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The prediction of photovoltaic power generation is helpful to the overall allocation of power
planning departments and improves the utilization rate of photovoltaic power generation.
Therefore, this study puts forward an ultra-short-term power forecasting model of a
photovoltaic power station based on modal decomposition and deep learning. The
methodology involved taking the data of a 50 MW photovoltaic power generation
system in the Inner Mongolia Autonomous Region as a sample. Furthermore, the
weather conditions were classified, and the historical power data were decomposed
into multiple VMF subcomponents and residual terms by the VMD method. Then, the
residual termwas decomposed twice by the CEEMDANmethod. All subcomponents were
sent to the LSTM network for prediction, and the predicted value of the photovoltaic power
station was obtained by superimposing the subcomponent prediction results. ARIMA,
SVM, LSTM, and VMD-LSTM models were built to compare the accuracy with the
proposed models. The results revealed that the prediction accuracy of a non-
combination forecasting model was limited when the weather suddenly changed. The
VMDmethod was used to decompose the residual term twice, which could fully extract the
complex data information in the residual term, and when compared with the VMD-LSTM
model, the eRMSE, eMAPE, and eTIC of the VMD-CEEMDAN-LSTM model were reduced by
0.104, 16.596, and 0.038, respectively. The second decomposition technology has
obvious prediction advantages. The proposed quadratic modal decomposition model
effectively improves the precision of ultra-short-term prediction of photovoltaic power
plants.
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1 INTRODUCTION

The increasing population and modern lifestyle are threatening
the traditional energy sources such as coal, oil, and natural gas. In
order to meet the world’s energy demand, renewable energy must
be developed and utilized on a large scale (Wang H. et al., 2020;
Sohani et al., 2021). In renewable energy, solar energy occupies a
dominant position (Yuan et al., 2021). However, photovoltaic
power generation is very sensitive to climate and seasonal factors
(Meng et al., 2021). Small changes in photovoltaic power may
affect the safe and stable operation of the power grid (Ding, 2021).
In order to ensure the stability, reliability, and power dispatching
ability of the power system, it is very important to design a true
and accurate photovoltaic power forecasting method.

Photovoltaic power forecasting methods are generally divided
into physical methods and statistical methods. Physical methods
are not suitable in many cases because of their low prediction
accuracy and high calculation cost (Ma et al., 2014; Yao, 2014;
Hassan et al., 2021). The statistical method optimizes the
mapping relationship between historical samples and actual
photovoltaic power by minimizing the error, which is proved
to be effective in the field of solar energy prediction. At present,
the machine learning model (Chiteka and Enweremadu, 2016;
Jang et al., 2016; Gao et al., 2019; Ghimire et al., 2019; Ye et al.,
2021; Chiang and Young, 2022) has been successfully applied to
photovoltaic power prediction. In order to improve the accuracy
of power prediction, some combination models (Mellit et al.,
2010; Mohammadi et al., 2015; Wang X. et al., 2020; Yang et al.,
2020) have also been applied in the field of photovoltaic
prediction. However, the prediction of photovoltaic power
generation is not only related to the current weather
conditions but also related to historical data. Machine learning
belongs to the shallow network, which is more suitable for small
batch data analysis. With the explosive growth of data, these
methods cannot mine the most effective features from massive
data, and there are problems such as gradient disappearance and
explosion, so the prediction accuracy is limited (Changwei et al.,
2019).

In recent years, the deep learning method has been
successfully applied in the field of photovoltaic forecasting
because of its strong ability of data feature extraction and
fitting, which can independently mine the main learning
features from massive data (Alzahrani et al., 2017; Abdel-
Nasser and Mahmoud, 2019; Chang and Lu, 2018; Zang et al.,
2018; Zhou et al., 2019). Zhou et al. (2019) adopted an attention
mechanism, that adaptively focuses attention on two important
input features, namely, temperature and irradiance, so that more
relevant information can be mined. Alzahrani et al. (2017)
proposed a recurrent neural network model to predict the
solar irradiance level. Abdel-Nasser and Mahmoud (2019)
compared long-term and short-term memory networks with
three traditional methods: multiple linear regression,
regression tree, and ANN. Chang and Lu (2018) compared the
depth confidence network with SVR, back propagation neural
network, and other methods, and the results show that DBN has
the best prediction effect. In the work of Zang et al. (2018), the
convolutional neural network is compared with BPNN and SVR

models, and it is found that the CNN model has the lowest
prediction accuracy.

