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This study presents an improved chaotic flower pollination algorithm (CFPA)

with a view to handle the optimal power flow (OPF) problem integrating a

hybrid wind and solar power and generate the optimal settings of generator

power, bus voltages, shunt reactive power, and tap setting transformers. In

spite of the benefits of FPA, it encounters two problems like other evolutionary

algorithms: entrapment in local optima and slow convergence speed. Thus,

to deal with these drawbacks and enhance the FPA searching accuracy, a

hybrid optimization approach CFPA which combines the stochastic algorithm

FPA that simulates the flowering plants process with the chaos methodology

is applied in this manuscript. Therefore, owing to the various nonlinear

constraints in OPF issue, a constraint handling technique named superiority

of feasible solutions (SF) is embedded into CFPA. To confirm the performance

of the chaotic FPA, a set of different well-known benchmark functions were

employed for ten diverse chaotic maps, and then the best map is tested on

IEEE 30-bus and IEEE 57-bus test systems incorporating the renewable energy

sources (RESs). The obtained results are analyzed statistically using non-

parametric Wilcoxon rank-sum test in view of evaluating their significance

compared to the outcomes of the state-of-the-art meta-heuristic algorithms

such as ant bee colony (ABC), grasshopper optimization algorithm (GOA),

and dragonfly algorithm (DA). From this study, it may be established that the

suggestedCFPA algorithmoutperforms itsmeta-heuristic competitors inmost

benchmark test cases. Additionally, the experimental results regarding the OPF

problem demonstrate that the integration of RESs decreases the total cost

by 12.77% and 33.11% for the two systems, respectively. Thus, combining FPA

with chaotic sequences is able to accelerate the convergence and provide
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better accuracy to find optimal solutions. Furthermore, CFPA (especially with

the Sinusoidal map) is challenging in solving complex real-world problems.

KEYWORDS

constraint handling technique, flower pollination algorithm, chaotic map, wind-solar system,

optimal power flow

1 Introduction

Nature-inspired computation algorithms have been evolved
during the last few decades, supplying a varied source of
approaches that address diverse fields, such as industrial designs,
economics, business activities, engineering, etc. Generally, there
are two categories of optimization techniques: stochastic and
deterministic algorithms (Vasant, 2012). The deterministic kind
of approaches proceed rigorously; they produce an accurate
outcome for a given design variable. However, in spite of their
fast convergence, they fail to reach the global solution; hence,
they get stuck in local optima and fail to deal with derivative-
free issues. In contrast, the stochastic algorithms are among
the best and effective strategies in finding optimal solutions,
conflicting with the classical optimization approaches. This kind
of algorithm has been widely utilized due to its capability to
obtain global optimum solutions escaping from local optima
and its ease of implementation. Some of the well-regarded meta-
heuristic algorithms are as follows: Genetic Algorithm (GA),
which is the first stochastic algorithm inspired by John Holland
in 1960 (Holland, 1975), followed by Simulated Annealing (SA)
in 1983 (Kirkpatrick et al., 1983), Particle Swarm Optimization
(PSO) in 1995 by Kennedy (Kennedy and Eberhart, 1995),
and more approaches that were developed later, such as Ant
Bee Colony (ABC) (Basturk and Karaboga, 2006), Arithmetic
OptimizationAlgorithm (AOA) (Abualigah et al., 2021a), Harris
Hawks Optimization (HHO) (Heidari et al., 2019), Sin Cosine
Algorithm (SCA) (Mirjalili, 2016), Black Widow Optimization
(BWO) (Hayyolalam and Pourhaji, 2020), Dynamic differential
annealed optimization (DDAO) (Ghafil and Jármai, 2020),
Levy Flight Distribution (LFD) (Essam et al., 2020), Salp
Swarm Algorithm (SSA) (Mirjalili et al., 2017), Henry Gas
Solubility Optimization (HGSO) (Hashim et al., 2019), Manta
Ray Foraging Optimization (MRFO) (Zhao et al., 2020), starling
murmuration optimizer (SMO) (Zamani et al., 2022), Honey
Badger Algorithm (HBA) (Hashim et al., 2022), Reptile Search
Algorithm (RSA) (Abualigah et al., 2022), Aquila Optimizer
(AO) (Abualigah et al., 2021b), and so on. All these algorithms
divide the search process into two important characteristics:
exploration and exploitation with a specific probability; these
two phases are also called diversification and intensification.
The first phase is considered as the essential step in which
the algorithm can examine the search space more effectively
and generate a new diverse solution as possible with jumping

