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Predicting peak day and peak
hour of electricity demand with
ensemble machine learning

Tao Fu, Huifen Zhou, Xu Ma, Z. Jason Hou* and Di Wu*

Pacific Northwest National Laboratory, Richland, WA, United States

Battery energy storage systems can be used for peak demand reduction

in power systems, leading to significant economic benefits. Two practical

challenges are 1) accurately determining the peak load days and hours and

2) quantifying and reducing uncertainties associated with the forecast in

probabilistic risk measures for dispatch decision-making. In this study, we

develop a supervisedmachine learning approach to generate 1) the probability

of the next operation day containing the peak hour of the month and 2) the

probability of an hour to be the peak hour of the day. Guidance is provided

on preparation and augmentation of data as well as selection of machine

learning models and decision-making thresholds. The proposed approach is

applied to the Duke Energy Progress system and successfully captures 69 peak

days out of 72 testing months with a 3% exceedance probability threshold. On

90% of the peak days, the actual peak hour is among the 2 h with the highest

probabilities.
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1 Introduction

Many cooperatives, municipally owned utilities, and other types of load serving
entities (LSE) purchase power from electricity markets or through power purchase
contracts. A capacity charge is paid based on the coincident demand during system
peak hours. Effectively reducing the peak demand leads to significant economic
and environment benefits, as well as improved power grid security and stability
(Dai et al., 2021). Battery energy storage systems (BESS) are promising for peak demand
reduction because of their flexibility and instantaneous response capability. An LSE does
not know exactly when the peak hour will occur. Simply discharging BESS on all high-
load days helps capture the peak hour and reduce the coincident demand, but causes
unnecessary battery degradation and energy losses associated with charging/discharging.
In addition, due to limited energy capacity, BESS may not be able to discharge at the
rated power in all high-load hours. Therefore, advanced peak day and peak hour forecast
methods are critical to maximizing benefits from BESS for peak demand reduction.

Predictions of the monthly peak hour can be derived from load forecast that
spans the entire month. Traditional methods, such as autoregressive integrated
moving average (ARIMA), forecast load with univariate historical load. More
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advanced nonlinear machine learning (ML) methods have
also been proposed for load forecasting with multivariate
predictors, including weather, calendar, and economics
(Hong and Fan, 2016). Examples of advanced nonlinear ML
methods are K-nearest neighbors (KNN) (El-Attar et al., 2009),
fuzzy regression models (Hong and Wang, 2014), support
vector machine (SVM) (Niu et al., 2010), gradient boosting
machine (GBM) (Massaoudi et al., 2021), random forest
(RF) (Cheng et al., 2012; Huang et al., 2016), and artificial
neural networks (ANN) (El Desouky and Elkateb, 2000;
Ringwood et al., 2001; Saini, 2008). These approaches can
also be combined to improve load forecasting. For example,
El Desouky and Elkateb (2000) developed a hybrid ANN with
ARIMA for load forecasting. El-Attar et al. (2009) proposed a
multivariate load forecasting approach by combining support
vector regression with a KNN local prediction framework.
Berrisch et al. (2022) combined generalized additive models and
deep ANN to predict high-resolution minimum and maximum
peak load given only lower resolution data and weather
information. Mao et al. (2009) proposed a self-organizing fuzzy
neural network (SOFNN) for short-term load forecasting with
a bilevel optimization method to find the best pre-training
parameters. A monthly peak hour can be identified based
on the value of the hourly load forecast. Such a method
requires the hourly load forecast toward the end of the
month. There are significant uncertainties associated with long-
term hourly load forecast. A major challenge of predicting
peak hours based on load forecast is how to model and
quantify uncertainties, considering varying weather conditions
(e.g., temperature, humidity, and wind speed) and nonlinear
relationships between weather and load (El Desouky and
Elkateb, 2000).