The above research on photovoltaic power prediction has
made some achievements, but the statistical model also has its
own limitations. Compared with physical forecasting methods,
statistical models are more concise in modeling, but there are also
some problems in actual forecasting, such as difficulty in
parameter adjustment, stagnation of convergence, etc., and the
weather type has a great influence on photovoltaic forecasting,
while most statistical models do not classify and analyze different
weather conditions. At present, the existing literature uses the
VMD decomposition method to decompose the photovoltaic
power curve but ignores the important information in the
residual term obtained by VMD decomposition. In order to
further improve the accuracy of ultra-short-term prediction of
photovoltaic power, this paper classified the weather conditions,
used the VMD method to decompose the historical power, and
used the adaptive noise complete empirical mode decomposition
method to decompose the residual term for the second time. By
making full use of the information in the residual term, VMF and
IMF components were sent to the LSTM network, and the final
prediction result was obtained by superimposing the prediction
results of each subcomponent. The errors of ARIMA, SVM,
LSTM, and VMD-LSTM models were compared, and the
results showed the accuracy of the quadratic decomposition
model proposed in this paper.

2 INFLUENCE OF WEATHER TYPES ON
PHOTOVOLTAIC OUTPUT

Photovoltaic power is affected by many factors such as
meteorology, environment, and location. This paper selects the
power data of a photovoltaic power station in the Inner Mongolia
Autonomous Region from 1 January 2019 to 31 December 2020
as the sample. There are 52 sampling points in the power station,
and the sampling interval is 15 min. As the photovoltaic power
station only works in daytime, only the data from 08: 00 to 18: 00
are selected for analysis. When there is no sudden change in the
weather (sunny, cloudy, rainy, and snowy), the photovoltaic
output is relatively stable, and the output curve is
approximately parabolic; However, when the weather suddenly
changes during the day, the photovoltaic output curve fluctuates
greatly, which affects the safe and stable operation of the power
system. Therefore, it is necessary to distinguish between the
weather types to study the photovoltaic output.

3 DESCRIPTION OF THEMODEL CONCEPT
AND MECHANISM

The photovoltaic power series is a non-stationary and nonlinear
time series. The VMD method can decompose a photovoltaic
series into several VMF components with low complexity and
residual terms. In previous studies, only VMF components were
studied and the residual terms were discarded, but the residual
terms also contained a lot of useful information. If the residual
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term is discarded directly, the prediction accuracy of the model
will be greatly affected. In order to improve the prediction
accuracy, this study uses the CEEMDAN method to
decompose the residual term after VMD decomposition for
the second time and then sends both the VMF component
and IMF component to the LSTM network (Li et al., 2021a; Li
et al., 2021b; Le et al., 2021; Toyoda and Wu, 2021; Wu et al.,
2021).

3.1 Variable Modal Decomposition
3.1.1 Variable Modal Decomposition Principle
The core of variable modal decomposition is to decompose
signals by adaptive and completely non-recursive methods.
This method can adaptively match the best frequency and
bandwidth and then realize the effective decomposition of
VMF components, thus solving the endpoint effect problem of
the EMD method. The model expression is as shown in the
following equation:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
{uk},{wk}

⎧⎨⎩∑
k

�������zt[(δ(t) + j

πt
)puk(t)]e−jwkt

�������22⎫⎬⎭
s.t. ∑

k

uk � f

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭, (1)

where k is the number of VMF components; {uk}: � {u1,/, uk}
represents the modal subcomponent VMF; {wk}: � {w1,/, wk}
represents the center frequency value of the VMF component; f
is the original data sequence; zt stands for taking partial derivative
of time; δ(t) represents the Dirac function; e−jwkt the center
frequency value of the VMF component can be adjusted.

In order to obtain the optimal solution, the quadratic penalty
factor α and Lagrange operator λ(t) are introduced.

L({uk}, {wk}, λ): � α∑
k

�������zt[(δ(t) + j

πt
)uk(t)]e−jwkt

�������22+���������f(t) −∑b uk(t)
���������2
2

+⎛⎝λ(t), f(t) −∑
k

uk(t)⎞⎠, (2)

where Lagrange operator λ(t)maintains the constraint condition;
the quadratic penalty factor α is used to ensure the accuracy of
data sequence reconstruction. During iterative search, the
ADMM algorithm is used to calculate the saddle point of the
Lagrange function.VMFuk and center frequencywk are obtained
as follows:

ûn+1
k (w) � f̂(w) − ∑i≠kûi(w) + λ̂(w)

2

1 + 2α(w − wk)2 , (3)

ŵn+1
k � ∫∞0 w|ûk(w)|2dw∫∞

0
ûk|(w)|2dw

. (4)

1) Set the appropriate component number K, and make the
related parameters {u1k}{w1

k}, λ1, n � 0.
2) Update uk and wk according to the iterative search method of

ADMM algorithm in Eqs 3, 4.
3) Update that λ(t) value of Lagrange operator.

