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The random charging and dynamic traveling behaviors of massive plug-in electric

vehicles (PEVs) pose challenges to the efficient and safe operation of transportation-

electrification coupled systems (TECSs). To realize real-time scheduling of urban PEV

fleet charging demand, this paper proposes a PEVdecision-making guidance (PEVDG)

strategy based on the bi-level deep reinforcement learning, achieving the reduction of

user charging costswhile ensuring the stable operation of distribution networks (DNs).

For the discrete time-series characteristics and the heterogeneity of decision actions,

the FEVDGproblem is duly decoupled into a bi-level finiteMarkov decision process, in

which the upper-lower layers are used respectively for charging station (CS)

recommendation and path navigation. Specifically, the upper-layer agent realizes

the mapping relationship between the environment state and the optimal CS by

perceiving thePEVcharging requirements,CSequipment resources andDNoperation

conditions. And the action decision output of the upper-layer is embedded into the

state space of the lower-layer agent.Meanwhile, the lower-level agent determines the

optimal road segment for path navigation by capturing the real-timePEV state and the

transportation network information. Further, two elaborate reward mechanisms are

developed to motivate and penalize the decision-making learning of the dual agents.

Then two extension mechanisms (i.e., dynamic adjustment of learning rates and

adaptive selection of neural network units) are embedded into the Rainbow

algorithm based on the DQN architecture, constructing a modified Rainbow

algorithm as the solution to the concerned bi-level decision-making problem. The

average rewards for the upper-lower levels are ¥ -90.64 and ¥ 13.24 respectively. The

average equilibrium degree of the charging service and average charging cost are

0.96 and ¥ 42.45, respectively. Case studies are conducted within a practical urban

zone with the TECS. Extensive experimental results show that the proposed

methodology improves the generalization and learning ability of dual agents, and

facilitates the collaborative operation of traffic and electrical networks.
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1 Introduction

1.1 Motivation

Along with the emergence of new energy vehicles, plug-in

electric vehicles (PEVs) gradually replace traditional gasoline

vehicles (GVs) due to their ecologically-friendly and cost-

efficient, becoming a promising opportunity for the future

development of transportation and electrical industries. The

global PEV sales and the number of public chargers are

expected to reach 25 million and 11 million by 2030 (Luo

et al., 2019), respectively, which would strengthen the

interdependence between urban transportation networks

(TNs) and power distribution networks (DNs) (Qi et al., 2022).

However, the surge of PEV penetration has lagged far behind

the construction of charging infrastructure, leading to PEV

charging issues, such as mileage anxiety, unanticipated

charging congestion and high charging costs for owners.

Besides, traveling routes and charging navigation in urban

TNs face the difficulties, such as trip time uncertainty and

mileage limitations (Xiang et al., 2022; Tu et al., 2020). Thus,

the PEV decision-making guidance (PEVDG) in transportation-

electrification coupled systems (TECSs) plays a critical role in

enhancing the user charging experience and facilitating the

collaborative operation of converged networks.

1.2 Literature survey

Until now, various efforts have been made to research PEV

charging guidance strategies to optimize users’ decision-making

behaviors. Reference (Wang et al., 2019) develops a geometry-

based charging guidance strategy to recommend CSs for PEV

motorists. It employs a Dijkstra algorithm to calculate the

shortest straight-line distance between charging demand

points and CSs, and assigns PEVs to the corresponding

nearest CSs for recharging. Liu et al. (2019) propose a

simplified charging control algorithm to reduce the traveling

cost of owners via the joint optimization of en-route charging

and routing.

Additionally, these studies (Wang et al., 2019; Kancharla

et al., 2020; Morlock et al., 2020) focus on traveling time

optimization in PEV charging navigation issues. Morlock

et al. (2020) modify the Moore-Bellman-Ford algorithm and

propose a two-stage model to recommend the shortest route.

Reference (Kancharla et al., 2020) comprehensively considers

navigation and charging time, and proposes an adaptive large

neighborhood search algorithm to address the PEV non-linear

charging and discharging. However, the work presented in

(Wang et al., 2019) finds that the time-optimal strategy may

lead to high exhaust emission and power consumption. It

proposes an eco-routing model to reduce link energy costs by

combining GVs and PEVs.

These scholars (Ji et al., 2020; Li et al., 2020) explore the

feasibility of price-driven charging guidance strategies. Li et al.

(2020) propose a price-incentive-based charging guidance

strategy to solve simultaneous charging requirements. A

specific time-sharing pricing strategy is formulated to reduce

the PEV user’s average charging cost. Considering the interaction

effect of the dynamic requirements of massive PEVs, research (Ji

et al., 2020) establishes a dynamic reservation-waiting queuing

model. To minimize the route distance, driving time and

charging cost, this approach recommends the optimal CSs

according to the order of PEV arrival time.

In studies (Luo et al., 2020; Shi et al., 2020; Sun et al., 2020),

real-time interactive information from TECSs is exploited to help

PEV owners make efficient charging decisions. For example,

Reference (Luo et al., 2020) comprehensively considers the road

speed of traffic networks, the congestion of CSs and the load of

charging networks, and develops a PEV charging and battery

swapping scheduling scheme. This solution can enhance the

convenience of owners and relieve local traffic jams. Shi et al.

(2020) capture the real-time response of PEV charging queuing

to the traffic flow information via a point-type model, and

propose an optimal decision for PEV fleets, including the

route, departure time, and charging location. It effectively

addresses the dynamic equilibrium of traffic flow caused by

PEV aggregation for recharging. Based on the data fusion of

the optimal power flow and the traffic flow assignment, Sun et al.

(2020) develop a PEV integrated rapid-charging scheduling

platform. The platform guides the vehicles to the most

suitable CS for recharging under the constraint of coupled

network nodes.

Further, studies (Sohet et al., 2021; Zhou et al., 2021) develop

the PEV orderly decision-making to mitigate the impact of large-

scale charging demand on traffic and electrical networks. Zhou

et al. (2021) propose a hierarchical graph-theory-based weight

model and apply the Dijkstra to search for the optimal decision-

making scheme. Similarly, the TN condition and the DN load are

converted respectively into the indicators of the time

consumption of each road and the locational marginal price

of each CS (Sohet et al., 2021). Although the above-mentioned

solutions help us capture the nature of the PEVDG in the early

stage, the conventional optimization works heavily rely on

specific mathematical programming models, which still suffer

from computational inefficiencies and poor solution quality. It is

challenging to apply efficiently in a city-level transportation-

electrification network.