Efforts have also been made to directly predict peak hours.
For example, Goodwin and Yazidi (2016) proposed an SVM and
Gaussian mixture classification approach to directly estimate
the peak hours for the next 7 days based on historical load.
Leveraging short-term load forecasts, Jiang et al. (2014) adopted
a probabilistic approach for estimating the probability of the
next day containing the highest hourly demand of a year. A
Naive Bayesian classification model was proposed for classifying
whether an hour is a 5CP (top 5 coincident peaks of a
year) hour (Ryu et al., 2016). Liu and Brown (2019a) proposed
a convolutional neural network (CNN) classification model
to predict 24 h ahead whether a day is a 5CP day. For the
peak hour model, they built separate models for summer and
winter using different classification methods: Naive Bayes, SVM,
RF, AdaBoost, CNN, long short-term memory (LSTM), and
stacked autoencoder (Liu and Brown, 2019b). More recently,
Saxena et al. (2019) developed a hybrid classification model
combining ARIMA, logistic regression (LR), and ANN for peak
day prediction.

Both load forecast and direct peak prediction ML models
require enough data for training and validation. In practice,
however, complete historical records of load and weather are not
always available, which warrants the data augmentation effort.
In addition, these aforementioned approaches either ignored
trailing or leading effects of factors or skipped dimension
reduction and physical interpretation of the factor contributions.
To summarize, despite the progress to date, additional research
and development are needed to better support BESS dispatch
decision-making for peak demand reduction, including 1)
quantifying uncertainties associated with peak day and peak
hour predictions, 2) addressing the data inadequacy issue via
ML data augmentation, 3) evaluating choices of peak day
probability thresholds for decision-making considering both
prediction accuracy and precision, 4) including all physical
and temporal factors to fully capture their correlations and
causalities with system load peaking behaviors, e.g., trailing
and leading effects, and 5) integrating ensemble ML model
selection techniques to deal with factor collinearity, mixed data
types, and overfitting, as well as trustworthy, explainable ML
prediction.

In this paper, we propose an ensemble learning approach
taking advantage ofmultipleML techniques, including RF, GBM,
and LR, for predicting peak day and peak hour to better support
BESS dispatch decision-making. To quantify the prediction
uncertainties, we develop, validate, compare, and select optimal
ML models to generate the probability of the next day to be
the monthly peak day (note that one and only one peak day
is defined for each billing cycle, which is a month), and the
probability of an hour to be the peak hour of a day. The proposed
approach also features ML-based data augmentation to address
the data inadequacy issues and a procedure to select exceedance
thresholds for decision-making. We use a comprehensive set
of predictors, including actual load in previous days of the
month, day-ahead load forecast, weather forecast, and their
derivatives, as well as temporal factors to help improve peak
predictions. By applying bagging and boosting techniques, the
ensemble tree-based ML method can help avoid overfitting and
deal with unbalanced data of mixed types, e.g., categorical vs
continuous (Domingos, 2012; Breiman, 2001; Friedman, 2001;
Cieslak and Chawla, 2008;, 2012; Jaiswal and Samikannu, 2017).
We also use naive load-based peak predictions to demonstrate
the effectiveness of the proposed ML-based prediction
framework.

2 Dataset

The proposed ML-based prediction framework is generic
and can be applied to any system. The Duke Energy Progress
(DEP) system is used for illustration and analysis presented in
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FIGURE 1
Boxplot of monthly peak load from July 2015 to December
2020.

this paper. The input dataset includes historical load and weather
data, which are described as follows.

2.1 DEP load

The DEP system consists of two balancing authorities: DEP
East and DEP West. The data are obtained from the Energy
Information Administration (EIA, 2021), including both day-
ahead forecasts and actual demand with an hourly resolution.
Complete records are only available for about 6 years starting
from July 2015. Data augmentation is proposed and used to
generate 21 years of data for training and testing purposes, as
described in Section 3.3.