out from any local optima. Meanwhile, the exploitation or
intensification phase attempts to use the information of
the obtained current best solutions from the exploration or
diversification phase (Yang, 2010). In numerous instances,
exploitation and exploration are not balanced, and due to the
random nature of meta-heuristic algorithms, there is no explicit
frontier between these two mechanisms (Mirjalili et al., 2014).
Therefore, these issues leave the stochastic approaches stuck
in the local optimum without balancing properly between the
exploitation and exploration. Moreover, in spite of the benefits of
the intelligence algorithms, they require some improvement
to satisfy the diverse characteristics of complex real-world
applications, which means that no approach is qualified in
resolving the diverse kind of optimization problems. In that
regard, the No-Free Lunch (NFL) theorem (Wolpert and
Macready, 1997) validates this and opens the way for developers
to create new approaches and enhance the quality of the existing
ones.

Recently, a third group of nature algorithms can be
considered, and it is a hybrid between stochastic and
deterministic algorithms. The combination of meta-heuristics
with conventional methods is a practical remedy to enhance
both exploitation and exploration and then to raise the
performance of stochastic algorithms, by overcoming the slow
convergence drawback, local optima entrapment, and the meta-
heuristics random constructions. One of the most known
mathematical techniques is combining chaotic sequences with
stochastic algorithms. Additionally, the chaos is a random
state which can appear in the nonlinear dynamical systems
and bounded properties, non-convergent and non-periodic
(Alatas, 2010). This chaos can be integrated in the stochastic
algorithms with the intention of optimizing their performances.
Accordingly, the chaos has been extensively embedded in
several evolutionary approaches. In this regard, here are some
computation algorithms that have been improved: chaotic
firefly algorithm (CFA) (Gandomi et al., 2013), chaotic ant
swarm optimization (CASO) (Cai et al., 2007), chaotic genetic
algorithm (CGA) (Abdullah et al., 2012), chaotic particle
swarm optimization (CPSO) (He et al., 2009), hybridizing
chaotic sequences with memetic differential evolution
algorithm (Jia et al., 2011), chaotic krill herd algorithm (CKHA)
(Wanga et al., 2014), chaotic bio-geography based optimization
(CBBO) (Saremi et al., 2014), chaotic artificial immune system
algorithm (CAIS) (Jordehi, 2015), chaotic water cycle algorithm
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(CWCA) (Heidari et al., 2017), chaotic based big bang-big
crunch algorithm (BBBC) (Jordehi, 2014), chaotic manta
ray foraging optimization (CMRFO) (Daqaq et al., 2022),
chaotic bat algorithm (CBA) (Mugemanyi et al., 2020), chaotic
atom search optimization (CAS) (Too and Abdullah, 2020),
Coyote Optimization Algorithm (COA) (Tong et al., 
2022), etc.