Benefiting from the excellent approximation ability of deep

neural networks (DNNs) (Duan et al., 2020), deep reinforcement

learning (DRL) has received growing interest in the PEVDG field.

References (Zhao et al., 2021; Yu et al., 2019) develop DNNs with

different structures to solve the routing decision-making

problem. In (Zhao et al., 2021), an actor-adaptive-critic-based

DRL method is presented to minimize the tour length by

specifying the next destination. To ease the computational
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burden, Yu et al. (2019) build a specific DNN for the PEV

navigation, which takes traffic features and completed trips as the

state and action, receptively.

Other scholars (Lee et al., 2020; Qian et al., 2020a; Zhang C.

et al., 2021) introduce DRL into the CS recommendation field.

The CS selection decision-making is transformed into a finite

Markov decision process (FMDP) in (Lee et al., 2020), and the

deep Q-network (DQN) is adopted to approximate the mapping

relationship between the environmental state and the optimal CS

with the shortest time consumption. Similarly, Zhang Y. et al.

(2021) introduce different coefficients to balance the weight of

total charging time and origin-destination distance, and adopt

DQN to learn the recommended strategy. In (Qian et al., 2020b),

the deterministic shortest charging route model is established to

extract feature states, and DQN is employed to recommend CSs

and corresponding routes to optimize the charging time and cost.

Besides, considering the cooperative and competitive

relationship among multiple decision makers, Reference

(Zhang et al., 2022) regards each CS as an individual agent.

The CS recommendation is constructed as a multi-objective and

multi-agent reinforcement learning task. The agents explore and

learn game policies among individuals to minimize the charging

waiting time, charging cost and charging failure rate of PEV

owners. Based on the multi-agent learning architecture,

Reference (Wang et al., 2022) regards each electric taxi as an

individual agent to formulate the charging or relocation

recommendation strategy. The agents can maximize the

cumulative profits of taxi drivers by learning non-cooperative

game policies.

Further, these references (Lopez et al., 2019; Ding et al., 2020;

Qian et al., 2020b) focus on formulating DRL-based PEV charging

guidance schemes via complete interactive information of coupled

systems, promoting the collaborative control of convergence

networks. Karol et al. (Lopez et al., 2019) adopt a trained deep

learning model to make optimal real-time decisions with knowledge

of future energy prices and vehicle usage. Based on a deep

deterministic policy gradient, Reference (Ding et al., 2020)

proposes a multi-agent-based optimal PEV charging approach in

a DN, and analyzes the impact of uncertainties on charging safety.

Qian et al. (2020a) adopt a DRL-based optimization model to

determine the CS pricing under the uncertainties of wind power

output and traffic demand. It enhances the operation of the TECS

and improves the integration of renewable energy by guiding PEV

charging behaviors.

1.3 Research gap

A detailed comparison of the abovementioned literature is

summarized in Table 1. There are still several significant

limitations to the state-of-the-art PEVDG solutions in this field.

For the offline-based PEVDG analytics, they use traditional

dynamic programming (e.g., (Morlock et al., 2020), (Shi et al.,

2020) and (Sun et al., 2020)) and heuristic search (e.g., (Wang

et al., 2019), (Kancharla et al., 2020) and (Li et al., 2020)) for

traffic segment planning and CS recommendation. Moreover,

under the limited-scale traffic topology (e.g., (Liu et al., 2019),

(Wang et al., 2019) and (Li et al., 2020)), most of them utilize a

theoretical-modeling-based approach for scheduling and

controlling PEVs, which lacks practical data support. In this

way, it leads to low computational efficiency and unstable

solution performance in city-size networks. In the complex

dynamic coupled system with increasing PEV penetration, it

is difficult to respond to the charging demand quickly.

For the DRL-based PEVDG analytics, they are widely

adopted, benefiting from the real-time processing capability of

discrete decision-making problems. However, due to the simple

training and reward mechanisms, classical DQN methods (Lee

et al., 2020) fail to coordinate the exploration speed and solution

quality in the training phase. Moreover, they only adopt a single

neural network for Q-value iterations, which may lead to

inaccurate prediction results. As such, the classical DQN still

suffers from the following deficiencies: Q-value estimation,

stability performance, solution quality and generalization

performance. In this way, agents often fail to output the

optimal decision-making solution. Besides, due to its limited

action output space, it is difficult for existing DRL-based

optimization strategies to simultaneously solve the decision-

making guidance problems of CS recommendation and path

navigation (e.g., (Zhang C. et al., 2021), and (Ding et al., 2020)).

Similarly, multi-agent-based DRL methods (e.g., (Zhang et al.,

2022) and (Wang et al., 2022)) recommend the most appropriate

CS to the owner, comprehensively considering the game

influence among multiple decision makers. However, these

methods output only homogeneous decision actions

(i.e., charging or routing), without considering the

interrelationship and influence of CS selection and path

navigation. As such, it is challenging to make joint action

decisions for PEVDG. In this way, the scalability and

popularity of the DRL scheme in FEVDG are limited.

1.4 Contributions

To fill the gap, we consider the real-time mapping capability

of the DRL-based approach for addressing complex decision-

making problems. The heterogeneous decision-making actions of

CS recommendation and path planning are reasonably

coordinated and controlled. The traditional DQN-based

method is improved as a solution to the decision-making

problem. To this end, this paper proposes a novel bi-level

DRL (namely, BDRL) scheme to tackle the PEVDG

optimization issue. From the perspective of coordinated

transportation-electrification operation, a comprehensive

optimization objective is constructed to minimize the

synthetic cost of PEV users in the TN while optimizing the
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voltage distribution of the DN. PEVDG is constructed as a bi-

level FMDP (namely, BFMDP) model. A modified Rainbow-

based DQN algorithm is developed as the solution for BFMDP.

The main contributions of this paper are threefold.

(1) Given that the discrete decision-making process of PEVDG

conforms to the Markov property, BFMDP is utilized to

address the heterogeneous decision-making behaviors of

charging and routing. The upper-level agent learns the CS

recommendation decision and embeds the action output into

the lower-level state space. The lower-level agent realizes the

online path navigation decision output. The integrated

output of charging-routing decisions is achieved through

the coordination and cooperation of dual agents in the

upper-lower levels, which improves the efficiency of

PEVDG.