A boxplot of monthly peak load is provided in Figure 1. As
can be seen, the highest monthly peak loads typically occur in
mid-winter (e.g., January) and mid-summer (e.g., July). Figure 2
plots the system load vs time for January and July. The peak
day can occur at the beginning, in the middle, or at the end of
a month, and there is no obvious pattern, which increases the
difficulty for peak day prediction.

2.2 Weather data

Theweather datasets are obtained from theNational Oceanic
and Atmospheric Administration website (NOAA, 2021). In this
study, the weather data at the Raleigh weather station are used as
it is the closest weather station to the city of Raleigh, which is the
geographic center of DEP and the second biggest city in North
Carolina.The rawweather data include dry-bulb air temperature,
dew point temperature, wind speed, and visibility, with temporal
resolutions between 15 min to an hour from 2000 to 2020. To
match the temporal resolution and coverage of the load data, the
weather data are mapped to the nearest exact hours to generate
hourly data. In addition, the hourly humidity H is calculated

FIGURE 2
Actual hourly load 2015–2020. The dots represent the actual
peak hours in (A) January and (B) July.

FIGURE 3
Daily peak load vs daily maximum and minimum temperature in
(A) January and (B) July.

according to Bosen (1958):

H = exp(17.625×DT
243.04+DT

− 17.625×T
243.04+T

)× 100% , (1)

where T is the dry-bulb air temperature (°C),DT is the dew point
temperature (°C), and exp(⋅) is the exponential function.
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TABLE 1 R-squared of daily peak load vs daily minimum andmaximum temperature.

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

T_min 0.86 0.72 0.58 0.04 0.57 0.39 0.30 0.33 0.36 0.38 0.40 0.74
T_max 0.58 0.50 0.29 0.11 0.80 0.80 0.73 0.77 0.77 0.50 0.26 0.56

3 Methodology

3.1 Calculation of peak day and peak
hour probabilities

3.1.1 Peak day model
There is a strong and nonlinear correspondence between

power system load and weather (Sobhani et al., 2020). Figure 3
plots the DEP daily peak load vs minimum and maximum
temperature on each day in January and July from July 2015
to December 2020. The R-squared values between the daily
minimum/maximum temperatures and the daily peak load for
all months are listed in Table 1. Two key observations are
highlighted as follows:

• There is a strong negative correlation (with R2 > 0.7)
between the daily minimum temperature and load in winter
months (December to February), and a strong positive
correlation between the daily maximum temperature and
load in summer months (May to September).
• The correlation between daily peak load and dailyminimum

and maximum temperature is relatively weak (R2 ≤ 0.5) in
spring and fall (March,April,May,October, andNovember),
which suggests that temperature is a less effective predictor
of peak load during these months.

Based on these observations, both direct and indirect models
are developed and tested in this study.The selected predictors are
the same for both models, including load and weather variables
that are derived from the hourly data and a weekday/weekend
indicator, as listed in Table 2. Because of the lack of historical
weather forecast data, actual weather data are used for the ML
model development.

• Thedirect model directly predicts the probability of the next
day to be the peak day of the month. In this model, a binary
response variable takes a value of 1 if a day is the monthly
peak day and 0 otherwise. Ideally, the predictors should
also include the load and weather forecast toward the end
of the month to better capture how future load may affect
whether the next day is the peak day. However, long-term
load and weather forecasts are generally unavailable and
therefore only forecasts of up to 7 days are used as predictors.
As a result, the direct model actually links partial month
predictors to the full month peak day indicator.

TABLE 2 Predictors for the peak day model.

