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The Integrated Energy System (IES) can promote social energy transformation and low-
carbon development, which is also an effective means to make contributions to energy
structure optimization, energy consumption reduction, and new energy consumption.
However, the IES has the characteristics of complex energy flow, and strong uncertainty
with multi-agents. Therefore, traditional mathematical optimization models are difficult to
comprehensively and accurately reflect the interest needs of different entities in the
integrated energy microgrid. Aiming at this problem, a two-level collaborative control
strategy model of “electricity-heat-gas” IES based on multi-agent deep reinforcement
learning is proposed in this paper. The upper layer of this model is a multi-agent hybrid
game decision-making model based on the Multi-Agent Deep Deterministic Policy
Gradient algorithm (MADDPG), and the lower layer contains the power and gas flow
calculation model. The lower model provides the upper model with the energy flow data of
the IES and the upper layer rewards the decision-making behavior of the agent based on
the energy flow data provided by the lower layer. Effectively solving the high-dimensional
nonlinear optimization problem existing in the complex coupling network, this method can
improve the convergence and training speed of the model. In this paper, the IEEE 33-node
distribution network and 20-node gas network coupling system are provided to verify the
model. The simulation results show that the proposed collaborative control strategy
method can provide effective decision-making for electric-agent and gas-agent and
realize the efficient and economic operation of the integrated energy system.

Keywords: integrated energy system, mixed power flow model, dynamic control, deep reinforcement learning,
energy management system

1 INTRODUCTION

With the trend of low-carbon, cleanness and sustainability of electric industry going further, the
energy structure of all countries in the world is gradually realizing electric energy substitution and
clean energy substitution. China’s “carbon peaking and carbon neutrality (dual carbon)” goals are
also important to the international community (Ali et al., 2021). Effective response to green and low-
carbon development. The Integrated Energy System (IES) runs through the coordinated operation of
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electric and thermal energy, which can effectively improve energy
utilization, and is of great significance for promoting the
consumption of renewable energy and achieving the “dual
carbon” goal (Mohamed, 2022). On the energy side, wind
power, photovoltaic, natural gas and other clean energy access
the grid and will increase the uncertainty of power supply, heating
and other aspects (Rezaei et al., 2021; Xia et al., 2021). Meanwhile,
on the load side, new types of loads such as electric vehicles, smart
homes and other forms of energy loads can deeply participate in
energy interactions and also increase new uncertainties in the
demand side (Al-Ghussain et al., 2021; Lan et al., 2021).
Moreover, the integrated energy system integrates coal, oil,
natural gas, electricity, heat and other energy sources in the
region (Tan et al., 2022). At the same time, the existing
market investment body is increasing. This means that in the
existing market environment in China, grid companies have
changed from being the dominant player in the construction
of energy networks to being an important player in the
construction of energy networks (Sun et al., 2015; Ma et al.,
2021). Unlike the traditional integrated energy synergy from the
overall perspective of decision-making, the integrated energy
system is oriented to multiple competing subjects, and there is
a significant game relationship between different subjects
(Weinstein, 2010). In this background, it is important to study
and propose an integrated energy system control strategy that
takes into account the game relationship of diverse investment
agents.

The problem of integrated energy system regulation has been
studied by scholars in China and abroad and certain results have
been achieved (Abdelaziz Mohamed and Eltamaly, 2018a). In
order to solve the energy station-grid configuration problem,
Huang Wei et al. (Huang and Liu, 2020) proposed an integrated
energy station-grid double-layer planning optimizationmodel for
parks considering the multi-energy complementary
characteristics of energy stations. The model effectively
alleviates the problem of under-supply or over-supply caused
by zonal supply and peak-to-valley demand. The authors in (Yao
and Wang, 2020) propose a two-level collaborative optimal
allocation method for integrated energy systems considering
wind and solar uncertainty. The approach improves both total
annualized system cost and average annual equipment utilization.
The article verifies the effectiveness and economy of the proposed
method. Walter et al. (2020) proposed the integration of thermal
energy systems into microgrid energy management systems. He
builds models based on consideration of fuel costs, thermal
comfort and other factors. Moreover, its economic efficiency is
fully considered the optimal solution to achieve the purpose of
reducing the cost of electricity and heating. All of the above
literature uses a game theory and traditional centralized method
approach to regulate aspects such as power system generation,
and grid structure. The disadvantage of above approach is that it
is difficult to allocate the power system dynamically and also
having the problem of solving quickly.