In this current work, the authors focus on the hybridization
of chaos maps with a stochastic approach named flower
pollination algorithm (FPA), in view of switching between
local and global pollination. Instead of random numbers of
diverse parameters of FPA, chaotic maps are replaced to not
follow the uniform distribution. With regard to the FPA, it
has been pointed out in diverse academic fields and real-
world applications, especially in science and engineering, that
it performs better than other well-known algorithms. From this
perspective, the powerful advantages of FPA and its borrowed
approaches motivate us to develop a novel version of FPA based
on chaos maps in view of solving the OPF incorporating RESs.
In that aspect, among these studies that have been published on
FPA and its variants, the study by (Singh and Kaur, 2019) selects
the optimal features for anomaly detection in networks using the
standard flower pollination algorithm. According to the study by
(Samy et al., 2019), the authors applied FPA to develop a techno-
economic feasibility analysis for an off-grid hybrid renewable
energy system. In the study by (Priya and Rajasekar, 2019),
PEMFCmodeling has been successfully tackled by using FPA. A
recent study (Wang et al., 2019a) presented FPAwith thewireless
sensor networks to deploy heterogeneous node radiation. In
another research work (Wang et al., 2019b), a discrete flower
pollination algorithm–based multi-objective optimization is
investigated to solve the stochastic two-sided partial disassembly
line. A hybridization of FPA with wind-driven optimization is
adopted in the study by (Niu et al., 2019) in order to develop the
global and local pollination processes. (Rodrigues et al., 2020)
suggested an adaptive flower pollination algorithm that can
dynamically modify its parameter. (Shambour et al., 2019)
employed the direct search method in the global pollination
process to improve the convergence and accuracy of the original
FPA. For more information concerning the FPA and its variants,
refer to the recent review (Abdel-Basset and Shawky, 2019). In
relation to the previously published work and in an attempt to
prove the FPA superiority, the proposed approach is validated
and tested on thirteen benchmark test problems. In addition
to these test suites, a real-world problem under the name of
optimal power flow (OPF) is applied to affirm the capability
and effectiveness of this novel algorithm in solving real complex
functions.

The OPF has played an important task in the planning
and operation of power systems over recent decades
(Bonab et al., 2016). Furthermore, the optimal power flow
problem is characterized as a non-convex, nonlinear, large-scale,

and highly constrained optimization problem (Vaccaro and
Cañizares, 2018), and the main key of the OPF issue is to
diminish some objectives such as fuel cost, emission, voltage
deviation, and power loss by decreasing the control variable
values with respect to the different constraints such as equal
and inequal limitations. Moreover, the optimal power flow
issue, including renewable energy, has taken up increasing
attention in many research studies owing to the environmental
benefits and low operation cost. Besides, the renewable
resources used most in the world are solar and wind power.
On this basis, this current work formulates and solves the
OPF problem with and without merging a hybrid wind-
photovoltaic energy into 30-bus and 57-bus systems. In that
aspect, the renewable sources are installed instead of some
conventional generators. Accordingly, an extensive number of
meta-heuristic algorithms have been undertaken to deal with
the OPF problem. Some recently introduced approaches that
have been efficiently applied in this field can be found in these
references (Abaci and Yamacli, 2016; Bouchekara et al., 2016a;
Bouchekara et al., 2016b; Bouchekara et al., 2016c; Chaib et al.,
2016; Trivedi et al., 2016; Bentouati et al., 2017; Duman, 2017;
Mohamed et al., 2017; Yuan et al., 2017; Biswas et al., 2018a;
Biswas et al., 2018b; El-Fergany and Hasanien, 2018;
Morshed et al., 2018; Taher et al., 2019a; Taher et al., 2019b;
El-Sattar et al., 2019; Elattar, 2019; Nguyen, 2019; Shilaja
and Arunprasath, 2019; Alhejji et al., 2020; Warid, 2020;
Alasali et al., 2021; Daqaq et al., 2021; Meng et al., 2021;
Sulaiman et al., 2021; Yessef et al., 2022a; Yessef et al., 2022b;
Houssein et al., 2022).

Experimental results display that the proposed chaotic
FPA outstrips the basic FPA and some re-implemented
algorithms such as ant bee colony (ABC), grasshopper
optimization algorithm (GOA), dragonfly algorithm (DA),
and even the existing well-known algorithms reported in the
literature.

The major features of this research study can be listed as
follows:

• A novel hybridization method based on FPA and chaos
sequences is proposed.
• Ten chaoticmapswidely used in the literature are integrated.
• A constraint handling method has been merged in CFPA,
named superiority of feasible solutions (SF).
• Thirteen benchmark problems are implemented to show the
performance of CFPA.
• The best chaotic map is applied to OPF with thermal, wind,
and solar power.
• Some evaluation measures are utilized, such as mean, max,
min fitness, standard deviation, and statistical Wilcoxon
test.
• The proposed algorithm is compared with basic FPA and
other stochastic methods.
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The rest of the manuscript is arranged as follows: Section 2
gives a brief introduction of the standard FPA, its chaotic variant
CFPA-based SF strategy, and a description of the ten chaos maps’
functions. Section 3 introduces the wind, solar, andOPFmodels.
The findings and discussions are investigated in Section 4.
Finally, in Section 5, the article ends with a conclusion.