Predictor Description

load_max Maximum load from the day-ahead forecast
T_min* Minimum temperature from the day-ahead forecast
T_max* Maximum temperature from the day-ahead forecast
weekdayIdx 0 or 1 indicating whether the next day is weekday or

weekend
prev_month_max Maximum actual load of the month to date
prev_MAX Maximum actual load on previous day
T_min_day_2_to_7* Minimum forecast temperature within the next 2–7 days
T_max_day_2_to_7* Maximum forecast temperature within the next 2–7 days

• The indirect model outputs the probability of the next day
to be the up-to-date peak day, which is defined as the peak
day of a time window starting from the beginning of the
month and ending at day 7 into the future or the end of the
month.
Therefore, the model links predictors to the peak day
indicator at the exactly matched time window. Then,
the obtained up-to-date peak day probability (Pdate)
is converted to the monthly peak day probability
(Pmonth) by applying a multiplier (Pmul) that reflects
the chance of the monthly peak day occurring
within the up-to-date time window, as expressed
in Eq. 2:

Pmonth = Pdate Pmul. (2)

The multipliers corresponding to different time windows
can be generated by examining the distribution of historical
peak days. It is found that the chance is generally
proportional to the length of the time windows in a given
month. In other words, each day in a month has an equal
probability to be the monthly peak day. Therefore, the
multiplier can be defined as

Pmul =min[1, n+ 6
N
] , (3)

where N is the number of days of the current month and n
is the day of the month for the next day. Unlike the direct
model, which completely ignores the impacts of the load
beyond 7 days, the indirect model takes future load into
account in a stochastic manner.
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3.1.2 Peak hour model
The day-ahead load forecast based peak hour prediction

is subject to great uncertainties. Therefore, we introduce
supplementary predictors in the ML peak hour model to help
improve the prediction.The response variable is a binary variable
that indicates whether an hour is the peak hour of the day.
The predictors include both hourly load forecast and weather
data for the operating day, as well as a weekday or weekend
binary indicator, as listed in Table 3. We have the following
considerations for including the major predictors:

• For each hour t, we use not only the temperature
and humidity for the hour, as they directly impact the
load components, e.g., heating and cooling, but also the
temperature from t− 3 to t+ 3 to explore the trailing or
leading effects between temperature and load.
• Similarly, the forecast loads from hour t− 3 to t+ 3 are

included in the predictors because the peaks tend to cluster
in groups.
• The rank of load forecast for hour t is included to distinguish

the peak hour from other hours, particularly those with
comparable loading levels.
• The maximums of load forecast before and after hour t are

included to describe the relative position of the load in hour t
with respect to highs in the past and future hours of the
day. In comparison to load forecast of each hour beyond
hours t− 3 to t+ 3, the use of these two predictors helps
reduce modeling complexity and avoid overfitting, while
effectively capturing the overall impacts of the other hours
on the operating day.
• In addition, as adjacent days tend to have more

similar peaking behaviors, attributes from the previous
day, including the rank of actual load for hour t, the
forecast, and the actual load for hour t, are also used as
predictors.

3.2 ML models

Given the high dimensionality of the predictors and the
expected non-linear relationships with response variables, we
adopt the ensemble tree-based ML method: RF and GBM, also
to avoid overfitting and deal with unbalanced data of mixed
types, e.g., categorical vs continuous. The models are developed
in Python with main packages from the sklearn and xgb
libraries.

RF is a tree-based ensemble learningmethod that can handle
categorical variables, continuous variables, or a combination of
both (Breiman, 2001). RF constructs a number of ensemble trees,
with each tree trained by a randomly selected subset of input
data using a bootstrap aggregating technique. At each node of
a tree, instead of choosing the best split among all predictors, a

TABLE 3 Predictors for the peak hour model.

Predictor Description

load_forecast Forecast load for hour t
T* Forecast temperature for hour t
humidity* Forecast humidity at hour t
weekendIdx A binary indicator: 1 if the operating day is on a

weekend and 0 otherwise
peak_prev_day A binary indicator: 1 if hour t is the peak hour on the