It is worth noting the close coupling of different energy
networks such as electricity and natural gas in the integrated
energy system (Abdelaziz Mohamed and Eltamaly, 2018b). The
problem of solving control strategies for integrated energy

systems is a nonlinear, non-convex optimization problem.
Therefore, it is difficult to solve the problem by relying only
on traditional mathematical modeling methods (Mohamed et al.,
2020).

In recent years, Reinforce Learning (RL) has made significant
breakthroughs in data resolution, learning power and
computational power. RL has been applied to smart
manufacturing, smart medical and other fields. In terms of
application results, it has shown good application effects
(Sutton and Barto, 1998; Leo Kumar, 2017; Park and Han,
2018). Nowadays, some researchers have applied multi-agent
and game theory to energy power systems. These researches
make use of the characteristics of multi-agent such as
autonomy, interactivity and distributed computing properties
and analyze the interesting pursuit of different agents and the
possible interest equilibrium relationship through game theory
for economic scheduling and energy management (Makhadmeh
et al., 2021). In (Yang et al., 2021), a dynamic economic dispatch
for integrated energy systems based on the DDPG algorithm was
proposed. And this method can achieve dynamic economic
scheduling of the system better than traditional methods, but
this mechanism uses uniform random sampling to extract
empirical data from the experience pool without considering
the importance of different experiences. The authors in (Nie et al.,
2021) proposed a double-layer reinforcement learning model to
achieve real-time economic dispatch of IES with higher solving
efficiency. The authors in (Liu et al., 2019) divide the microgrid
system into multi-agent, establishes a multi-agent game
coordination scheduling model, and proposes an integrated
energy microgrid scheduling method based on the Nash game
and Q-learning algorithm. However, this model does not take
into account the end-load demand. In (Qiao et al., 2021), the
authors present a deep reinforcement learning approach based on
a soft actor-critic framework for the problem of optimizing the
operation of integrated electricity-gas energy systems. The
method can realize the continuous action control of a multi-
energy flow system, and can flexibly handle the source-load
uncertainty of wind power, photovoltaic, multi-energy load,
etc. However, the thermal energy in the integrated energy
system is not considered. In (Liu et al., 2020), an energy
management and optimization method for micro-energy
networks based on deep reinforcement learning is proposed.
The method uses an experience replay mechanism and fixed
network parameters mechanism, which effectively solves the
problems of difficult modeling of integrated energy systems,
slow convergence of traditional algorithm operation and
difficulty in meeting real-time optimization requirements as
well as system openness. Reference (Ying et al., 2019)
proposes a new energy management approach for real-time
dispatch considering load demand, renewable energy and tariff
uncertainty. The method adaptively adjusts based on trends in
marginal prices and netload, and develops cost-effective dispatch
schemes for microgrids in uncertain environments. Reference
(Nie et al., 2021) combines deep reinforcement learning with a
realistic peer-to-peer (P2P) energy trading model to solve the
decision-making problem for microgrids in local energy markets.
This strategy improves microgrid utilization and uses virtual
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penalties to reduce inefficient power plant generation points and
to determine the optimal battery capacity for the microgrid.
However, there are few studies on integrated energy systems
with electricity, heat and gas as the main game (Fan et al., 2021).
In the case that all three energy subjects can provide energy in the
Integrated Energy System, further research is needed on how to
rationally allocate energy to reduce the cost and energy waste of
the Integrated Energy System, improve the energy utilization rate,
and meet the energy supply and demand and the interest game
behavior of the three subjects while responding to the low-carbon
economy.

