
lightweight edge computing clusters can efficiently handle
complex analytical tasks, with consideration of the service
logic and event input of UPIoTs within the diffusion range
with the computing target point as the in situ physical centre.
Dynamically delineating the smart devices and servers involved in
computing based on task granularity and complexity during task
scheduling enables load balancing of the computing power, which
contributes to more effective handling of latency-sensitive
services.

4 SYSTEM MODELLING

In this section, the system latency problem is modelled, and then
the LLETCS algorithm is described.

4.1 Problem Modelling
In UPIoT scenarios, edge computing-based smart sensing
networks are composed of M edge servers (ES), N SSDs, and
one cloud computing centre (CC). The edge server set and the
smart sensing device set are denoted asM′＝{1,2,...M} andN′＝
{1,2,...N}, respectively. Each SSD has a computing task that is

FIGURE 2 | Task scheduling model for cloud-edge collaboration and
multinode cluster collaborative computing.

FIGURE 3 | Schematic diagram of the scheduling time. And execution
time of task Qi on SSDi in the architecture.
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either processed locally or dispatched to another SSD or ES for
processing. The ES may further dispatch it to the remote cloud
computing centre for processing depending on the
circumstances. The set tasks on SSDi are not separable and are
expressed as Qi= (Li,Ki), where Li represents the data size of task
Qi (unit: Bit), andKi denotes the number of CPU cycles required
to fulfil task Qi (unit: CPU cycle). Based on cloud-edge
collaboration and the task scheduling model of multinode
cluster collaborative computing, the schematic diagram of the
scheduling time and execution time of task Qi on SSDi in the
architecture is shown in Figure 3.

4.1.1 Edge Network Multinode Cluster Collaborative
Computing Model
The computational latency of task Qi processing by SSDi on its
own is

TLcomp
i � Ki/fL

i
, where i ∈ N′ (1)

where fL
i represents the computing power of SSDi. If SSDi has

limited computing resources of its own (fL
i <Ki), the task can be

scheduled to another SSDj with sufficient idle resources. It is
assumed here that each SSD is aware of the available CPU
resource information for other devices. Let TLtr

i,j denote the
average round-trip time for task transfers between SSDi and
SSDj. When i = j, TLtr

i,j � 0; where i, j ∈ j ∈ N′
Therefore, the total latency of task Qi processing at the smart

sensing device layer includes the transmission latency from SSDi

to SSDj and the computing latency of SSDj, which can be
expressed as

TL
Qi
� TLtr

i,j + TLcomp
j (2)

If all SSD resources cannot process task Qi independently, the
task will be scheduled to ESh. Let the total computing power of
ESh be expressed as Fh; then fi,h represents the available CPU
resources allocated by ESh to task Qi. Therefore, the
computational latency of task Qi being processed by ESh is

TEcomp
i,h � Ki/fi,h

(3)

When the task is scheduled to ES, SSDi first sends the task
Qi to the associated server ESmi for execution; the task can also
be scheduled to other ESs with sufficient idle resources if the
conditions are not met. Here, mi ∈ M′ represents the edge
server associated with SSDi. At this point, the total latency of
scheduling task Qi to the edge server includes the transmission
latency from SSDi to ESmi, the transmission latency from ESmi

to ESg, and the computing latency of ESg, and can be
expressed as

TE
Qi
� TEcomm

i,mi
+ TEtr

mi,g
+ TEcomp

i,g (4)
When SSDi is associated with server ESmi, the uplink

transmission rate on its wireless link can be calculated as

Ri,mi �
�Bmi

Umi

ηi (5)

where the bandwidth resource of ESh is �Bh Hz, and ηi represents
the uplink spectral effect between SSDi and the associated ESmi.
Umi � ∑

k∈Nmi
′
(1 − Ak) represents the number of SSDs associated

with ESmi; and Nj � {i: i ∈ N′, mi � h} denotes the SSD set
associated with ESh. Then, the transmission latency of
scheduling task Qi to ESmi is

TEcomm
i,mi

� Li

�Ri,mi

� Li

�Bmiηi
∑
k∈Nmi

′

(1 − Ak) (6)

4.1.2 Cloud Collaborative Computing Model
When the edge computing network cannot handle task Qi, the
task is scheduled to the cloud computing centre. The average
round-trip time of transmission between the edge server and
the cloud computing centre is denoted as TCcomm. Let fc

i
represent the task-performable cloud computing power, and
fc
i > >fE

i,h. Then, the cloud computing latency of task Qi is

TCcomp
i � Ki/fc

i
.