previous day, and 0 otherwise
T_m_1* Forecast temperature for hour t− 1
T_m_2* Forecast temperature for hour t− 2
T_m_3* Forecast temperature for hour t− 3
T_p_1* Forecast temperature for hour t+ 1
T_p_2* Forecast temperature for hour t+ 2
T_p_3* Forecast temperature for hour t+ 3
load_m_1 Forecast load for hour t− 1
load_m_2 Forecast load for hour t− 2
load_m_3 Forecast load for hour t− 3
load_p_1 Forecast load for hour t+ 1
load_p_2 Forecast load for hour t+ 2
load_p_3 Forecast load for hour t+ 3
prev_max_load Maximum forecast load from hour 0 to hour t− 1
after_max_load Maximum forecast load from hour t+ 1 to 23
rank_load_forecast Rank of forecast load for hour t on the operation day
rank_load_prevDay Rank of actual load for hour t in on the previous day
load_prevDay Actual load for hour t on the previous day
load_prevDay_forecast Forecast load for hour t on the previous day

randomly sampled subset of predictors is selected, and the best
split is chosen from the subset predictors. Each tree can grow
to the maximum possible depth. For classification problems,
the final prediction is made by the majority votes from all the
trees in the ensemble. RF has been successfully applied to high-
dimensionality systems. Examples of its application in power
systems include Lahouar and Slama (2015); Liu et al. (2021). RF
models can be developed and optimized by refining key model
configuration parameters such as the number of trees and tree
depths, in addition to bootstrap re-sampling of subsets and
multi-fold cross-validation. A general RF-based classification
algorithm is summarized in Algorithm 1. In addition to
estimating the probability of classification, an RF model also
provides measures of relative feature importance of predictors.

GBM is another tree-based ensemble learning method
(Friedman, 2001). Unlike RF, in which each tree is trained
independently, GBMbuilds one tree at a time and the newly-built
tree is added to previous trees to improve the overall prediction.
It can be viewed as an iterative numerical optimization process
with a goal of finding an additive model that minimizes the loss
function. The new tree at each step is fitted to the residual of
previous trees, and adding a new tree improves regions where
previous trees did not perform well. While the result of RF
is voted by all the trees after the tree-building process, the
result of GBM is optimized throughout the tree-building process.
Compared to RF, GBM can be more computationally intensive
and more sensitive to noise in the training data set due to its
iterative nature.

Frontiers in Energy Research 05 frontiersin.org

https://doi.org/10.3389/fenrg.2022.944804
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Fu et al. 10.3389/fenrg.2022.944804

1: Randomly split the total dataset into

training and testing (e.g., 75% and 25%)

2: for i = 1 to n_tree do

3: Randomly select a subset n out of N

samples

4: Randomly select a subset of m predictors

out of M factors (x1,x2,…,xM)

5: Grow a random forest tree Ti and prune it

to the optimal depth n_depth

6: Output Ti tree forecast Ci(x1,x2,…,xM),

which is binary)

7: end for

8: Generate RF prediction by the majority vote

of all tree forecasts Ci, ∀i = 1,…,n_tree

Algorithm 1. A General RF-based Classification Algorithm.

LR is a classical statistical ML method that models the
relationship between a set of predictors and a categorical
response variable using a logistic function (sigmoid function)
(Stoltzfus, 2011). The predictors of an LR model can be
categorical and/or continuous variables, and the output is the
probability of the response variable being one of the categorical
outcomes. Because there are no “hyper-parameters” that can be
used to tune an LR model, it is ideally used as a baseline model
in predictive analyses.

3.3 Data augmentation

The raw load data are only available after July 2015, resulting
in less than 80 monthly peak days. Separate models by month
are highly desirable to better capture varying load patterns
in different months. Therefore, data augmentation is needed
to generate sufficient data for model training and reliable
testing (Chawla et al., 2002). An ANN model for day-ahead load
forecast has been developed using load and weather attributes
(Berscheid et al., 2018). The model is developed using Matlab’s
Deep Learning Toolbox. The developed model has been cross-
validatedwith historical load andweather data sets formajorU.S.
Balancing Authorities. In this study, using the DEP weather and
load data sets from July 2015 to December 2020, the developed
ANN model was trained to predict hourly load (including
both actual load and day-ahead forecast) with the following
predictors: hour, temperatures for the current hour and the past
3 h, humidity at the hour, day of the week for the predicting day,
and weekday/weekend index. After a hyperparameter search, an
optimizedANNmodel containing two layers and 20 neuronswas
obtained to capture load patterns and the relationship between
load andweather embedded in the raw load data. Using the ANN
model, we produced hourly actual load and day-ahead hourly