(2) Two extension mechanisms (i.e., learning rate decay and

dropout layer technology) are embedded into the classical

Rainbow to construct a modified Rainbow algorithm,

improving the convergence performance, generalization

ability and learning efficiency of the dual agents’ decision-

making output. The learning rate of each episode is

dynamically adjusted by an inverse decay model,

balancing the quality of exploration in the early stage with

the speed of exploitation in the later stage. The neural

network units are selected adaptively in the training and

testing stages to improve the shortcoming of over-fitting of

traditional neural networks.

(3) Under the urban-level traffic topology framework, the

proposed method is tested using real-world environmental

data, realistically reflecting the owner’s charging willingness

and reasonably providing decision-making support. The

testing results show that BDRL reduces the overall cost of

PEV users while ensuring the safe operation of converged

charging networks.

1.5 Paper organization

The remainder of this paper is organized as follows. Section 2

sketches the modeling process of the PEVDG problem. Then our

proposed modified Rainbow method is presented in Section 3.

Case studies are reported in Section 4. Finally, Section 5

concludes the paper.

2 Problem modeling

Figure 1 illustrates the PEVDG architecture. Specifically, the

decision-making of CS recommendation and path navigation is

duly formulated as a BFMDP process. In the upper-level, CS

recommendation is characterized as an optimal mapping of the

TABLE 1 Comparison of relevant literature.

References Objective Decision output Realistic
data

Urban
topology

Real-time
scheduling

Economy Safety CS
recommendation

Path
navigation

Liu et al., (2019) √ × √ × × × ×

Morlock et al., (2020) √ × √ √ × × ×

Kancharla et al.,
(2020)

√ × √ × × × ×

Li et al., (2020) √ × √ × √ × √

Zhang C. et al., (2021) √ × √ × √ × √

Ding et al., (2020) √ × √ × × × √

Lee et al., (2020) √ √ √ × √ × √

This paper √ √ √ √ √ √ √

FIGURE 1
Overall scheme of our proposed PEVDG approach.
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state space of PEVs, CSs, and DNs to the charging resources. The

agent determines the target CS action, which is also embedded

into the state space of the lower-level agent. In doing so, the

navigation target is determined for the routing. In the lower-level,

PEV path navigation is characterized as an optimal mapping of

the state space of PEVs and TNs to traffic road segments. The

agent determines the traveling action by capturing real-time PEV

status and TN information. Finally, a Modified Rainbow

algorithm is proposed as a solution for the above-mentioned

bi-level decision-making. Details of the modeling process and

algorithm improvements are described as follows.

2.1 Mathematical formulation

We establish multiple-subject optimization to reduce the

comprehensive cost of users and optimize the voltage

deviation of DNs.

f � min[Cec
i + Cch

i + ϖ(Ttr
i + Twt

i + Tch
i )]

+min⎡⎢⎣ 1
NDN

∑T
t�1

∑NDN

k�1

∣∣∣∣∣∣∣∣Vt,k − Vp
k

Vp
k

∣∣∣∣∣∣∣∣⎤⎥⎦ (1)

Cec
i � �πCSμ ∑

βmn∈Ωi

dmnφmn (2)

Cch
i � ∑tendi

t�tstai
πCS
j,t P

chΔt (3)

Ttr
i � ∑

βmn∈Ωi

dmnφmn

�vmn
(4)

Tch
i � Qi(ei exp − earri )

Pchη
(5)

where: Cec
i and Cch

i respectively indicate the energy consumption

and charging cost of the ith PEV. Ttr
i , T

wt
i and Tch

i respectively

indicate the traveling, waiting, and charging time. ϖ and T

respectively represent the cost per-unit time and the control

time. i ∈ ΩEV, ΩEV represent the set of PEVs. Vt,k and Vp
k

respectively represent the real-time voltage and rated voltage.

ΩDN indicates the set of DN nodes. �πCS is the average charging

price of CSs. μ represents the energy consumption per kilometer.

dmn denotes the length of the road segment βmn between the

traffic nodes βm and βm in a TNGTN. βm, βn ∈ ΩE,ΩE is the set of

road segments in a TN GTN. φmn represents the binary variable

for road segment selection. Ωi indicates the set of selected road

segments for the ith PEV. πCS
j,t is the real-time charging price of

the jth CS. Pch and η respectively denote the output power and

the efficiency of charging piles. Let tstai and tendi respectively

denote the starting and ending charging time. �vmn is the average

traveling velocity of the road segment βmn.Qi denotes the battery

capacity. earri and ei exp respectively represent the state of charge

(SOC) of the ith PEV arriving at the CS and the expected SOC of

the ith PEV leaving the CS.

2.1.1 PEV constraints

ereqi −
μ ∑

βmn∈Ωi

dmnφmn

Qi
> efl (6)∑

j∈ΩCS

ψi,j � 1 (7)

where: ereqi indicates the SOC of the triggered charging

requirement. efl represents the minimum SOC of the battery.

If the SOC of a PEV is lower than the value of efl, it is considered

to run out of energy en-route. ψi,j is the binary variable for CS

recommendation. ψi,j � 1 means that the jth CS is recommended

to the ith PEV, ψi,j � 0 means not. ΩCS stands for the set of CSs.

Note, Eq. 8 limits the energy range of PEVs.

2.1.2 Power flow constraints

−Pcs
t,k − Pload

t,k � Vt,k ∑
j∈k

Vt,j(Gkj cos θt,kj + Bkj sin θt,kj) (8)

−Qcs
t,k − Qload

t,k � Vt,k ∑
j∈k

Vt,j(Gkj sin θt,kj − Bkj cos θt,kj) (9)

where: Pcs
t,k and Qcs

t,k are the active and reactive loads of the CS,

respectively. Pload
t,k and Qload

t,k represent the active and reactive

conventional loads, respectively. Gij and Bij are branch

conductance and susceptance, respectively. θij,t is the phase

angle difference.

2.1.3 Security constraints
During the grid operation, it is an important task to maintain

the node voltage within a reasonable and controllable range. The

large-scale aggregated charging behavior brings additional load

to the DN nodes, which might make the node voltage to

drop. Thus, the DN security constraints must be considered,

as shown in Eqs 12, 13. Herein, Vk
max and Vk

min indicate the

upper and lower boundaries of node voltage. Ikj max and Ikj min

are the upper and lower limits of current, respectively.

Vk
min ≤Vt,k ≤Vk

max (10)
Ikj
min ≤ Ikj,t ≤ Ikj

max (11)

Notably, we use the topology with a reference voltage of

10.6 kV as the DN simulation environment. Thus, the upper and

lower voltage limits are set to 0.95 and 1.05, respectively.