Then, the total latency of scheduling task Qi to the remote
cloud computing centre includes the transmission latency from
SSDi to the edge server, the transmission latency from the edge
node to the cloud computing centre, and the computing latency
of the cloud computing centre, and can be expressed as

TC
Qi
� TEcomm

i,h + TCcomm
h + TCcomp

i (7)
where i ∈ N′ , and h ∈ M′

Multiple tasks are generated at a time in this system
architecture; it is hypothesized that an SSD and an ES can
each handle only one task at a time. Binary variables Ai, Bi,h
and Ci are defined, where Ai, Bi,h, Ci∈{0,1}, which indicate
whether task Qi is processed in an SSD, an ES or a cloud
computing centre, respectively. For the final successful
execution of task Qi, the following should be satisfied

Ai +∑M
h�1

Bi,h + Ci � 1, where i ∈ N′, h ∈ M′ (8)

According to Eqs 1)–(8, the total processing latency of task Qi

in the edge computing architecture of the UPIoT smart sensing
network can be expressed as

TQi � AiT
L
Qi
+∑M

h�1
Bi,hT

E
Qi
+ CiT

C
Qi
, Where i ∈ N′, h ∈ M′ (9)

4.1.3 Combinatorial Optimization-Based Problem
Modelling
This study modelled the problem based on the combinatorial
optimization of task scheduling and resource allocation to
minimize the total latency for all tasks. First, the scheduling
decision vector of SSDi is denoted as Di = {Ai, Bi,1, Bi, 2,...Bi, M, Ci},
and the scheduling decision of all SSDs is expressed as
D � {Di, i ∈ N′}. The computing resource allocation vector of
all SSDs is expressed as F � {fi, j, i ∈ N′, j ∈ N′} .Then, the joint
optimization objective function can be expressed as
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P: min
D,F,F′

∑N
i�1
TQi (10)

s.t.∑N
i�1
fi,h ≤Fh , h ∈ M′ (11)

Ai +∑M
h�1

Bi,h + Ci � 1, i ∈ N′ (12)

Ai, Bi,h, Ci ∈ {0, 1}, i ∈ N′, h ∈ M′ (13)
Constraint (11) states that the amount of computing resources

provided by the edge computing network cannot exceed the total
computing load of all the devices on each layer; constraint (12)
restricts each sensing task to be processed at only one
computing node.

Based on the above, the total processing latency of SSDi for
task Qi in the edge computing architecture of the UPIoT smart
sensing network can be expressed as

Ti � Ai +∑M
h�1

Bi,hT
E
Qi
+ CiT

C
Qi

� AiT
Ltr
i,j + AiT

Lcomp
j + Li(1 − Ai)

Bmiηi
∑

k∈N′mi

(1 − Ak) +∑M
h�1

Bi,h
Ki

fi,h

+∑M
h�1

Bi,hT
Etr
mi,h

+ Ci(TCcomm
h + TCcomp

i ) (14)

There are discrete variables and continuous variables, as well
as nonlinear objective functions and constraints in the equation
above; hence, optimization problem P is a mixed integer
nonlinear optimization problem.

4.2 Low-Latency Edge Tasks Collaborative
Scheduling (LLETCS) Algorithm
4.2.1 Linear Reconstruction Technology-Based
Problem Transformation
To handle the product term in (14), an additional variable ui,h is
set up; then, let ui, h � 1

fi,h
. Two auxiliary variables, i.e., Gi and

Vi,h, are defined and respectively denoted as

Gi � (1 − Ai) ∑
k∈Nmi

′

(1 − Ak), i ∈ N′, (15)