λ̂
n+1 � λ̂

n + τ⎡⎣f(w) −∑
k

ûn+1
k (w)⎤⎦. (5)

4) Judging the judgment precision.∑
k

����ûn+1
k − ûn

k

����22/����ûn
k

����22 < ε. (6)

When condition (6) is satisfied, the iteration stops, otherwise,
the process returns to step 2.

In the abovementioned formula, ûnk(w), f̂(w), and λ̂
n(w) are

Fourier transforms corresponding to ûnk, f(t), andλn’s Fourier
transform.

3.1.2 Variational Modal Decomposition Results
When the VMD method is used for modal decomposition of
photovoltaic power, if there are many VMF components, modal
aliasing will easily occur, but when there are few VMF
components, the complexity of the photovoltaic power
sequence cannot be effectively reduced, so the number of
VMF components needs to be determined according to the
change of instantaneous frequency before decomposition.
When the number of VMF components is 7, the
instantaneous frequency curve is obviously bent and over-
decomposed. Therefore, this paper sets the number of VMF
components to 6.

3.2 Complete Empirical Mode
Decomposition of Adaptive Noise
3.2.1 Principle of Adaptive Noise Complete Empirical
Mode Decomposition
Empirical decomposition can decompose a photovoltaic power
sequence into several IMF components, but due to the non-
stationary and nonlinear characteristics of the photovoltaic
power curve, aliasing can easily appear in the decomposition
process. The EEMD decomposition method adds white noise
to the original sequence and makes use of the frequency
equilibrium distribution characteristics of white noise to
improve the mode aliasing problem, but the decomposition
efficiency of this method is low. In this article, CEEMDAN
method is chosen to decompose photovoltaic sequences, which
adds white noise with different amplitudes to decompose the
optimal IMF component and solves the problems of modal
aliasing and low decomposition efficiency. CEEMDAN
decomposition steps are as follows.

1) Add the white noise sequence ni(t) to the original sequence
x(t), that is,

xi(t) � x(t) + εini(t), (7)
where, εi is the control parameter; xi(t) is the data sequence after
adding white Gaussian noise.

2) Perform empirical mode decomposition on data sequence
xi(t), that is,

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 9453273

Wang et al. Ultra-Short-Term Power Prediction

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


xi(t) �∑J
j�1
Ci,j(t) + ri(t). (8)

In this formula, Ci,j(t) is the jth IMF component after the ith
decomposition, and ri(t) is the residual term.

3) Average Ci,j(t), cancel the influence of white noise on IMF
component, and decompose to get the j IMF
component Cj(t):

Cj(t) � 1
N
∑N
i�1
Ci,j(t). (9)

4) The final decomposition result of CEEMDAN is

x(t) �∑J
j�1
Cj(t) + r(t), (10)

where ∑J
j�1Cj(t) is the modal component of different frequency

segments of the data sequence, and r(t) is the overall
residual term.

3.3 Long-Term and Short-Term Memory
Neural Network
3.3.1 Principle of Long-Term and Short-Term Memory
Neural Network
By introducing a gating unit, the long-term memory neural
network can selectively add or forget information, which keeps
the feedback mechanism of the circulation neural network and
solves the long-term dependence of the circulation neural
network. A long-term memory neural network consists of
input, output, and hidden layer containing a gated memory
mechanism.

Data are memorized by controlling the forgetting gate, the
input gate, and the output gate, and the calculation formulas are
shown as follows:

f t � σ(Wf · [ht−1, xt] + bf), (11)
it � σ(W i · [ht−1, xt] + bi), (12)
ot � σ(Wo · [ht−1, xt] + bo), (13)

where σ is sigmoid activation function; ht−1 is the state of the
hidden layer at time t-1; xt is a sequence input; f t,Wf, and bf are
the result, weight matrix, and bias term of forgetting gate T; it,W i

and bi are the time result, weight matrix and bias term of the input
gate T; ot, Wo, bo output gate t time result, weight matrix and
bias term.

The calculation of the state ct of the time memory cell of the
time hidden layer ht and t in t is as shown in the following
equations:

~ct � tanh(Wc · [ht−1, xt] + bc), (14)
ct � f t+ct−1 + it+~ct, (15)
ht � ot+tanh(ct), (16)

where ~ct is the candidate state of the memory unit;Wc is the input
unit state weight matrix.

