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INTRODUCTION

With the advent of the Information Age, the requirements for data processing have been on the rise.
However, the miniaturization and integration of electronic components lead to increased heat
generation. This huge energy consumption in cooling and heat transfer performance of existing
coolants limits the development of electronic devices. An important solution is to enhance the heat
absorption capacity of coolants. Phase change materials (PCMs) absorb and release a large amount of
latent heat through a phase change, which is advantageous in preventing overheating of electronic
components (Zhang et al., 2020). However, PCMs leak easily and are mostly corrosive (Moreno et al.,
2014). Adding encapsulated phase change materials (EPCMs) into a base working fluid forms a PCM
slurry (PCMS), which circumvents the defects of PCM and offers a feasible approach to thermal
management. The invariant temperature during the phase change makes PCMS more competitive
than conventional coolants in many cooling technologies, such as microchannel (Wang et al., 2016),
jet and spray cooling (Wan et al., 2021), heat pipes (Heydarian et al., 2019), etc. In particular, when
the heat flux is high, up to a 40% decrement in the internal wall temperature, a 50% increase in heat
transfer coefficient (Sabbah et al., 2012), and a 67.5% decrement in the pumping power (Chen et al.,
2008) can be achieved by the application of EPCM. However, encapsulation brings about additional
heat resistance, which may weaken the heat transfer performance of PCMS or even deteriorate the
cooling process. Furthermore, the high viscosity of PCMS leads to high pumping power, especially in
conditions with a high concentration of EPCM, a low Re number, or narrow channels (Ghoghaei
et al., 2020). Supercooling is another drawback of PCMS in that phase change is triggered at a higher
temperature than pure PCM, resulting in uncertainty of heat transfer and increasing energy
consumption. To improve the performance of PCMS, various attempts have been made and can
be classified into two categories as improving the fabrication of PCMmicrocapsules (Hao et al., 2022)
and coupling PCMS with other materials (Rajabifar, 2015).

Thus, given the urgent need for electronic cooling and the favorable heat transfer performance of
PCMS, this opinion briefly expounds on the prospect and challenges of PCMS in thermal
management. The fabrication of EPCM and the application of common cooling technology with
typical optimization methods are summarized here, aiming to provide a quick and preliminary
understanding of PCMS.

FABRICATION OF ENCAPSULATED PHASE CHANGE MATERIALS

Traditionally, EPCMs are produced through polymerization, coacervation, etc. Microfluidics with
high capsulation efficiency provide an alternative approach to producing highly monodispersed
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EPCM in a controllable way. EPCMs produced by
polymerization, complex coacervation, and microfluidics are
shown in Figure 1.

Polymerization
Polymerization generally refers to in situ polymerization and
interfacial polymerization, as shown in Figure 1 A. In the in
situ polymerization, monomers of the shell material and catalyst
are dissolved in the preemulsified core solution. When the
environmental conditions, such as pH value or temperature,
vary, a high molecular polymer of the shell, which is insoluble
in the continuous phase, forms at the surface of the core emulsions
that encapsulates the corematerials into capsules (Srinivasaraonaik
et al., 2020). The interfacial polymerization is similar to in situ
polymerization where the polymerization occurs at the interface of
core material emulsion. The formation of a shell is caused by the
polymerization of reactants inside and outside the interface (Zhao
and Luo, 2022). Polymerization methods have the advantages of
rapid reaction, mild conditions, and simple operation. But,
impurities in the products are inevitable.

Complex Coacervation
Complex coacervation, as shown in Figure 1B, uses two or more
types of polymers with opposite charges as the composite of shell.
Under certain temperature and salinity, the electrostatic
attraction between polymers leads to polymerization at the
surface of dispersed core material. Phase separation occurs
spontaneously with decreasing solubility, and microcapsules
form eventually (Malekipirbazari et al., 2014). The
coacervation is easy to operate with the advantage of high
throughput. However, the selection of the shell materials is
tricky, and impurities are inevitable.