Aiming at the difficulty solving problem of the traditional
modelling methods are difficult to solve the problem, this paper
model the multi-agent game process, applies DRL to the multi-
agent game process of IES, and simulates the multi-agent
systemization based on the MADRL algorithm, which at the
same time, may contribute to further reduce the cost of the
Integrated Energy System, optimize the energy efficiency and
meet the daily load. To be specific, considering the game
relationship of diversified investment entities in the IES, this
article takes the electric-heat-gas integrated energy system as the
object and constructs a multi-agent strategymodel based on DRL.
The main contributions of this article are as follows:

(1) Considering different kinds of energy equipment and their
coupling relations in the integrated energy system, the
mathematical model of the integrated energy system is
constructed;

(2) Based on the theory of DRL, the dynamic game process and
decisionmodel of interests multi-energy players of electricity,
heat and gas are constructed according to the decisions of
different players and their respective benefits;

(3) A two-layer model is established. The lower layer decides the
output of electricity, heat and gas networks, and the upper
layer model calculates the equilibrium output of the
Integrated Energy System based on the output decision of
the lower layer and the constraints of multi-power flow;

(4) The reliability and validity of the proposed model is proved
by the analysis of calculation examples.

The rest of this paper is organized as follows. Section 2
introduced the structure of Integrated Energy System and
multi-agent game theory; In Section 3, mathematical model of
Integrated Energy System is discussed in detail, including the
constraints. In Section 4, the two-lavel model is introduced and
proposed the setting method to a DRL model; Section 5 presents
the numerical simulation results. Finally, conclusions and
suggestions for future work are drawn in Section 5

2 INTEGRATED ENERGY SYSTEM
STRUCTURE AND MULTI-AGENT GAME

In this paper, the IES is constructed by combining electricity/gas/
heat energy sources. It is based on a typical industrial park and
includes Renewable Energy (RE) Combined Heat and Power
(CHP), Gas Turbine (GT), Gas Boiler (GB), Electric Boiler

(EB) and other equipment. The system structure is shown in
Figure 1.

2.1 Integrated Energy System Structure
In this integrated energy park system, electricity and natural gas
can be purchased from external sources; Conversion between
electricity and gas can be done by combined heat and power units
and gas turbines; Conversion between electricity and heat
through combined heat and power units and electric boilers;
Conversion between heat and gas via combined heat and power
units and gas boilers.

On this basis, this paper takes the three networks that exist in
the system as different subjects of interest. The structure divides
IES into three investment entities: electricity (main grid,
renewable energy, combined heat and power units), heat (gas
boilers, electric boilers) and natural gas.

2.2 Multi-Agent Game Model
This section analyzes the control problem of multi-energy
synergy within an integrated energy system and constructs a
hybrid game Markov process for electrical and thermal multi-
subjects. The structure can fully consider the interests of different
subjects and avoids the dimensional catastrophe in the state and
action space that arises when deep reinforcement learning is
applied.

In this paper, the Nash equilibrium point of solving the game
between multiple agents is used as a control strategy for
integrated energy systems. Its target expression is

G � g(Ng,Ag, ug) (1)
Where, G is the equilibrium point reached by the game between
multiple agents; g(·) is the game function between multiple
agents; Ng is the set of behaviors of the agents involved in the
game. It is expressed as the operating action of each type of
equipment in this article; ug is the set of utilities of the agents
participating in the game. It is represented the economic interests
of the respective agents in this paper.

FIGURE 1 | Integrated energy system.
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3 MATHEMATICAL MODEL OF
INTEGRATED ENERGY SYSTEM CONTROL
STRATEGY
The three investment entities included in the actual IES:
electricity, natural gas and heat. These three investment
entities will consider their interests more in the operation
process. Traditional optimization methods are difficult to solve
optimally for the game relationship between the three entities and
to minimize the operating cost of the system. Therefore, this
section considers the return of the investment subject based on
the intelligent body division method proposed in Section 2. And
the control strategy revenue model of electric, natural gas and
thermal energy investment entities is constructed.

3.1 Objective Function
The control objective of this system is to maximize the net profit
of its system over a period of T by controlling the output of
controllable equipment. The system is set to T for 24 h and the net
profit of IES is the operating revenue minus the investment cost
and operating cost. The objective function form of Eq. 1 can be
written

F � max∑T
t�1
I(t) − C(t)

s.t. I(t) � ∑N
n�1

ie(t) + ih(t) + ig(t)

C(t) � ∑N
n�1

ccos t(t)

(2)

Where, I(t) is the profit of the system at time t; C(t) is the
operating cost of the system at time t; ccos t(t) is the cost of
purchased energy. The specific expression for the cost of
purchased energy is as follows.