FIGURE 4
Peak hour RF model hyper-parameter tuning for (A) January and
(B) July.

load forecast over a 15-year period with actual weather data from
2000 to 2015.

To validate the ensemble ML model performance, a subset of
6 years data is randomly selected for model testing: 2001, 2006,
2008, 2011, 2019, and 2020. The remaining 15-year data are used
for training. Note that the actual weather data are used for the
ML model development because of the lack of historical weather
forecast data.

4 Results

4.1 ML predictive model development

4.1.1 Model training
Ensemble ML models, including LR, RF, and GBM, are

developed for peak hour predictions, with individual models for
each month. For LR models, we use Akaike Information Criteria
(Akaike, 1974) for the model selection. For RF and GBM models
in each month, we evaluate the testing accuracy with respect to
two hyper-parameters: number of trees and tree depths. Figure 4
shows the training and testing accuracy with respect to different
tree depths and different numbers of trees for both January
and July RF models. The selected number of depths are 5, 10,
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FIGURE 5
Feature importance of peak day models for (A) January and (B) July.

FIGURE 6
Feature importance of peak hour models for (A) January and (B) July.

TABLE 4 Comparison of BESS operation cycles and peak days captured betweenmonthly peak daymodel and up-to-date peak daymodel.

Year BESS operation cycles Captured actual peak days

Direct model Indirect model Direct model Indirect model

2001 64 78 12 12
2006 64 63 11 12
2008 64 72 11 12
2011 68 71 12 12
2019 77 87 12 10
2020 65 83 10 11
Average 67.2 75.7 11.3 11.5
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20, 40, and 60, and the selected number of trees are: 50, 100,
200, 500, 1,000, and 2000. The results show that the testing
accuracy converges when the tree depths are greater than 20
for both models. For the January model, the testing accuracy is
comparable when the same number of depth is used regardless
of the number of trees used. For the July model, 1,000 trees yield
slightly higher accuracy than using other tree numbers when the
tree depth is greater than 20.

4.1.2 Model comparison
For the peak hour models, each of the 3 ML ensembles

is optimized with parameter search and cross-validation for
reducing misfits and overfitting if possible. The performance of
the optimized final models is compared in terms of the overall
accuracy of capturing actual peak hours for each month in the
6 testing years. Overall, the RF models outperform both the LR
and GBM models by 2%, In six monthly models—January, April,
June, July, August, and September—the RF models perform
better than the other two models by 5% and 3%, respectively.
LR models perform slightly better in February, May, October,
and December; while GBM models perform better in March
and November. Because RF models perform the best overall,
and in the focus months of January and July in particular, they
are selected for further peak hour predictions and analyses. For
the peak day prediction, RF models also perform better than or
similar to GBM models, and the LR models do not converge due
to their inability to handle imbalanced data sets.Thus, RFmodels
are also selected for peak day prediction to be consistent with the
model choice for peak hour prediction.

4.1.3 Feature importance
Feature importance (Saarela and Jauhiainen, 2021), which

can be directly calculated from the RF model, measures the
relative importance of each predictor in the fitted model.
Figure 5 shows the ranked importance of the eight predictors in
the January and July peak day models. For the January model,
T_min (the minimum forecasted temperature) and load_max
(the maximum forecasted load for the operation day) are the
most significant predictors, with almost identical factors and
feature importance values of 0.237 and 0.235, respectively.
The other six variables are secondary. For the July model,
load_max is more important than the other predictors. Load-
related predictors (ranking from 1 to 3) are slightly more
important than temperature-related predictors (ranking from
4 to 7).