2.1.4 TN constraints
The TN model is the basis for the study of path planning.

Thus, we introduce the graph-theoretic analysis method (Zhang

Y. et al., 2021) to model and describe the urban TN GTN. Figure 2

shows the topological structure of the TN.

FromFigure 2, the two-way connecting arrows indicate two-way

segments, and the one-way connecting arrows indicate one-way
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segments. β4 indicates the geographical location of the CS in the TN.

The modeling step for the given TN GTN is described as follows.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
GTN � (B, E,W)
B � {βm∣∣∣∣m � 1, 2, 3, . . . ,ΩB}
E � {βmn

∣∣∣∣βm ∈ B, βn ∈ B,m ≠ n}
W � {wmn

∣∣∣∣vmn ∈ ΩE} (12)

where: B denotes the set of all nodes of the graph, namely, the set

of nodes of the TN GTN. E denotes the set of all directed arc

segments, namely, the set of road segments.W denotes the set of

road segment weights, namely, the road resistances, indicating

the quantitative attributes of road segments. Herein, the length of

the road segment, traffic speed, traveling time, and traveling cost

can be used as the road segment weight W for quantitative

research.

Further, given a TN GTN with ΩB nodes for quantization

assignment, the adjacent edge matrix Emn � amn is adopted to

assign the road resistance to each road segment.

amn �
⎧⎪⎨⎪⎩ wmn, (vmn ∈ E)

0, vm � vn
∞, (vmn ∉ E)

(13)

The adjacent edge matrix E is expressed as follows:

E �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 w12 w13 / ∞
w21 0 w23 / ∞
∞ w32 0 / ∞
..
. ..

. ..
.

1 ..
.

∞ ∞ ∞ / 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (14)

where:∞ indicates that there is no connection segment between

nodes vm and vn.

Thus, a PEV owner performs optimal path planning by

searching for the road segment resistance W. The topological

constraints of the traveling path are expressed as follows.

∑LCSj
n�LPEVt,i

φmn − ∑LCSj
n�LPEVt,i

φnm �
⎧⎪⎪⎨⎪⎪⎩ 1 m � LPEV

t,i

0 m ≠ LPEV
t,i , LCS

j

−1 m � LCS
j

(15)

where: the path from the current location LPEVt,i to the location of

the assigned CS LCSj is planned according to the starting, the

intermediate and the ending nodes. In doing so, it is ensured that

the selected segments can be connected sequentially.

2.2 Formulation of BFMDP-based PEVDG

Reinforcement learning means that the agent perceives the

environmental information and obtains the rewards by the trial

and error strategy. Then the agent selects an action to execute

according to the current environment state. The environment is

converted to a new state. The environment perception is repeated

to obtain state rewards and action outputs until the end of the

control process. In this way, the agent establishes the optimal

mapping relationship between states and actions through

repeated trial and error. Moreover, the change of the next

state in reinforcement learning is only related to the current

state and the action selected by the agent, but not related to the

previous state, that is, the process satisfies Markovian properties.

Such reinforcement learning that satisfies Markovian properties

is defined as an FMDP (Lee et al., 2020).

As for PEVDG with multi-subject interaction and multi-

objective optimization, the PEV owner, as the agent, perceives the

transportation-electrification environment information, including

the road status, charging price and charging cost. By

comprehensively evaluating the reward obtained from the current

charging and traveling states, the agent selects successively the

appropriate CS for energy supply and the optimal traveling path

for navigation, until the action is completed and the destination is

reached. Thus, the decision-making process of PEVDG fully

conforms to the relevant definition of the FMDP.

Accordingly, FMDP is a typical model for depicting time-

series decision-making problems, which is widely used in DN

control (Alqahtani et al., 2022), energy dispatch (Hessel et al.,

2017), and other fields. However, CS recommendation and path

navigation are distinctly different time-scale scheduling

problems. To this end, we propose a multi-time scale BFMDP

to decouple the CS recommendation and path selection and

reduce the dimension of the scheduling model.

2.2.1 States
The state represents the real-time perception of environment

information by the agent, and the state space represents the set of

environment information.

2.2.1.1 Upper-level for CS recommendation

Considering that the essence of CS recommendation is the

spatio-temporal matching process between PEV charging

FIGURE 2
Topological structure of the TN.
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requirements and CS energy resources, we divide the upper-level

state suppi into real-time PEV, CS and DN information.

suppi �
⎧⎪⎪⎪⎨⎪⎪⎪⎩ t, ePEVt,i , LPEV

t,i︸����︷︷����︸
PEV

, πCS
t,j , ξ

CS
t,j , L

CS
j︸�����︷︷�����︸

CS

, PDN
t,k , V

DN
t,k︸����︷︷����︸

DN

⎫⎪⎪⎪⎬⎪⎪⎪⎭,∀i ∈ ΩPEV, j ∈ ΩCS,∀k ∈ ΩDN

(16)

where: ePEVt,i indicates the real-time SOC of the ith PEV, which is

equal to ereqi in the upper-level. LEVt,i represents the current

location of the ith PEV. ξCSt,j is the state variable of the jth CS.

If ξCSt,j ≥ 0, represents the number of idle piles, otherwise,

represents the number of queuing users. LCSj is the location of

the jth CS. PDN
t,k and VDN

t,k indicate the active power load and the

DN voltage.

2.2.1.2 Lower-level for path navigation

Once receiving the target CS output from the upper-level, the

lower-level agent navigates toward the destination (namely, the

target CS). Thus, the lower-level state slowi,t can be expressed as

below.

slowi,t �
⎧⎪⎪⎪⎨⎪⎪⎪⎩ t, ePEVt,i , LPEV

t,i︸����︷︷����︸
PEV

, Ltarget
i,j , �vmn, dmn︸������︷︷������︸

TN

⎫⎪⎪⎪⎬⎪⎪⎪⎭,∀i ∈ ΩPEV,∀m, n ∈ ΩTN

(17)
where: Ltargeti denotes the location of the target CS.

2.2.2 Actions
The action indicates a decision made by the agent in a given

environment state.

2.2.2.1 Upper-level for CS recommendation

The action output from the upper-level is defined as the

index of the recommended CS, as expressed in Eq. 20.

auppi � {LCS
j }, j ∈ ΩCS (18)

2.2.2.2 Lower-level for path navigation

Given a traffic network GTN, the PEV path navigation

decision-making is a discrete road segment selection problem.