Microfluidic
Studies have proven the significance of accurate and controllable
encapsulation of EPCM for the cooling performance of PCMS (Li
et al., 2019). Based on microfluidic chips, micro/nanoscale single
and double emulsions with perfect sphericity can be prepared,
and the capsule size can be controlled easily by changing the flow
rate of phases, which has drawn extensive attention.
Axisymmetric microfluidic chips, such as flow focusing

FIGURE 1 | Encapsulation methods: (A) polymerization, (a1) and (a2) are EPCM produced by in situ polymerization (Srinivasaraonaik et al., 2020) and interfacial
polymerization (Zhao and Luo, 2022), respectively, (B) coacervation (Malekipirbazari et al., 2014), (C)microfluidic EPCM production (I: glass slide, II: dispensing needles,
III: inner capillary, IV: outer capillary) (Hao et al., 2022).
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(Akamatsu et al., 2019) and coflowing (Fu et al., 2014) are usually
used for preparing EPCM. The liquid-state core and shell
materials are injected as the innermost and the middle
phase, respectively, during the formation of double
emulsions in microfluidics. Subsequently, EPCM with
smooth surface and regular size are obtained by curing the
emulsion templates. The EPCM produced by Hao et al. (2022)
with coflowing microfluidic device is shown in Figure 1C1,
which suggests that EPCM prepared by microfluidic have
significantly higher monodispersity than those prepared by
other methods.

A 100% encapsulation efficiency and controllability make
microfluidic a promising fabrication method for EPCM.
However, there are several issues limiting the industrial
application of microfluidic: 1) The controllability of
microfluidic relies on fully understanding the hydrodynamic
mechanism of droplet formation (Chen et al., 2013; Chen and
Deng, 2017; Wang et al., 2022). 2) The fluid to be emulsified is
determined by the wettability of the chip; hence, surface
modification is usually required (Wang et al., 2018). 3) The
throughput of microfluidic is relatively low in a single
microfluidic channel. Recently, step emulsification (Shi et al.,
2020), parallel microchannel (Eberhardt et al., 2019), and droplet
splitting (Park et al., 2018) are proposed to facilitate the
throughput of microfluidics. However, complex
hydrodynamics are inevitable in high-throughput microfluidics
that the monodispersity is slightly worse than a single-channel
microfluidic.

APPLICATIONS IN ELECTRONIC COOLING

EPCM shows great potential in effective cooling with reduced
energy consumption attributable to its high specific surface area
and favorable characteristic of constant temperature during the
phase transition process. However, there are some unsolved
problems that limit the prevalence of EPCM in cooling
technologies.

Microchannel
Microchannel is one of the most commonly used liquid cooling
devices. Compared with traditional coolant, PCMS has been
proven to have enhanced cooling performance. Adding 0.7%
EPCM can achieve a 37% increment in heat transfer efficiency
compared to single-phase coolant (deionized water). However,
when the concentration of EPCM increases from 0.25% to
1.5%, the viscosity increases by 15%–22%, which directly leads
to high pressure drop and pumping power (Joseph and Sajith,
2019). To optimize the performance of PCMS, some methods
aiming to enhance the heat transfer are proposed, such as
adding nanoparticles in the slurry (Rajabifar, 2015), using
carbon nanotubes as the shell to increase the thermal
conductivity, and adding liquidity-enhancing active agent
(Sinha-Ray et al., 2014). The applicable temperature of
PCMS can be extended from 40°C–80°C to 40°C–120°C with
carbon nanotube shells and active agent, which is of great
significance for cooling in high-heat flux narrow channels.

Jet Impingement Cooling
The heat transfer coefficient of jet impingement cooling increases
by 50%–70% after the working fluid is loaded with EPCM, and the
capsules can maintain complete structure after multiple cycles
(Wu et al., 2011). However, a high pressure drop and heat transfer
resistance of EPCM were also observed (Wan et al., 2021). What
is more, the PCMS exhibit greater cooling efficiency than single-
phase coolants only when the jet inlet temperature is in a certain
range related to the PCM melting point. Although the
disadvantage of PCMS can be counteracted by increasing the
flow rate, excessive flow velocity causes incomplete phase
transition and invalidity of PCMS.