2 Problem methodology

2.1 Renewable energy model

Nowadays, the treatment of renewable energy resources
(RESs) in power systems is developing rapidly, especially
wind and PV power. The RESs contribute in decreasing CO2
emissions and enhancing the quality and reliability of the
power system. Solar irradiance and wind distribution are
modeled using the Lognormal and Weibull probability density
function, respectively (Biswas et al., 2017). Lognormal fitting of
solar irradiance, Weibull fitting of wind speed, and frequency
distribution are generated after 8,000 runs of Monte Carlo
simulation, as depicted in Figures 1, 2 (Xie et al., 2018). The
associated cost of each of these resources consists of three terms:
the direct cost, penalty cost, and reserve cost (Biswas et al., 2017).
Table 1 tabulates the parameters of the considered systems.
Table 2 provides the cost and emission coefficients for the
thermal generators of IEEE 30-bus and 57-bus test systems. All
parameters of the solar and the wind are described in detail in
Table 3.

2.1.1 Wind power
For modeling the variability of wind flow, a Weibull

probability distribution function is applied (Chang, 2010):

FIGURE 2
Distribution of solar irradiance for the solar generator at the 13th

buses.

f (v) = (k
c
)(v

c
)
(k−1)
exp[−(v

c
)
k
], v ≥ 0 (1)

where k and c represent the shape and scale factors of Weibull
distribution, respectively.

The wind generator’s output power can be defined using the
stochastic wind speed as follows (Chang, 2010):

pw (v) =
{{{
{{{
{

0 v < vin and v > vout
pwr(

v− vin
vr − vin
) vin ≤ v ≤ vr

pwr vr < v ≤ vout

(2)

FIGURE 1
Distribution of wind speed for wind generators. (A) Wind speed at bus 5 and (B) wind speed at bus 11.
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TABLE 1 Characteristics of the systems.

Systems 30-bus IEEE 30-bus test system data, (1961) 57-bus IEEE 57-bus test system data, (1960)
Characteristics Value Details Value Details

Buses 30 - 57 -
Branches 41 - 80 -
Generators 3 Buses: 1, 2, and 8 4 Buses: 1, 3, 8, and 12
Slack bus 1 Buses: 1 1 Buses: 1
Wind generators 2 Buses: 5 and 11 2 Buses: 2 and 6
Solar generators 1 Buses: 13 1 Buses: 9
Shunts 9 Buses: 10, 12, 15, 17, 20, 21, 23, 24, and 29 3 Buses: 18, 25, and 53
Transformers 4 Branches: 11, 12, 15, and 36 17 Branches: 19, 20, 31, 35, 36

37, 41, 46, 54, 58, 59, 65, 66
71, 73, 76, and 13

Control variables 24 - 33 -

TABLE 2 Cost and emission coefficients of thermal generators.

Generator Bus a b c d e α β γ ξ λ

IEEE-30 Pg1 1 0 2 0.00375 18 0.037 0.04091 −0.05554 0.06490 0.0002 2.857
Pg2 2 0 1.75 0.0175 16 0.038 0.02543 −0.06047 0.05638 0.0005 3.333
Pg3 8 0 3.25 0.00834 12 0.045 0.05326 −0.03550 0.03380 0.002 2

IEEE-57 Pg1 1 0 20 0.0775795 18 0.037 0.04091 −0.05554 0.06490 0.0002 0.2857
Pg2 3 0 20 0.25 13.5 0.041 0.06131 −0.05555 0.05151 0.00001 0.6667
Pg3 8 0 20 0.0222222 14 0.040 0.04258 −0.05094 0.04586 0.000001 0.8000
Pg4 12 0 20 0.0322581 12 0.045 0.05326 −0.03555 0.03380 0.0020 0.2000

TABLE 3 Characteristic details of wind-PV generators.