3.3.2 Structure of Long-Term and Short-Term Memory
Neural Network
The LSTM network model parameters are as follows: the dropout
value is 0.2; the function is optimized to adam; the activation
function takes tanh; the number of nodes is 50; training times are
1,000; batch size is 72, and the average absolute error function is
selected as the loss function.

3.4 Construction of the VMD-EEMD-LSTM
Model
The modeling steps of the VMD-CEEMAN-LSTMmodel built in
this study are as follows:

1) The PV power sequence is decomposed by the VMD method,
which is divided into the VMF component and the
residual term

2) Normalize each VMF component and send it to LSTM
network to obtain the VMF subcomponent prediction result

3) The remaining residual term is decomposed twice by
CEEMAN, and the IMF component obtained by
decomposition is sent to the LSTM network

4) Superposing the IMF subcomponent prediction results to
obtain the residual prediction results

5) Superposing the VMF subcomponent prediction result and
the residual prediction result to obtain the final photovoltaic
power prediction result

The modeling process of the VMD-CEEMAN-LSTMmodel is
shown in Figure 1.

3.5 Modeling Classification
Because the weather type has a great influence on the
photovoltaic output, in order to improve the prediction
accuracy, this article separately predicts the abrupt weather
(sunny, cloudy, rainy, and snowy) and the non-abrupt
weather (sunny to cloudy, sunny to cloudy, etc.). In order
to test the accuracy of the VMD-CEEMDAN-LSTM model,
ARIMA, SVM, LSTM, and VMD-LSTM models are
established and compared with the proposed models. When
evaluating the accuracy of the model, the average absolute
percentage error eMAPE, the root mean square error eRMSE, and
the Hill inequality coefficient eTIC are selected, and the
formula is as follows:

eMAPE � 1
Z
∑Z
i�1

∣∣∣∣∣∣∣∣y′i − yi

yi

∣∣∣∣∣∣∣∣, (17)

eREMS �

�����������∑Z
i�1
(y′i − yi)2

Z

√√
, (18)
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eTIC �

�����������∑Z
i�1
(y′i − yi)2√

�������∑Z
i�1
(y′i)2√

+
������∑Z
i�1
(yi)2√ , (19)

where Y is the true value of power; Y′ is the predicted value of
power; and Z is for sample purpose.

4.2 Non-Abrupt Weather Forecast Model
The photovoltaic power of different weather types is predicted
separately, and the prediction process is shown in Figure 2. In
non-abrupt weather, the output data of historical photovoltaic
power plants in sunny, rainy, or cloudy weather are decomposed
by VMD, and the residual term generated by VMD
decomposition is decomposed by CEEMDAN secondary
mode, and all subcomponents are added to meteorological

FIGURE 1 | VMD-CEEMDAN-LSTM model modeling process.

FIGURE 2 | Forecasting process.
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conditions and sent to the LSTM network for prediction.
Photovoltaic output will fluctuate greatly in abrupt weather, so
in abrupt weather forecast, the time of maximum output power in
a day (2: 00 p.m.) is selected for decomposition, so that the
original complex power sequence becomes a number of stable
data sequences, and then meteorological factors are added and
sent to LSTM network.

4 EXAMPLE ANALYSIS

4.1 Source of Examples
The historical power data from 2019 to 2020 of photovoltaic
power stations with an installed capacity of 50 MW in the Inner
Mongolia Autonomous Region are selected as samples to verify
the validity of the VMD-CEEMDAN-LSTM model. The 71-day
weather conditions are as follows: 265 days of sunny weather,
63 days of cloudy weather, 93 days of cloudy weather, 115 days of
rain and snow, and 195 days of abrupt weather. Taking sunny,
cloudy, and sunny-to-cloudy weather as examples, the days of
training and testing samples are 221 and 44 days in sunny
weather, 52 and 11 days in cloudy weather, and 21 and 4 days
in sunny-to-cloudy weather.

4.2 Forecast Results
In sunny weather, the photovoltaic output prediction results are
shown in Figure 3A, and the model evaluation results are shown
in Table 1. In sunny weather, the fluctuation of photovoltaic
output is small. In Figure 3A, it can be clearly observed that the
prediction accuracy of the ARIMAmodel is insufficient, resulting
in large errors, and the prediction effects of other models are
better than those of the ARIMA model. Compared with ARIMA
and SVM, the evaluation indexes of the three non-combination
forecasting models show that the eMAPE value of the LSTMmodel

FIGURE 3 | Prediction results of different weather power. (A) sunny
weather. (B) cloudy weather. (C) sunny-to-cloudy weather.