The lower-level action alowt,i can be expressed as below:

alowt,i � {βϕ}, βϕ ∈ Ωroad
t,i (19)

where: Ωroad
t,i stands for the set of traffic nodes connected to the

current location of the ith PEV LPEVt,i . That is, the road segment of

the TN is used as the action of the lower-level agent. The obtained

series of decision-making actions are connected sequentially to

construct the optimal navigation path ψlow
t,i . The PEV travels

along the path ψlow
t,i from the current location LPEVt,i until it reaches

the location of the target CS LCSj .

ψlow
t,i � ∑LCSj

LEVt,i
alowt,i (20)

2.2.3 Rewards
The reward indicates timely feedback obtained by the agent

after performing an action.

2.2.3.1 Upper-level for CS recommendation

In the upper-level, the action selection directly affects the

charging cost Cch
i , waiting time Twt

i , and charging time Tch
i after

the user arrives at the CS. Meanwhile, the charging decisions of

large-scale PEVs would affect the DN operation state. The upper-

level reward is expressed as below.

ruppi � −Cch
i − ω(Twt

i + Tch
i ) − ϖsp

NDN
∑NDN

k�1

∣∣∣∣∣∣∣∣Vt,k − Vp
k

Vp
k

∣∣∣∣∣∣∣∣ (21)

where: ϖsp stands for the safety penalty.

2.2.3.2 Lower-level for path navigation

Combining the optimization goal and the reward obtained

from the upper-level, we design the lower-level reward, including

the energy consumption cost and traveling time cost. Once the

PEV reaches the target CS Ltargeti,j , the lower-level agent receives a

positive reward. Conversely, if the PEV does not reach its

destination before the battery runs out en-route, the user will

need to request a towing rescue service. In this case, the agent

obtains a negative punishment. As such, the lower-level reward is

taken as the road resistance wmn of the TN GTN, and assigned to

each road segment. The agent determines the current action by

comparing the feedback of rewards or punishments generated by

the road resistance wmn.

wmn � rlowt,i �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
−dmnφmn�π

CSμ + ωdmnφmn

�vmn
, LPEV

t+1,i ≠ Ltarget
i,j

ωarr, LPEV
t+1,i � Ltarget

i,j

−ωtow , eEVt,i − μdmnφmn

Qi
< eflat

(22)
where: the next location LPEVi,t+1 is determined by the current

location LPEVt,i and the road segment selection action alowt,i . ω
arr

represents the reward for successfully reaching the target CS

Ltargeti,j . −ωtow represents the penalty for navigation

failure(namely, the average towing cost).

2.2.4 State action value function
After performing a specific action, the state-action value

function (Q-value) evaluates the cumulative expected rewards

that can be obtained by relying on the current policy ψ. Although

upper-lower agents depend on the policies ψupp and ψlow, their

Q-valuesQψ(s, a) can be expressed uniformly using the following

equation.
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Qψ(s, a) � E⎡⎣∑H
h�0

γhrt+h|st � s, at � a⎤⎦ (23)

where: H indicates the horizon of the time steps. γ indicates the

discount factor.

Further, the purpose of the PEVDG problem is to find the

optimal policy over all feasible policies, which is equivalent to

finding the policy that can obtain the maximum Qπ(s, a).
Qψp(s, a) � max

ψ
Qψ(s, a) (24)

3 Proposed modified rainbow
algorithm

3.1 Extension improvement mechanism

The classical DQN method has shown powerful ability in

solving time-series decision-making problems. However, the

classical DQN method uses a single deep network for function

approximation and maximum Q-value for fitting estimation. In

practical applications, there are still the following shortcomings,

such as generalization, learning ability, computing efficiency and

convergence performance. To address the above-mentioned

issues, we introduce a modified DQN version-Rainbow

algorithm into PEVDG.

The classical Rainbow (Qian et al., 2020a), as a DQN-based

architecture, provides the possibility of integrating various

complementary extension mechanisms. It means that users

can independently add specific extensions to the basic DQN

for different application scenarios, improving the algorithm’s

learning ability and decision-making performance.

The classical Rainbow algorithm combines excellent

mechanisms of Double DQN, Dueling DQN and the

prioritized replay buffer. Further, we add two specific

improvement mechanisms (i.e., the learning rate decay and

the dropout layer technology) to form a modified Rainbow

algorithm. The architecture is shown in Figure 3. Specifically,

the learning rate decay mechanism dynamically adjusts the

learning rate at each episode to improve the learning

performance of the dual agents for environmental exploration.

The dropout layer technology adaptively selects and discards

neural network units in the training and testing phases,

preventing the network from over-fitting and improving the

generalization performance of the algorithm.

3.1.1 Double DQN
For basic DQN, the maximumQ-value is utilized for iterative

updates, which causes the Q-value overestimation. Thus, Double

DQN changes the iteration rule of Q-value as shown in

Equation. (27).

Q(st, at; θ+) � Q(st, at; θ+) + α[rt + γQ(st+1, argmax
a′

Q(st+1, a′; θ+); θ−)
− Q(st, at; θ+)]

(25)

where: θ+ and θ− are parameters of the evaluation network and

target network, respectively. α indicates the learning rate.

3.1.2 Dueling DQN
Dueling DQN outputs the Q-value by dividing the network

structure into the state value V(st) and action advantage

A(st, at). The change of network structure removes redundant

degrees of freedom and improves the efficiency of the algorithm.

Q(st, at) � V(st) + [A(st, at) − 1

|A|] ∑
a′∈A

A (st, a′) (26)

where: |A| is the number of actions in action space A.

3.1.3 Prioritized replay buffer
In the training stage, the prioritized replay buffer specifies the

sampling probability of all transitions based on the time

difference error (TD-error). In this way, those samples with

larger TD-error are extracted with a higher probability for

network parameter optimization, which improves the

computability and convergence of training.

δj � rj + γQ[sj+1, argmax
a′

Q(sj+1, a′; θ+); θ−] − Q(sj, aj; θ+)
(27)

pj � 1
rank(j) (28)

FIGURE 3
Architecture of the modified Rainbow algorithm.
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where: δj denotes the TD-error of the jth transition. rank(j)
represents the loss sorting. pj denotes the probability that the

transition is stored into the mini-batch.

3.1.4 Learning rate decay
The learning rate is reduced based on the inverse time decay

model to balance early exploration and later utilization. The

learning rate αn of the agent in each episode can be expressed as

below.