3.1.1 Sales of Electricity, Heat and Gas Revenue

ie � cseP
sell
grid(t) (3)

ih � cshH
sell(t) (4)

ig � csgV
sell(t) (5)

Where, cse, csh and csg are the sold prices of electricity, heat and
natural gas, respectively; Psell

grid(t) is the electrical power delivered
to the consumer by subject n at time period t; Hsell(t) is the
thermal power to supply heat to the customer in time period t;
Vsell(t) is the volume of natural gas required by the customer in
time period t.

3.1.2 Cost of Purchased Electricity, Heat and Gas

ccos t(t) � (cbePbuy(t) + cbgV
buy(t)) (6)

Where, cbe and cbg are the buying prices of electricity and natural
gas, respectively; Pbuy(t) is the electric power delivered from the
grid to the IES system at moment t; Vbuy(t) is the amount of

natural gas delivered from the natural gas network to the IES
system at time t.

For heat networks, their power generation is delivered
internally by the integrated energy system and is not
purchased from outside. Heat network costs have been
partially converted from gas source power output and electric
power output.

3.2 Equipment Model
The input-output relationship of CHP, GT, EB and GB are
introduced as follow. These equipment can convert energy
from one form to another.

3.2.1 Combined Heat and Power Unit Model
For the CHP unit, there is a coupling between its output electric
power and thermal power. Depending on whether the CHP unit
electric heat ratio varies or not, there are two types: fixed heat and
power ratio and variable heat and power ratio. In this paper, a
fixed heat and power ratio is set, denoted by variable ηCHP.

ηCHP � hCHP(t)
pCHP(t) (7)

Where, hCHP(t) represents the thermal power of the CHP unit at
moment t; pCHP(t) is the electrical power of the CHP unit at
moment t. In addition, the natural gas volume consumed by CHP
unit is:

Vg � pCHP(t) · Δt
QLHV · ηG E

(8)

Where, ηG E represents the gas-to-power efficiency of CHP unit;
Natural gas low calorific value QLHV is 9.7kwh/m3.

3.2.2 Gas Turbine Model
A gas turbine generates electricity by burning natural gas and has
the following equation

pGT(t) � ηGTVGT(t) (9)
Where, pGT(t) represents the electrical power of the gas turbine
unit at time t; ηGT is the gas-electric conversion factor of the gas
turbine.

3.2.3 Electric Boiler Model
The electric boiler is connected to the grid as a load, and its
mathematical model is shown in the following equation

ηEB � hEB(t)
pEB(t) (10)

Where, hEB(t) represents the thermal power emitted by the
electric boiler unit at time t; pEB(t) is the electrical power
consumed by the EB unit at time t.

3.2.4 Gas Boiler Model
The gas boiler is connected to the gas network in the form of a
load, and its mathematical model is shown in the following
equation:
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VGB(t) � hGB(t)
ηG H/QLHV

(11)

Where, hGB(t) represents the thermal power emitted by the gas
boiler unit at time t; VGB(t) is the amount of natural gas
consumed by the gas boiler at time t; ηG H is the gas-to-heat
efficiency of the gas boiler.

3.3 Constraint Condition
The constraints of the integrated energy system control problem
include power balance constraints, external energy supply
constraints, and equipment operation constraints.

3.3.1 Power Constraints
At moment t, the electric power balance constraint and the
thermal power balance constraint can be expressed
respectively as:

pgrid(t) + pRES(t) + pGT(t)
pCHP(t) − pEB(t) � pload(t) (12)

hCHP(t) + hGB(t) + hEB(t) � hload(t) (13)
Where, pgrid(t) is the power exchanged between the system and
the main grid at time t. A positive power indicates that the system
purchases power from the main grid, and a negative power
indicates that the system carries out surplus power to the grid;
pRES(t) is the output power of renewable energy; pload(t) is the
electrical load for time period t; hload(t) is the heat load for time
slot t.

3.3.2 Equipment Operating Constraints
The devices in the IES system have an upper and lower operating
limit range. There are requirements for the electric power output
of CHP units, the thermal power output of gas boilers and electric
boilers.