Vi,h � Bi,hui,h, i ∈ N′, h ∈ M′, (16)
After new variables ui,h, Gi and Vi,h are introduced, objective

function (10) is re-expressed as

ψ(D,G, V) �

∑N
i�1
AiT

Ltr
i,h +∑N

i�1
AiT

Lcomp
j +∑N

i�1

LiGi

Bmiηi
+∑N

i�1
∑M
h�1

KiVi,h +∑N
i�1
∑M
h�1

Bi,hT
tr
mi,h

+∑N
i�1
Ci(TCcomm

h + TCcomp
i ) (17)

The computing resource constraints are translated into

∑N
i�1

1
ui,h

≤Fh , h ∈ M′ (18)

Problem P is translated into

P1: min
D,u,G,V

ψ(D,G, V) (19)

s.t. (12), (13), (15), (16), (18)
Let Eqs 15, 16 be respectively equivalent to the following

constraints, based on the linear reconstruction technology (Hou
et al., 2009):

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Gi ≥ 0, i ∈ N′;
Gi ≤Nmi(1 − Ai), i ∈ N′;
Gi ≤ ∑

k∈Nmi

(1 − Ak), i ∈ N′;

Gi ≥ ∑
k∈Nmi

(1 − Ak) +Nmi(1 − Ai) −Nmi, i ∈ N′.
(20)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vi,h ≥
1
Fh

Bi,h, i ∈ N′, h ∈ M′;

Vi,h ≤
1

Fmin
Bi,h, i ∈ N′, h ∈ M′;

Vi,h ≤ ui,h + 1
Fh

Bi,h − 1
Fh
, i ∈ N′, h ∈ M′;

Vi,h ≥ ui,h + 1
Fmin

Bi,h − 1
Fmin

, i ∈ N′, h ∈ M′.

(21)

where Fmin is a normal value tending towards 0. Therefore,
problem P1 has the following equivalent representation

P2: min
D,u,G,V

ψ(D,G, V) (22)

s.t. (12), (13), (18), (20), (21)
When all binary variables are fixed, P2 is a convex problem.

4.2.2 ADMM-Based Parallel Optimization Algorithm
The ADMM-based parallel optimization algorithm is achieved
through the sequential iteration of global variables, local
variables, and antithetic variables. First, the global variables are
optimized by the minimized augmented Lagrangian function.
Then, the local variables are updated; and finally, the antithetic
variables are updated.

Step I: Build the augmented Lagrangian function for the target
problem.

A coupling relationship exists between optimization variables
Ai, Bih and Ci in constraint (12); hence, to break down problem
P2, variables Ai, Bi, h and Ci are first copied as variables A′i, B′i,h
and Z′i so that

⎧⎪⎪⎨⎪⎪⎩
A′

i � Ai, i ∈ N′;
Bi,h
′ � Bi,h, i ∈ N′, h ∈ M′;
C′

i � Ci, i ∈ N′.
(23)

Then, coupling constraint (12) is equivalent to the following
conditions
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A′
i +∑M

h�1
Bi,h
′ + C′

i � 1, i ∈ N′ (24)

D′ � {A′
i , Bi,1

′ , Bi,2
′, ...Bi,M

′, C′
i, i ∈ N′} represents the copied

variable vectors of all smart sensing terminals. Then, problem
P2 is equivalent to

P3: min
D,u,G,V,D′

ψ(D,G, V)

s.t. (13), (18), (20), (21), (23), (24).
Therefore, the augmented Lagrangian function of P3 can be

expressed as (Boyd et al., 2010)

ℓρ(D,G, V,D′, λ, μ, γ) � ψ(D,G, V) +∑N
i�1
λi(Ai − A′

i)

+∑N
i�1
∑M
h�1

μi,h(Bi,h − Bi,h
′ ) +∑N

i�1
γi(Ci − C′

i) + ρ

2
∑N
i�1
(Ai − A′

i)2

+ρ
2
∑N
i�1
∑M
h�1

(Bi,h − Bi,h
′ )2 + ρ

2
∑N
i�1
(Ci − C′

i)2
(25)

where λ � {λi}i∈N′, μ � {μi,h}i∈N′,h∈M′ and γ � {γi}i∈N′ are
Lagrangian multipliers of the three constraints, respectively.
ρ> 0 is an augmented Lagrangian parameter.