αn � α0(1 + τ
n

nd
)−1

(29)

where: α0 is the initial learning rate. τ denotes the decay

coefficient. n and nd receptively represent the current episode

and decay episode.

3.1.5 Dropout layer technology
Deep neural networks with many parameters are a powerful

machine learning system. However, over-fitting and low

computational performance are disadvantages during training

and testing. Thus, the dropout layer technology can effectively

alleviate the over-fitting of the evaluation network to the training

data and improve the generalization ability and processing

efficiency (Srivastava et al., 2014).

For a neural network with L layers, let l ∈ {1, ..., L} index the
hidden layers.w, b and x denote the weights, biases, and inputs at

the lth layer, respectively.

In the training stage, the output ~yl of the feed-forward neural

network with dropout is represented as follows:

~yl � f(wlxl + bl) ⊗ μl, μl ~ B(1 − p) (30)

where: ⊗ denotes an element-wise product. For any layer l, μl is a

vector of independent Bernoulli random variables. p denotes the

dropout probability.

In the testing stage, the output ŷl of the feed-forward neural

network with dropout is represented as follows:

ŷl � (1 − p)f(wlxl + bl) (31)

3.2 Training process of BDRL

The flowchart and training process of the proposed solution

are shown in Figure 4 and Table 2, respectively. In each episode,

the upper-level agent first observes the environmental state suppi

of PEVs, CSs and DNs. and selects a target CS auppi based on the

evaluation network. The target CS is also embedded into the state

space slowt,i of the lower-level agent. Then the lower-level agent

receives the upper-level navigation target and formulates the

road segment selection schemes. After executing the action alowt,i ,

the lower-level agent obtains the corresponding reward rlowt,i . The

transition (s2i,j, a2i,j, r2i,j, s2i,j+1) is stored in the replay buffer D.

Next, a mini-batch is extracted via the prioritized replay buffer to

update the network parameters. Finally, once the PEV arrives at

the target CS, the corresponding reward of the upper-level agent

is calculated ruppi . The upper-level network is updated in the same

way as the lower-level. Especially, the learning rate αn is decayed

with the increase of episodes. The above steps are repeated until

the maximum episode Nepi.

4 Case studies

4.1 Case study setup

In this study, the experimental setup of the “EV-CS-TN-DN”

is shown in Figure 5. The performance of our proposed method is

illustrated within a real-world TN in Nanjing, as shown in

Figure 6. Wherein, nine blue nodes are CSs equipped with ten

charging piles. The output power of charging piles is 60 kW. The

IEEE 33-bus distribution system is adapted to match the size of

the TN. The CSs are connected to DN nodes 4, 6, 9, 13, 16, 20, 24,

28, and 32, respectively. A total of 1000 PEVs with a battery

capacity of 40 kWh need to be charged daily in this zone, and the

triggered charging requirement SOC obeys N (3.2, 0.482).
In the upper-level, the charging price is determined by the

time of use (TOU) price [10], the cost per-unit time ϖ is set as

86.02 ¥/h (Hu et al., 2019), and the energy consumption

coefficient is 0.2 kWh/km (Zou et al., 2016). The safety

penalty ϖsp is set as ¥100. In the lower-level, the success

reward and failure penalty for PEV guidance are set as

¥100 and ¥200, respectively. The minimum SOC of PEVs is

0.05. Besides, Table 3 lists the parameter of the modified Rainbow

algorithm. All experiments are implemented in a server with

CPU R93950X, GPU RTX3080TI and RAM 32GB.

Herein, the decision-making complexity of road segment

selection is significantly larger than that of CS selection. Thus,

compared with the upper-level agent, the lower initial learning

rate α0 and the decay step nd are set in the lower-level agent. In

this way, the lower-level agent explores more feasible schemes

with a smaller learning rate in each episode, preventing the

dilemma of local optimization. Besides, since the number of

decision-making actions of the lower-level agent is much larger

than that of the upper-level agent, the lower-level agent needs a

larger mini-batch size and buffer capacity. In this way, the

correlation of the samples can be effectively reduced.

4.2 Training process

Figures 7, 8 illustrates the reward for each training episode.

The total training duration over 1000 episodes takes 4.25 h. As

depicted, agents are encouraged to explore the environment with

a large learning rate in the early stage, and the rewards fluctuate
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significantly. By accumulating historical experience, the upper-

level agent learns to recommend the optimal CS and achieves

convergence after 200 episodes, with an average reward with

¥ -90.64. As shown in Figure 8, however, the lower-level

agent is stable only after about 450 episodes due to the

complex traffic environment and the unstable upper-level

output. Specifically, in the first 200 episodes, the lower-level

agent is not competent for the guidance task, resulting in the

battery depletion of several PEVs. With the increase in

training episodes, the rewards obtained by the lower-level

agent finally stabilized at about ¥ 13.24. The dual agents

coordinate and cooperate to achieve the charging and

routing decision-making guidance for PEV users.

4.3 Practical testing results

To compare with the proposed BDRL method, we use the

offline disordered decision-making guidance method (DDG) as a

baseline. That is, the upper-level CS recommendation decision

selects a CS with the nearest to the charging trigger location. And

the lower-level path navigation decision uses a path planning

strategy (e.g., Dijkstra) to select the shortest traveling segments.

The path navigation result and the total user cost are shown in

Figures 9, 10, respectively. From Figure 9, we choose the path

planning results between traffic node 91 and CS node 7 for

illustration and comparsion. To weigh the traveling time and

energy consumption, the agent provides four routes for PEV

users during the peak hours from 17:00 to 19:00, excluding Path-

1. Due to ideal traffic conditions, the agent recommends three

paths, including Path-1 from 13:00 to 15:00. Thus, the proposed

method can be adaptively adjusted according to dynamic traffic

information to meet real-time traffic path planning

requirements.

Besides, it can be seen from Figure 10 that the average total

cost for users is ¥ 90.46 and the cost reaches ¥ 120.41 from 18:

00 to 21:00 under the disordered guidance method. However,

depending on the collaboration of dual agents, BDRL can

effectively perceive the changes in the TOU electricity price

and traffic information and optimize the decision-making

FIGURE 4
Flowchart of the proposed solution.
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scheme. The average cost for users is only ¥ 109.63 from 18:00 to

21:00, and the average daily cost is ¥ 85.43, which is 5.56% lower

than the disordered guidance method.

To evaluate the impact of PEV aggregation charging on

regional load operators, the spatial-temporal distribution

of charging loads for CSs is shown in Figures 11, 12.