For peak hour predictions, Figure 6 shows the top-ranked 10
of the 23 predictors with scaled importance in the January and
JulyRFmodels. Rank_load_forecast (the rank of the load forecast
of each hour) is the dominant predictor for both models, and
the feature importance values are 0.362 and 0.207, respectively.
Other import predictors include the load forecast for the January
model and the rank load of the previous day for the July model.

TABLE 5 Comparison of predicted probabilities of actual peak days
in 2020 between using the direct and indirect peak day models.

Actual Maximum hourly Direct peak Indirect peak
Peak day Peak load (MWh) day model day model

1/22 12,260 13.0% 25.7%
2/22 12,065 24.9% 27.1%
3/1 10,194 11.7% 4.5%
4/8 8,324 0.5% 3.8%
5/30 9,410 8.7% 37.5%
6/29 11,606 20.1% 28.0%
7/20 13,244 27.1% 33.7%
8/27 12,511 21.2% 30.3%
9/3 13,027 11.9% 2.9%
10/8 8,790 0.8% 8.6%
11/19 10,039 35.4% 66.8%
12/9 11,625 20.5% 16.4%

FIGURE 7
Forecast and actual daily peak load of September 2020.

To better understand the importance of predictors, one can refer
to our principal component analysis and shrinkage discriminant
analyses showing cross-dependence among predictors and
response variables, as provided in Supplementary Material.

4.2 Verification of peak day and peak
hour predictions

The above ML classification models yield parameter
understanding and peak day/peak hour probabilities. In order
to use such outputs for a typical BESS dispatch decision-
making, one needs to consider that 1) the maximum number
of charging/discharging cycles should be limited (e.g. less than
100 per year), and 2) the BESS can be charged/discharged up
to 2 h per day, according to the recommendations from DEP.
Therefore, thresholds are needed for identifying the peak days
and peak hours. For example, peak day prediction can be set to
exceed the probability threshold of 3% and peak hour prediction
is the top 2 h with the highest peak probabilities in the operation
day.The peak day exceedance probability threshold is initiated to
be 3%with the assumption that each day of a month has an equal
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FIGURE 8
Comparison of prediction recall for each month between RF models and naive models.

TABLE 6 Annual performance of BESS for 6 testing years using the
proposed peak day and peak hour models.

Year BESS operation Number of peak Number of peak
Cycles days captured hours captured

2001 78 12 10
2006 63 12 12
2008 72 12 12
2011 71 12 11
2019 87 10 9
2020 83 11 11
Average 76 11.5 10.8

chance being the peak day of the month. The optimal choice
of the threshold can be selected and verified by comparing the
identified charging/discharging cycles.

4.2.1 Peak day prediction
RF models are developed for each month using both direct

and indirect peak day definitions. After the next operation day
is assigned a peak probability by the RF model, a decision to
charge/discharge a BESS on this day can be made by comparing
the predicted peak day probability with a predefined threshold.
The BESS would only be operated if the predicted peak day
probability is above the threshold. A starting value of such a
threshold is 3%, with the assumption that any daywithin amonth
could be a peak day. As shown in Table 4, both the direct and
indirect peak day models perform well in terms of the number
of operation cycles and peak days captured per year for the 6
testing years. The BESS would be operated for a similar number
of cycles on average, 67 and 76, which are much fewer than the
maximum 100 cycles/year requirement. The average numbers of
captured peak days are 11.3 and 11.5 per year, for the directed
and modified peak day models, respectively.