Step II: Optimization of global variables.
First, the augmented Lagrangian function is minimized; let

�Gh � {Gi, i ∈ N′}, �Vh � {Vi,h, i ∈ N′}, and �uh � {ui,h, i ∈ N′}.
Then

P4: min{D,u, �G, �V} ℓρ(D, �G, �V,D′[t], λ[t], μ[t], γ[t]) (26)

s.t. (13), (18), (20), (21), (23), (24).where the superscript [t]
represents the iteration number.

Then, let �Ah � {Ai, i ∈ N′} denote the local scheduling
decision vector for all SSDs associated with ESh; �Bh �
{Bi,h, i ∈ N′} represents the decision vector that schedules tasks
to ESh; �C � {Ci, i ∈ N′} stands for the decision vector that
schedules tasks to the cloud server. P4 is equivalent to

ℓρ(D, �G, �V,D′[t], λ[t], μ[t], γ[t]) � ∑M
h�1

fh( �Ah, �Gh) +∑M
h�1

gh(�Bh, �Vh)
+ w(�C)

(27)
At the (t+1)-th iteration, global variable {D, u, �G, �V} can be

updated by solving optimization problem P4 (Nguyen et al., 2017;
Prak and Boyd, 2017).

The optimization problem is broken down and the
subproblems are solved separately below to improve the
computing speed through the parallel processing of such
subproblems. Eq. 27 clearly show that problem P4 can be
equivalently broken down into three subproblems P1, P2, P3,
which are denoted respectively as

P1: min
�Ah, �Gh

fh( �Ah, �Gh) (28)

S.t. (20), Ai ∈ {0, 1}, i ∈ N′

p2: min
�Bh, �Vh,�uh

gh(�Bh, �Vh) (29)

S.t. (18), (21), Bi,h ∈ {0, 1}, i ∈ N′

p3: min
�C

w(�C) (30)

S.t. Ci ∈ {0, 1}, i ∈ N′
For P1, the binary constraints are equivalently expressed as

follows:

∑
i∈N′

(Ai − A2
i )≤ 0, (31)

0≤Ai ≤ 1, i ∈ N′
h (32)

Because (31) is a nonconvex constraint, P1 can be converted
into

P1
′: min

�Ah, �Gh

fh( �Ah, �Gh) + ζ ∑
i∈N′

h

(Ai − A2
i ) (33)

s.t (20), (35).where ζ > 0 is a penalty factor; according to
Reference (Che et al., 2014), when the ζ component is large,
problem P1 is equivalent to problem P1

′. Let ψh( �Ah, �Gh) �
fh( �Ah, �Gh) + ζ ∑

i∈N′
h

Ah and φh( �Ah) � ζ ∑
i∈N′

h

A2
h; then, P1

′ can be

written as the difference between the two convex functions
ψh( �Ah, �Gh) and φh( �Ah). Therefore, P1

′ is a convex difference
optimization problem; the locally optimal solution can be
obtained by the sequential convex approximation method
(Horst and Thoai, 1999).

Subproblem P2 is a linear function, but the binary constraint is
also convex, and the same method for solving subproblem P1 is
used. Subproblem P3 is an unconstrained binary optimization
problem; with the candidate solution comparison method, the
solution to P3 can be expressed as

Ci �
⎧⎪⎪⎨⎪⎪⎩

0
ρ

2
(1 − 2C′[t]

i ) + TCcomm
h + TCcomp

i + γ[t]i ≥ 0

1
ρ

2
(1 − 2C′[t]

i ) + TCcomm
h + TCcomp

i + γ[t]i < 0

⎫⎪⎪⎬⎪⎪⎭ (34)

Step III: Update of local variable.
Value {D, �G, �V}[t+1] of the global variable is achieved at the

(t+1)-th iteration, and problem P4 can be expressed as

p5: min
D′

ℓρ(D[t+1], �G[t+1]
, �V[t+1], D′, λ[t], μ[t], γ[t]) (35)

S.t. (24), A′
i, Bi,h

′ , C′
i ∈ {0, 1}, i ∈ N′, h ∈ M′,

Local variable D′ is updated by solving optimization problem
P5. First, the constant term is removed from the function, and P5
is equivalent to

min
D′

∑N
i�1
W′

i(D′
i) (36)