Obviously, recharging customers are mainly concentrated

at CSs 7 and 8 via the disordered guidance method,

whereas CSs 1, 2 and 5 have fewer recharging customers.

Conversely, BDRL effectively smoothes the charging load at

each CS.

Besides, we establish the equilibrium degree of the

charging service De, as shown in Eq. 34, to further

quantify the service level of CSs. Herein, De denotes the

equilibrium degree of charging service. NPEV
j denotes the

number of PEVs served by the jth CS. �NPEV denotes the

average number of PEVs at all CSs.

De �
'''''''''''''''''''''
1

ΩCS ∑
j ∈ ΩCS

(NPEV
j − �N

PEV)2√√
(32)

The equilibrium degrees De under the disordered guidance

method and our proposed method are 1.39 and 0.98, respectively.

It indicates that BDRL optimizes the real-time matching of

charging resources with charging demand. With the increase

in PEV penetration, BDRL can provide PEV users with a better

charging experience with limited charging resources.

Further, we also evaluate the impact of PEV aggregation

charging on the DN. Figure 13 shows the node voltage

distribution of the DN at 20:00 for different methods. For

the DDG method, the random charging behavior of PEVs

leads to load aggregation at several CSs, which increases the

DN operational burden. For example, the voltage violation

occurs at both nodes 18 and 33 at the end of the line, and the

voltage qualification rate is only 72.73%. In contrast, BDRL

coordinates the charging behavior of PEVs through a bi-level

strategy, effectively balancing the regional load without

voltage violations.

4.4 Generalization ability analysis

In this part, we design new training scenarios to analyze

the BDRL’s generalization ability. Specifically, we assume

that CSs 1, 6, and 8 serve 400 PEVs daily, and the average

charging price of the CSs changes in episodes 301 and 601,

TABLE 2 Training process of the proposed BDRL Solution.

Algorithm 1: Proposed
BDRL Solution

1. Initialize network parameters θupp,+ , θupp,− , θlow,+ , θlow,− , discount factor γ, and learning rate parameters α0 , τ, nd.

2. For episode n = 1: Nepi do

3. Initialize the PEV navigation environment

4. For i = 1: ΩPEV do

5. Observe the environment state suppi and select a target CS auppi

6. While LPEVt,i ≠ Ltargeti,j do

7. Receive PEV’s real-time state slowt,i , determine the road segment selection action alowt,i

8. Take a step with action slowt,i , observe a new state alowt,i and reward rlowt,i , and store the transition (slowi,j , alowi,j , rlowi,j , slowi,j+1) in the buffer Dlow

9. Calculate target value yj � rlowi,j + γQ[slowi,j+1 , argmax
a′

Q(slowi,j+1 , a′; θlow,+); θlow,−] and loss |yj − Q(slowi,j , alowi,j ; θlow,+)|2, and sample a mini-batch with Nb transitions via
Eq. 26

10. Do a gradient descent step with respect to the evaluation network θlow,+ , and replace the target network θlow,− ← θlow,+ each Nr steps

11. End while

12. Charge PEV battery, observe new state suppi+1 and calculate reward ruppi , and store the sample in the buffer Dupp

13. Execute steps 9 and 10 with respect to the upper-level

14 End for

15. Decay learning rate α of both upper-lower agents via Eq. 31

16. End for

FIGURE 5
Experimental setup of the ‘EV-CS-TN-DN’.
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respectively. Figure 14 exhibits the reward distribution of the

upper-level agent in three scenarios. Besides, the basic DQN

method is taken as a baseline for comparison. Figure 15

shows the users’ average charging costs for the basic DQN

and BDRL methods.

As depicted by Figures 14, 15, both sudden changes in

environment information make the rewards drop sharply.

Nonetheless, the agent adjusts the action output in time and

achieves rapid convergence in several episodes by perceiving

the reward changes. The average rewards for the three

scenarios are ¥ -94.76, ¥ -90.88, and ¥ -91.80,

respectively. Besides, the average charging costs under the

three scenarios are ¥ 43.34, ¥ 41.41, and ¥ 42.13,

respectively. This is because BDRL uses the dropout layer

technology to adaptively select and discard the

corresponding neural network units in the training and

testing stages, which enables the well-trained fully

connected networks to effectively identify and track

environment changes. Conversely, the basic DQN without

dropout layer units, the neural network layer cannot capture

environmental changes in real-time for effective mapping

output. For the basic DQN, the user charging cost increases

by 5.72%, 4.20%, and 7.00% under the three scenarios,

respectively. Overall, it is shown that the proposed

method can quickly adapt to untrained scenarios and has

the ability to generalize to data outside the training set.

FIGURE 6
Topology of TNs and the location of CSs.

TABLE 3 Parameter of the modified Rainbow algorithm.

Parameter Upper-level Lower-level

Number of hidden units {100, 80} {120, 100}

Discount factor γ 0.95 0.95

Initial learning rate α0 0.55 0.15

Decay rate τ 0.85 0.85

Decay step nd 70 150

Dropout probability p 0.20 0.20

Mini-batch size Nb 68 128

Buffer capacity Dupp/low 6000 8000

FIGURE 7
Training process of the upper-level agent for the proposed
BDRL method.
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FIGURE 8
Training process of the lower-level agent for the proposed
BDRL method.

FIGURE 9
Path navigation results for BDRL and DDG methods under
different periods.

FIGURE 10
Total user cost for BDRL and DDG methods under different
periods.

FIGURE 11
Spatial-temporal distribution of charging loads for CSs using
the DDG method.

FIGURE 12
Spatial-temporal distribution of charging loads for CSs using
the BDRL method.

FIGURE 13
Node voltage distribution at 20:00 for DDG and BDRL
methods.
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FIGURE 14
Training process of the upper-level agent under the CS
charging price change scenarios.

TABLE 4 Training time for offline and online strategies.

Strategy Training time/h

DDG —

DQN 3.29

Double-DQN 3.79

Dueling-DQN 3.55

BDRL 4.25

FIGURE 15
Average charging cost of users under the CS price change
scenarios.

FIGURE 16
Comparison of rewards obtained by upper-level agents of
DQN, Double-DQN, Dueling-DQN and BDDL methods.

FIGURE 17
Comparison of rewards obtained by lower-level agents of
DQN, Double-DQN, Dueling-DQN and BDDL methods.