TABLE 1 | Prediction error of different weather powers.

Type Model eMAPE eRMSE eTIC

Sunny day ARIMA 0.560 167.661 0.060
SVM 0.477 135.637 0.053
LSTM 0.375 102.516 0.040
VMD-LSTM 0.304 82.444 0.028
VMD-CEEMDAN-LSTM 0.203 62.884 0.019

Cloudy ARIMA 0.554 222.537 0.257
SVM 0.557 171.678 0.181
LSTM 0.391 122.826 0.146
VMD-LSTM 0.269 89.539 0.117
VMD-CEEMDAN-LSTM 0.229 76.207 0.092

Clear and cloudy ARIMA 0.684 258.058 0.322
SVM 0.539 189.926 0.234
LSTM 0.393 154.410 0.185
VMD-LSTM 0.256 105.978 0.127
VMD-CEEMDAN-LSTM 0.189 89.058 0.116
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decreases by 0.185 and 0.102 respectively, the eRMSE value
decreases by 65.145 and 33.121, respectively, and the eTIC
value decreases by 0.02 and 0.013, respectively. The evaluation
index can clearly show that the deep learning method can mine
more features of photovoltaic data and is more suitable for the
prediction of nonlinear and non-stationary data. According to the
data in Table 1, eMAPE, eRMSE, and eTIC of the VMD-CEEMDAN-
LSTM prediction model are the smallest, and at noon, when the
photovoltaic power curve fluctuates, the VMD-CEEMDAN-
LSTM power prediction curve still keeps a high degree of fit
with the real power curve.

In cloudy weather, the forecast results are shown in Figure 3B.
Compared with sunny weather, cloudy weather reduces
photovoltaic power due to the blocking effect of clouds on the
Sun’s rays. Due to the change in cloud thickness, the photovoltaic
power curve also fluctuates greatly. At this time, the predicted
value of ARIMA model and SVMmodel has a big deviation from
the real value, and the model accuracy decreases. On 4 May 2019
compared with ARIMA, SVM, and LSTM, the eMAPE value of
VMD-LSTM model decreased by 0.285, 0.288, and 0.122
respectively, and that of VMD-CEEMDAN-LSTM model
decreased by 0.325, 0.328, and 0.162 respectively. The VMD-
LSTM model and the VMD-CEEMDAN-LSTM model reduces
the complexity of data series and the influence of data fluctuation
through variational modal decomposition.

The forecast result of photovoltaic output in sunny weather is
shown in Figure 3C. When the weather suddenly changes,
because the complexity of photovoltaic power series increases,
the predicted values of ARIMA, SVM, and LSTM have a high
degree of dispersion with the real values, so the prediction
accuracy is limited and the accuracy is difficult to guarantee.
Comparing the error evaluation indexes, it can be seen that the
VMD-CEEMDAN-LSTM model still maintains the highest
prediction accuracy. On 13 August 2020, its eMAPE value
decreased by 0.204 and 0.067 compared with the LSTM and
VMD-LSTM models.

In order to further highlight the accuracy of the proposed
method, this article makes statistics on the test results of all test
samples in the power station within 2 years. The errors of VMD-
LSTM and VMD-CEEMD-LSTM were counted. Compared with
the VMD-LSTM model, the eRMSE, eMAPE, and eTIC of the VMD-

CEEMDAN-LSTM model decreased by 0.104, 16.596, and 0.038,
respectively. The accuracy of the model is obviously improved
after the second decomposition of the residual term obtained by
VMD decomposition.

5 CONCLUSION

In order to further predict the accuracy of photovoltaic power,
this article proposed a model combining modal decomposition
with deep learning algorithm and built ARIMA, SVM, LSTM, and
VMD-LSTM models to compare their errors with the proposed
models. The main conclusions are as follows:

(1) In data processing, VMD decomposition and CEEMDAN
secondary decomposition of residual terms greatly improve
the prediction accuracy compared with the traditional non-
combination prediction model

(2) The second CEEMDAN decomposition of the residual
term obtained by VMD decomposition can fully improve
the complex features of the residual term, which makes
the eRMSE, eMAPE, and eTIC of the VMD-CEEMDAN-
LSTM model lower than those of the VMD-LSTM
model by 0.104, 16.596, and 0.038, respectively, and
the prediction accuracy of the VMD-CEEMDAN-
LSTM model is obviously higher than that of the
VMD-LSTM model
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