S.t. (24), A′
i , Bi,h

′ , C′
i ∈ {0, 1}, i ∈ N′, h ∈ M′, where the

function W′
i(D′

i) is denoted as
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W′
i(D′

i) � [ρ
2
A′2

i − (ρA[t+1]
i + λ[t]i )A′

i]+

∑h
h�1

[ρ
2
B′ 2
i,h − (ρB[t+1]

i,h + μ[t]i )Bi,h
′] + [ρ

2
C′2

i − (ρC[t+1]
i + γ[t]i )C′

i] (37)

According to Eq. 24, the optimum solution to P5 is as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A′

i � 1, Bi,h ∈ M′
′ � 0, C′

i � 0 if ci,0 � �Ci,min, i ∈ N′
A′

i � 0, Bi,h
′ � 1, Bi,k: k ≠ h

′ � 0, C′
i � 0 if ci,h � �Ci,min, i ∈ N′

A′
i � 0, Bi,h ∈ M′

′ � 0, C′
i � 1 if ci,M+1 � �Ci,min, i ∈ N′

(38)
where �Ci,min � min{ci,0, ci,h∈N′, ci,M+1} represents the minimum
value of all feasible solutions to SSDi, while ci,0 � ρ

2 − ρA[t+1]
i −

λ[t]i , ci,h � ρ
2 − ρB[t+1]

i,h − μ[t]i,h · ci,M+1 � ρ
2 − ρC[t+1]

i − γ[t]i .
Step III: Update of antithetic variable.
The antithetic variable is updated as follows at the (t+1)-th

iteration

λ[t+1]i � λ[t]i + ρ(A[t+1]
i − A′[t+1]

i ), i ∈ N′ (39)
μ[t+1]i,h � μ[t]i,h + ρ(B[t+1]

i,h − B′ [t+1]
i,h ), i ∈ N′, h ∈ M′ (40)

γ[t+1]i � γ[t]i + ρ(C[t+1]
i − C′[t+1]

i ), i ∈ N′ (41)

5 ANALYSIS OF SIMULATION RESULTS

This section simulates the proposed algorithm for verification.
The experiment used the MATLAB platform to simulate this
process in an IoT scenario, and the results were compared with
the performance of a “vertical collaboration scheme only” and a

“random scheduling strategy” under different task computing
loads and smart sensing terminal computing powers. “vertical
collaboration scheme only” means that the tasks of the terminal
can be processed by the terminal, the associated base station or
the ECS in this scheme. However, the horizontal cooperation
between the terminal and the base station is not considered, and
the task cannot be forwarded to other adjacent terminals or base
stations. The “random scheduling strategy” means that the tasks
of the terminal can only be unloaded to the associated base station
for processing.

An IoT edge computing network, consisting of 10 smart
sensing terminals and four edge servers, was considered. The
computing power of each edge server was 20 Gigacycles/s, and the
computing power of each edge smart sensing terminal was 0.6
Gigacycles/s (Chen et al., 2018). The input data size per task was
subject to the Gaussian distribution of di ~ N (6000, 1000). The
number of CPU cycles required for task calculation follows the
uniform distribution of [2,5] gigacycles. See Table 1 for our
simulation experiment parameters.

Figure 4 shows the convergence performance of the proposed
algorithm. Here we compare the performance of the proposed
scheme with that of the branch and bound method and “vertical
cooperation only scheme”. The branch and bound method is a
classical method to solve discrete combinatorial optimization
problems. For a given small parameter value Ɛ ≥ 0, able to
achieve one- ƐOptimal performance. We set Ɛ = 0.001, therefore,
a solution regarded as an approximate optimal value can be
obtained from the beginning based on the branch and bound
method. The ADMM optimization framework adopted in our
proposed scheme makes the algorithm converge rapidly when the
number of iterations t = 10, and the performance obtained is close
to that of the branch and bound method. Therefore, an
approximate optimal solution can also be obtained.

TABLE 1 | Description of simulation experiment parameters.