FIGURE 18
Cumulative average total cost of 100 days online testing for
the offline and online strategies.
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4.5 Numerical comparison with
comprehensive methods

Finally, we choose an offline strategy (namely, DDG) as well

as traditional DRL strategies (namely, DQN, Double-DQN and

Dueling-DQN) to comprehensively compare the

implementation effectiveness of BDRL. Specifically, we use

DQN, Double-DQN and Dueling-DQN as the solutions for

the BFMDP, which also undergo 1000 training episodes. The

training time for offline and online strategies is listed in Table 4.

The rewards obtained by the upper-lower level agents are shown

in Figures 16, 17.

From Table 4, DDG has no training process, because it does

not contain the determination of neural network parameters.

For the online strategies, the proposed BDRL method

incorporates several extension improvement mechanisms and

requires more neural network parameters to be determined.

The training time of BDRL is 29.17% and 19.71% larger than

that of Double-DQN and Dueling-DQN, respectively.

Conversely, Dueling-DQN reduces the redundancy of the

neural network structure, and its training time is less than

that of Double-DQN. As depicted by Figures 16, 17, overall, the

four algorithms achieve stable convergence from exploring the

external environment to the final stable convergence. However,

there are significant differences among the algorithms in terms

of convergence speed, stability, and solution quality. Since our

proposed method incorporates advanced extension

improvement mechanisms from other methods, the learning

rate can dynamically adjust according to training episodes.

Besides, the interference of noise samples on the learning

process can be eliminated, thus, the agents enter the stable

convergence interval more quickly. Compared with other DQN

methods, both upper-lower level agents for BDRL obtain the

highest rewards, achieving ¥ -90.64 and ¥ 13.24, respectively.

The basic DQN obtains faster convergence rates in both upper-

lower levels, about 150 episodes and 350 episodes respectively.

However, limited by the simple network structure and training

mechanism, the basic DQN’s solution quality is relatively poor,

and the final rewards are stable at ¥ -93.14 and ¥ 8.16,

respectively. Further, the Double-DQN and Dueling-DQN

algorithms improve respectively the neural network

architecture as well as the Q-value computational paradigm.

However, they need to be improved in terms of balancing the

quality of exploration with the speed of exploitation. The

cumulative average total cost of 100 days online testing for

the above-mentioned offline and online strategies (namely, the

cumulative of average daily time and cost of all owners) is

shown in Figure 18.

Besides, Figure 19 exhibits the average equilibrium degree of

the charging service, and Table 5 lists the specific values of the

traveling and charging evaluation indicators. Herein, all

indicators in Table 5 are average values. Combining

Figure 18 and Table 5, it can be seen that DDG, as a static

guidance strategy, fails to adjust the decision output

according to the real-time information variations. Thus, its

cumulative average cost is the highest, reaching ¥ 10,518.36.

Conversely, DQN, Double-DQN, Dueling-DQN and BDRL,

as dynamic guidance strategies, have the capabilities of real-

time environment perception and adaptive decision-making

FIGURE 19
Average equilibrium degree of the charging service for offline
and online strategies.

TABLE 5 Comparison of the traveling and charging evaluation indicators for offline and online strategies.

Strategy Energy consumption
cost/¥

Charging cost/¥ Traveling time/¥ Waiting time/¥ Charging time/¥ Decision-making
time/s

DDG 0.96 45.73 22.98 9.53 37.73 2.75

DQN 1.12 43.43 20.87 6.78 37.03 0.16

Dueling-DQN 1.07 43.04 13.55 9.83 37.22 0.16

Double-DQN 1.08 42.65 15.26 4.98 36.65 0.17

BDRL 1.05 42.45 14.83 4.47 36.67 0.17
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adjustment. Compared with DDG, their cumulative average

costs are reduced by 7.06%, 11.60%, 9.47% and 13.75%,

respectively.

For the specific evaluation indicators, overall, charging costs

account for the highest percentage of all five strategies, exceeding

approximately 40%. It indicates that charging cost is the highest

expense item for PEV owners. Clearly, DDG is a static guidance

pattern based on the nearest CS recommendation and shortest path

planning. Thus, the cost of each indicator is higher than that of DRL-

based methods, except for the energy consumption cost. This means

that the cost of energy consumption is proportional to the traveling

distance. For decision-making time, there is no “offline training-

online testing” paradigm in the DDG method, thus its decision-

making time is larger than that of online decision-making methods.

For DRL-based online decision-making methods, their decision-

making time is controlled within seconds, meeting the real-time

decision-making requirements of TECSs. Besides, the decision-

making time of BDRL (0.17 s) is larger than that of DQN

(0.16 s), which is caused by the retention of two decimal places

after the decimal point and the calculation error of the server. The

influence of the slight error on the decision-making time can be

ignored. Moreover, our proposed BDRL method, based on the

modified Rainbow architecture, enhances the ability of offline

learning and online decision-making for discrete actions, and all

indicators are higher than that of the DQN-based guidance

strategies. The average equilibrium degree of the charging service

for DQN, Double-DQN, Dueling-DQN and BDRL are 1.50, 1.51,

1.54 and 0.96, respectively. In summary, these results again

demonstrate the superiority of BDRL in the case of charging and

traveling decision-making support.

5 Conclusion

Based on the BDRL approach, this paper proposes a novel

PEVDG. Clearly, the approach decouples the CS

recommendation and path navigation tasks into an upper-

lower level decision-making process. The actions and rewards

in the upper-lower levels are specifically designed to improve the

cooperation efficiency of dual agents. A modified Rainbow

algorithm is proposed to enhance the learning ability and

convergence performance. Case studies are performed within

an urban TN with multiple CSs. The testing results show that the

proposed method reduces the charging and traveling costs for

PEV users and optimizes the node voltage distribution. By

embedding the learning rate decay and the dropout layer

technology, BDRL achieves promising decision-making

performances, Compared with the offline guidance strategy

(namely, DDG) and the DQN-based online guidance

strategies (namely, DQN, Double-DQN, Dueling-DQN), the

average cumulative rewards are reduced by 7.06%, 11.60%,

9.47% and 13.75%, respectively, and the average equilibrium

degrees of the charging service are reduced by 27.81%, 36.00%,

36.42% and 37.66%, respectively. Besides, the average decision-

making time for the DQN-based online guidance strategy is all

within seconds, while that for the DDG-based strategy is about

3 s. One of the future directions is to evaluate the influencing

factors of PEVDG, improving the scalability of the proposed

model. Besides, the sensitivity analysis of network parameters for

DRL will be further dissected.
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