Heat Pipe
The PCMS is also utilized in pulsating heat pipes. The PCMmelts
and solidifies when it passes through the heating and cooling
section, respectively. The experiments of Heydarian et al. show
that the PCMS can enhance heat transfer by 6%–44%, thus
contributing to its large latent heat and disturbance to the
fluid flow (Heydarian et al., 2019). Moreover, PCMS can
effectively prevent the dry-out compared to single-phase
coolants, which stabilizes the operation of heat pipes under
the high heat flux. However, the EPCM leads to higher
thermal resistance and viscosity, so there is an optimal
concentration at which the thermal resistance of the slurry is
the highest. Once the concentration exceeds this optimal
concentration, boiling deterioration is observed.

Flow in Pipe
As an important component of numerous heat exchangers,
enhancing the heat transfer of flow in the pipe/tube by PCMS
is of great potential. By comparing the heat transfer of PCMS and
water in tubes under different working conditions, Zhang et al.
found that the disadvantage of PCMS’s high viscosity plays a
dominant role in the laminar flow condition. Thus, the heat
transfer coefficient of PCMS in the pipe is even lower than that
of single-phase coolant at the low Re number. In the turbulent flow,
although the heat transfer can be improved by PCMS, the
enhancement shows a strong correlation with the flow rate,
which is dominated by the heat load. Although the high
viscosity increases the pumping power required for pipe flow,
the required flow rate is reduced, the pump energy can be reduced
by more than 60% (Chen et al., 2008). However, with the
continuous increase of Re, insufficient time for phase transition
of PCM is observed, and the heat absorption capacity of PCMS is
weakened (Zhang et al., 2018; Zhang et al., 2021).

Summary
The PCMS shows great potential in effective cooling having a
huge advantage of maintaining a stable temperature. Some
advantages and common challenges of PCMS for liquid
cooling can be summed up according to the present literature.
The PCMS can thus enhance the heat transfer greatly by storing
the absorbed energy as latent heat, especially under high heat flux
conditions. But, the performance is limited by the working
condition. On the one hand, the competition among high
specific surface area, high thermal resistance, and high
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viscosity attributing to encapsulation lead to an optimum
concentration of EPCM in the base fluid. Although the
optimal value is mainly determined by experiments, further
theoretical studies are needed. Moreover, the application of
PCMS in narrow channels and laminar flow is hindered by
high thermal resistance and high viscosity, and the heat
transfer deteriorates in some conditions. Although the thermal
conductivity and fluidity of PCMS can be improved by
nanoparticles and active agents, this approach is limited
because nanoparticles also increase the viscosity of the slurry
(Zhang et al., 2018). On the other hand, the heat absorption of
EPCM depends on the phase change process that occurs only
under certain temperature conditions. Thus, the choice of PCMS
depends on specific working conditions, and the prediction of the
heat transfer coefficient is a challenge.

CONCLUSION

Current studies have proven that PCMS can achieve higher
efficiency than single-phase coolants in heat dissipation,
especially under high heat flux conditions, which is of great
significance in solving the problem of heat dissipation of
electronic devices while reducing the energy consumption.
However, PCMS is valid only under a certain range of flow
velocity, temperature, and concentration due to additional
thermal resistance, high viscosity, and supercooling. Several
approaches have been proposed to enhance the performance

of PCMS. From the aspect of fabrication, microfluidics with a
100% encapsulation efficiency represents a promising route for
producing high quality EPCM in a controllable way. From the
aspect of an application, nanoparticles and an active agent can
improve the thermal conductivity and fluidity of PCMS,
respectively. There are three possible directions for the future
development of PCMS. First, a high-throughput and controllable
microfluidic method for the fabrication of EPCM can improve the
quality and stability of PCMS. Second, an efficient and compatible
base fluid with high thermal conductivity and liquidity is
beneficial in the extensive application of PCMS. Finally, the
prediction of an optimal working condition based on
experimental tests and theoretical analysis is essential for the
design of cooling devices utilizing PCMS.
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