Pmin
CHP#pCHP(t)#Pmax

CHP (14)
Pmin
GT #pGT(t)#Pmax

GT (15)
Hmin

GB #hGB(t)#Hmax
GB (16)

Hmin
EB #hEB(t)#Hmax

EB (17)
Where, Pmax

CHP and Pmin
CHP are the upper and lower limits of the

output power of the CHP unit; Pmax
GT and Pmin

GT are the upper and
lower limits of the electrical power output of the CHP unit;
Hmax

GB and Hmin
GB are the upper and lower limits of the thermal

power output of the gas boiler; Hmax
EB and Hmin

EB are the upper
and lower limits of the thermal power output of electric boiler
respectively.

3.3.3 Energy Conversion Equipment
Constraint
The energy conversion equipment of IES must meet the
constraints shown in 7–11.

4 TWO-LEVEL DECISION MODEL

IES control problems have complex constraints and are difficult
to converge. To address this problem, this paper proposes a two-
level model to achieve efficient model learning and effective
control of IES. The upper layer DRL agent is responsible for
learning strategies to make decisions for the output of the
integrated energy system. The lower layer model receives the
actions of the upper layer and performs energy flow calculations
to verify the security of the model. When the action of the upper
RL model has a tide crossing the line, energy flow imbalance, etc.,
add an appropriate penalty to the reward. The reward design
complexity when the upper output action violates the constraint
is reduced by a two-level model design. Meanwhile, the model
avoids the problem of the difficult convergence of currents.

4.1 Upper Layer DRL Model Design
In RL, there are two interactive objects: agent and environment.
The agents sense the external state and obtain reward. After that,
the agent learns and makes decisions. The environment will be
affected by the action of the agent and change its state, and give
feedback to the agent to get the reward in response. DRL has the
general intelligence to solve complex problems to a certain extent
and has achieved great success in many tasks. A Markov decision
process (MDP) is a sequence of random variables with Markov
properties, in which the state of the next moment depends only
on the current state. If an action is added to the Markov process,
the state at the next moment is related to action and the
current state.

The upper layer of the two-level model is the DRL agent. In the
paper, IES is the environment of the intelligent, which makes
optimal control strategy decisions by regulating the device output
in the system.

4.1.1 Reward Function Design
When designing the reward function, setting the scaling factor
facilitates the agent to learn the gains of different subjects more
equally. This helps to balance the weight of the contribution of
each agent. Therefore, the reward function for the upper layer
DRL agents is designed as follows:

r � ( − ccos t−γplscpls − rpun) (18)
Where, γpls is the line loss penalty factor, taken as 0.5; rpun is the
line crossing penalty, taken as 200.

4.1.2 State-Space Design
The DRL status should contain sufficient information to make
decisions, including electric load demand, thermal load demand,
gas load demand and renewable generation power, as well as real-
time electricity sales prices. It can be expressed as follows:

st � {pload(t), hload(t), Vload(t),
pRES(t), ce sell(t), cg buy(t)} (19)
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4.1.3 Action Space Design
At time slot t, the action in IES can be indicated by the output of
the device. In this paper, the multi-agent body consists of three
parts, grid agent body, heat network agent body and gas network
agent body. The intelligent body action can be represented as
follows:

At � {ate, ath}
s.t. ate � {pCHP(t)}

ath � {hGB(t)}
atg � {pGT(t)}

(20)

Where, At is the total set of multi-agent actions; ate represents
grid agent actions; ath represents thermal network agent
actions; atg represents thermal network agent actions.

4.2 Lower Layer Model Design
The objective of the lower layer model is to verify the security of the
grid through power flow calculations after the upper layer has made
decisions on the output of the grid and the heat network.Meanwhile,
its interactive power with the superior grid is obtained. Gas network

to minimize operating costs to optimize autonomous costs. Gas
source treatment of the gas network by flow calculation calibration.
The results are returned to the upper DRL model to calculate the
operating costs of the IES system.