The
Bandwidth

Transmission
Power of
Terminal

Noise
Power Spectral

Density

The Computing
Power

of Edge Server
fLi

The Computing
Power

of Edge Smart
Sensing Terminal

The Input
Data Size
per Task

The Number of
CPU Cycles
Required

to Fulfil Task
Qi (Ki)

Average
Backhaul Link
Delay TCcomm (s)

15 MHZ 26 dBm −174 (dBm/Hz) 20 Gigacycles/s 0.6 Gigacycles/s N (6000, 1000) [2,5] gigacycles 4

FIGURE 4 | Convergence performance.
FIGURE 5 | Effect of task size.
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Figure 5 shows the effect of task size on latency. It can be seen
that for the three schemes, the greater the amount of calculation,
the greater the average task duration. However, compared with
the other two schemes, the proposed scheme has a smaller
average task duration under the same task size.

On the other hand, it can be seen that when the amount of
computation is small, the performance of the proposed scheme
and the vertical collaboration only scheme increase
significantly. Because the task processing time is less than
the long-distance transmission time to the ECS, the task is
more likely to be processed by the edge server, which increases
the load on the edge. When the amount of computing
increases, the computing time becomes the main
component of the task duration. In this case, more tasks
will be processed by the ECS, thus reducing the load on the
edge and the task processing duration. Therefore, the task
scheduling strategy adopted in the proposed scheme makes the
system bring better performance gains when the number of
tasks processed is moderate.

Figure 6 illustrates the growth trend of the average runtime
of the proposed scheme as the number of smart sensing
terminals increased. It can be seen that with the increase of
the number of terminals, the average running time of the
random scheduling strategy increases the most, while the
running time of our scheme increases slowly. This is
because although the increase in the number of terminals
may be the increase in the number of tasks, the edge
network multi node cluster cooperative processing strategy
adopted in our scheme can reduce the processing delay of the
system to a certain extent, thus weakening the growth of the
average running time.

Figure 7 shows the effect of the smart sensing terminal
computing power on the average task duration. We note that
The performance difference between the proposed scheme and
the vertical collaboration scheme decreased as the computing
power of the smart sensing terminal increased. This is because
when the computing power of smart sensing terminals increases,
the multi node collaborative task scheduling model under the
proposed architecture makes the tasks tend to be handled by the
terminals themselves, which reduces the need for scheduling to
edge servers and the cloud, thereby maximizing the utilization of
edge resources.

The numerical results suggest that the proposed architecture
can bring significant gains to the cooperative processing of edge
networks when the terminal computing power is small, the
transmission time is long, and the number of tasks is
moderate. This is because in these cases, upiot aware big data
computing services tend to process in the edge computing
network, reducing the processing delay of upiot services. At
the same time, the low delay edge task collaborative
optimization scheduling algorithm proposed by us can better
balance the edge load of upiot intelligent sensing network,
maximize the utilization of edge resources, improve task
execution efficiency, and better improve the quality of service
(QoS) in upiot intelligent sensing network.

6 SUMMARY

The existing power resource management research focuses on
the resource sharing between the edge or the edge cloud, does
not consider the intelligent collaborative computing of
multiple nodes in the system, and the two-tier processing
architecture is in the majority. A new scheduling strategy and
resource allocation scheme for the edge computing problem in
multinode cluster collaboration in UPIoTs were proposed in
this article. The scheme adopts a scheduling scheme
combining edge cloud cooperation and multi node cluster
cooperation between edge aware networks to obtain higher
edge resource utilization and effectively reduce task
processing delay. To minimize the average task time of
UPIoT smart sensing networks, a sensing collaborative task
scheduling model was proposed to model the task processing
latency of the multilayer computing structure in the
architecture. Then, a low-latency edge task collaborative
scheduling algorithm was proposed for linear
reconstruction technology-based problem transformation,
and an ADMM-based parallel optimization framework for
solving this problem was presented. The simulation results
suggest that the proposed optimization strategy performed
well in reducing the UPIoT edge computing latency and
maximizing the edge resource utilization, thereby
effectively ameliorating the QoS in the UPIoT smart
sensing network.

FIGURE 6 | Trend of increas in number of smart sensing terminals.
FIGURE 7 | Effect of computing power of smart sensing terminals.
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