Table 5 shows the predicted peak day probabilities for each
month in 2020 using the direct and indirect peak day models.
With 3% as the threshold, the direct peak day models miss
the peak days in April and October, while the indirect peak
day models only miss the peak day in September. As shown in
Figure 1, compared with the historical peak loads, themaximum
peak loads on 8 April 2020 (8,324 MWh), and 8 October 2020
(8,790 MWh), are at the lower end of the historical peak day
loads, which causes the direct models to assign a less than
1% probability to both days and miss them. In comparison,
the indirect models can still capture these days with assigned
probabilities of 3.8% and 8.6%, respectively. For the peak day
on 3 September 2020, the predicted peak day probability is only
2.9% from the indirect peak day model, although its peak load
of 13,027 MWh is higher than the median historical peak day
loads. The reason for such a low-probability estimate is because
the neighboring days have comparable high load and the forecast
peak load on 3 September 2020 (12,251 MWh), is lower than the
actual peak load on 2 September 2020 (12,785 MWh), as shown
in Figure 7, which shows the forecast and actual daily peak loads
in September 2020.

4.2.2 Peak hour prediction
Practically, the BESS can be discharged for 2 h during a

peak day; therefore, the 2 h with the highest probabilities from
the peak hour model prediction in each day are selected for
discharging. The peak hour prediction performance is verified
in two ways: 1) comparing predictions from RF models with
the naive model predictions using day-ahead load forecast; and
2) evaluating the number of captured peak hours following
the proposed peak day identification (e.g., 3% exceedance
probability) and peak hour prediction procedure.

Figure 8 shows the percentage of peak hours captured (true
positives) relative to the total number of true positives and
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false negatives, TP/(TP+ FN), in each month for the 6 testing
years. The percentage metric, i.e., recall, is a good measure of
classificationmodel performance for imbalanced data like in this
study. For both RF and naivemodels, the recall values are highest
in December and January and lowest in July and August. The RF
model has better overall performance than the naive model: of
the 72 peak hours in the testing data, the RF model captures 67
(93.1%) while the naive model captures 63 (87.5%). In particular,
the recall of the RF model for July is much higher than in the
naive model: 80.4% vs. 74.3%.

Further evaluation of the entire prediction framework
performance is based on the number of peak days and peak hours
captured for all 6 testing years, using a 3% exceedance probability
threshold for peak day prediction and a 2-h battery discharging
time.The results are summarized inTable 6.The average number
of peak hours captured is 10.8 per year for the 6 testing years.
All 12 monthly peak hours in 2006 and 2008 are captured. For
testing years 2011 and 2020, 11 of 12 peak hours are captured
and the monthly peak hours in May 2011 and September 2020
are missed. In 2001, peak hours in May and August are missed.
In 2019, peak hours in February,May, and September aremissed.
The number of BESS charging/discharging cycles is 76 per year
on average, ranging from 63 to 87, which meets the 100 cycles or
less per year requirement.

5 Conclusion

In this paper, we presented an advanced ensemble ML
framework for predicting peak days and peak hours to better
support BESS dispatch decision-making.The proposed approach
features the probabilistic definition of peak day and peak
hour, a comprehensive set of physical and temporal factors
and predictors, nonlinear ensemble ML model implementation
and selection, and data augmentation. With cross-validation
and model comparison, the proposed ML framework has been
proven to work effectively. The study also provided guidance
on the model choices and favorable conditions for applying
the proposed approach. The study generated an ML-enabled
dataset including cleaned historical data and derived attributes
as exploratory and response variables.

The ML models have been trained and validated during
various time periods with different system behaviors, but one
could expect the correspondence between temperature and peak
consumption to be region-specific, although in general there
is a positive correlation between temperature and demand in
summer and a negative correlation between them in winter;
therefore, we recommend the users to adopt our ML setup
and prediction framework for any different region, but the

model parameters should be retrained and optimized. In
locations where weather attributes (e.g., temperature) have little
correlation with peak demand, e.g., in regions with oceanic or
Mediterranean climate, theMLprediction performancemight be
weak. One area of future work is to develop methods to explicitly
integrate mid-to long-term factors into forecast models. Another
interesting research direction is to fully integrate state-of-the-art
ML techniques such as ANN and LSTM to improve the efficiency
and accuracy of peak predictions.
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