4.2.1 Power Flow Calculation
The electric output of CHP units, electric boiler heat output, and
gas boiler heat output are delivered to the lower model in multi-
intelligent planning. By power flow calculation, the exchange
power and line losses with the main network are derived. The
specific calculations are as follows:

ΔP � P2 + Q2

U2
R (21)

ΔQ � P2 + Q2

U2
X (22)

4.2.2 Gas Network Flow Calculation
The calculation process is aimed at minimizing the cost of the gas
network. Electric output of CHP units, heat output of electric

TABLE 1 | Algorithm of MADDPG.
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boilers, and heat output of gas boilers are passed into the gas
network flow model through the upper layer agent planning. At
the same time, the calculation considers the constraints of the gas
network and constructs the gas network flow model. The details
are as follows:

wj,t + ∑
ij∈Z(j)

wij,t � ∑
jk∈v(j)

wjk,t (23)

wij,t + wji,t � 0 (24)
wj,t � wwell

j,t − wpgu
j,t − wload

j,t (25)
wij,t � Cij










∣∣∣∣∣ψ2
i,t − ψ2

j,t

∣∣∣∣∣√
(26)

ψmin ≤ψi,t ≤ψmax (27)
wij,min ≤wij,t ≤wij,max (28)
0≤wloadcut

j,t ≤wload
j,t (29)

Where, wij,t is the gas flow transmitted from pipe node i to node
j; wwell

j,t and wpgu
j,t are the source point injection gas flow and the

gas consumption of the CHP unit or gas boiler at the node j,

respectively; wload
j,t is the node j gas load volume; Z(j) and v(j)

are the set of pipes with node j as the last node and node j as the
first node, respectively; ψi,t is the gas pressure at node i; wij,max

andwij,min are the upper and lower node gas pressure limits;Cij is
the constant of pipe ij constant. The constant is related to the pipe
length, direct, operating temperature and the gas pressure
difference between the nodes.

4.3 Model Training and Decision Algorithms
In this paper, we propose to use the MADDPG algorithm based
on multi-intelligent reinforcement learning. It belongs to the
centralized training-decentralized execution algorithm
framework and it is a natural extension of the DDPG
algorithm for multi-agent systems. The improvement consists
in introducing the inputs of the current policy sampling actions of
other agents as additional information in the modeling process of
the Q-value function. The MADDPG algorithm has two main
advantages: 1) In the training phase, each agent’s participant
network makes decisions based on local information (the agent’s
own operations and state); 2) The algorithm does not require

FIGURE 2 | The Two-level model.
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input information about environmental changes or linkage
relationships between agents. Therefore, the algorithm is not
only applicable to cooperative environments but also to
competitive environments. The implementation of the
MADDPG algorithm is shown in Table 1.

At moment t, the upper layer DRL agents observe the state of
the environment. The upper layer DRL selects the action of the
multi-intelligent according to the strategy and transmits this

action to the lower layer. The lower layer uses the solver to
calculate the flow of the grid and the gas network. The lower layer
returns the upper grid output and the treatment of gas sources in
the gas network and returns to the DRL model to calculate the
reward. Finally, the state st at this moment, the state st+1 at the

FIGURE 3 | Coupling network.

TABLE 2 | Equipment parameters.

Parameter Value Parameter Value

ηCHP 2.58 Hmax
EB 1,000 kW

ηG E 0.35 Hmax
GB 300 kW

ηG H 0.9 Pmax
CHP 500 kW

ηEB 0.85 Pmax
GT 500 kW

ηGT 0.8

TABLE 3 | Price of electricity/gas/heat.

Period/h Electricity price ($/kW h) Gas price ($/m3)

00–08 0.08 0.06
08–20 0.16 0.12
20–24 0.12 0.09

FIGURE 4 | Reward function curve.
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next moment, and the action At are stored in the experience pool
for the DRL model to train and use. The specific process is shown
in Figure 2.

5 EXPERIMENTAL VERIFICATIONS

5.1 Example Setting
In this section, arithmetic examples will be designed to verify the
advantages and effectiveness of the proposed MADDPG
algorithm-based two-level strategy model for integrated energy
system dynamic game strategy. The code of chemical learning
and trend calculation model is solved based on python
programming.

Figure 3 shows the electric-thermal-gas coupling system. The
system consists of a 33-node electrical system, and a 20-node
natural gas system. The heat network is converted to electrical
load form connected to the grid. The power system includes 2
CHP power supplies, 2 wind power supplies and 1 PV power
supply. The heating system includes 4 heat sources (1 electric

FIGURE 5 | Evaluation loss function curve.

FIGURE 6 | Strategy loss function curve.

FIGURE 7 | Grid operation.

FIGURE 8 | Operation of heat network.

FIGURE 9 | Operation of the gas network.
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boiler, 3 gas boilers). A natural gas system with 6 gas sources. The
system scheduling time is 24 h and the interval between 2
adjacent periods is 1 h. The operating parameters of the
components in the integrated energy system are shown in
Tables 2, 3.

5.2 Result Analysis
This section tests the ability of the proposed model to cope with
system uncertainty. The model needs to consider the electrical,
thermal and gas loads in the IES as well as the renewable energy
output. The existence of uncertainty leads to a large number of
different scenarios for IES control. This example puts 1 year of
renewable energy data (wind turbine and photovoltaic), electrical
load data, thermal load data and gas load data into the model to
validate the strategy results. The search time step is 24 and sets for
50,000 rounds.

The results shown in Figure 4 show the effectiveness of the
control of the integrated energy system using the two-level
model. Initially, due to the incomplete exploration of the
action strategies of the agents, the agents choose to sacrifice
profits to ensure the operational constraints. Therefore, this
decision results in a low value of the reward function. At a later
period, through extensive learning, the agents can make
effective decisions for different scenarios. Thus, the reward
function increases until it converges at about 26,000 steps. In
addition, the loss functions of Figures 5, 6 show that the loss
functions corresponding to the three agents show oscillations
at the initial stage. This is due to the failure to find a better
action to guarantee the function when the agent is making
decisions in the early stages. However, the loss function of the
agents smoothed out by continuously sampling and learning
from the experience pool and adding noise to ensure data
diversity.

In order to verify the convergence and strategy effectiveness
under multiple scenarios, the operation of the grid, heat and gas
networks for one of the days are shown in Figures 7, 8, and 9,
respectively.

From the results in Figures 7–9, it can be seen that the full
consumption of renewable energy is achieved within the

integrated energy system. The heat load in the heat
network can be met by the equipment in the integrated
energy system. In addition, due to the limited power
supply equipment in the integrated energy system, most
of the electricity is satisfied by the grid exchange power.
This also makes the operational efficiency of the integrated
energy system more related to the exchange of power. As can
be seen from Figure 10, the higher demand for cooling
equipment in summer leads to an increase in power
consumption. The resulting increase in interactive power
with the grid increases the cost of integrated energy and leads
to reduced benefits. In winter, the benefits of the integrated
energy system are increased by the abundance of heating
equipment within the system to meet the thermal energy
demand.

6 CONCLUSION

For the game relationship between different subjects in IES and
the complex energy coupling relationship, this paper
establishes a two-level DRL model of an integrated energy
system containing three subjects: electricity, heat and gas. The
upper layer of the model uses the reinforcement learning
MADDPG algorithm to determine the power output of each
device for electricity and heat. The lower layer calculates the
interactive power with the grid that satisfies the power flow and
the output power of the gas source node of the gas network.
The proposed two-level model in this paper can simplify the
design of reward functions for multi-intelligent reinforcement
learning. The model can strengthen action constraints and
effectively improve the training speed of reinforcement
learning. The analysis shows that the proposed model can
effectively improve the energy utilization efficiency of the
integrated energy system with the full consideration of the
dynamic game of electricity, heat and gas. In addition, the
model combines a data-driven multi-agent reinforcement
learning approach with traditional trending algorithms. This
allows the model to be solved with higher efficiency, realizing
the collaborative control strategies for IES, meeting the needs
of various energy sources while reducing the cost and energy
consumption of the integrated energy system.

In future research, on the one hand, we will further consider
the coupling network with more constraints and energy storage
devices to the multi-agent economy influence, on the other hand,
consider the load demand of different level, such as the reducible
and non-reducible loads, and improve the control strategy, to
reduce the cost of the integrated energy system and increase
energy efficiency.
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