Wind power PV power

Test Wind Number of Pwr Parameters of Solar Psr Parameters of
systems turbines (MW) Weibull PDF (MW) Lognormal PDF

IEEE-30 1 (bus 5) 25 75 k = 2, c = 9 (bus 13) 50 μ = 6, σ = 0.6
2 (bus 11) 20 60 k = 2, c = 10

IEEE-57 1 (bus 2) 50 150 k = 2, c = 10 (bus 9) 50 μ = 6, σ = 0.6
2 (bus 6) 40 120 k = 2, c = 10

FIGURE 3
Visualization of chaotic maps.
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TABLE 4 Chaotic sequences.

Names Mathematical formulations Bounds

CFPA1 Chebyshev xi+1 = cos(icos−1(xi)) (-1,1)
CFPA2 Circle xi+1 =mod(xi + b− (

a
2π
) sin(2πxi) ,1) , a = 0.5 and b = 0.2 (0,1)

CFPA3 Gausse/mouse xi+1 = {
1 xi = 0

1
mod (xi,1)

otherwise (0,1)

CFPA4 Iterative xi+1 = sin(
aπ
xi
) , a = 0.7 (-1,1)

CFPA5 Logistic xi+1 = axi (1− xi) , a = 4 (0,1)

CFPA6 Piecewise xi+1 =

{{{{{
{{{{{
{

xi
P

0 ≤ xi ≺ P
xi−P
0.5−P

P ≤ xi ≺ 0.5
1−P−xi
0.5−P

0.5 ≤ xi < 1− P
1−xi
P

1− P ≤ xi ≺ 1

(0,1)

CFPA7 Sine xi+1 =
a
4
sin(πxi) , a = 4 (0,1)

CFPA8 Singer xi+1 = μ(7.86xi − 23.31x2i + 28.75x
3
i − 13.302875x

4
i ) , μ = 1.07 (0,1)

CFPA9 Sinusoidal xi+1 = ax2i sin(πxi) , a = 2.3 (0,1)

CFPA10 Tent xi+1 = {
xi
0.7

xi ≺ 0
10
3
(1− xi) xi ≥ 0.7

(0,1)

TABLE 5 Benchmark functions.

No Names Functions Type D Bounds

F1 Sphere f(x) =
n
∑
i=1

x2i U,S 30 [-100, 100]

F2 Schwefel 2.22 f(x) =
n
∑
i=1
|xi| −

n
∏
i=1
|xi| U,N 30 [-10, 10]

F3 Schwefel 1.2 f(x) =
n
∑
i=1
(

i
∑
j−1

xj)
2

U,N 30 [-100, 100]

F4 Schwefel 2.21 f(x) =max(|xi| , l ≤ i ≤ n) U,S 30 [-100, 100]

F5 Rosenbrock f(x) =
n−1
∑
i=1
[100(xi+1 − x2i )

2 + (xi − 1)
2] U,N 30 [-2.048, 2.048]

F6 Step f(x) =
n
∑
i=1
([xi + 0.5])

2 U,S 30 [-100, 100]

F7 Quartic f(x) =
n
∑
i=1

ix4i + rand(0,1) U,S 30 [-1.28, 1.28]

F8 Schwefel 2.26 f(x) =
n
∑
i=1
−xi sin(√|xi|) U,S 30 [-65.536, 65.536]

F9 Rastrigin f(x) =
n
∑
i=1
(x2i − 10cos(2πxi) + 10) M,S 30 [-100, 100]

F10 Ackley f (x) = −20exp(−0.2√ 1
n
∑ni=1x

2
i )− exp(

1
n
∑ni=1 cos(2πxi)) + 20+ e M,N 30 [-32, 32]

F11 Griewank f(x) = 1
4000

n
∑
i=1

x2i −
n
∏
i=1

cos( xi√i ) + 1 M,N 30 [-600, 600]

F12 Penalty 1 f(x) = π
n
{10sin(πy1) +∑

n−1
i=1 (yi − 1)

2 [1+ sin2 (πyi+1)] + (yn − 1)
2} M,N 30 [-50, 50]

+∑ni=1u(xi,10,100,4)
yi = 1+

xi+1
4

u(xi,a,k,m) =
{{
{{
{

k(xi − a)
m xi > a

0 −a < xi < a
k(−xi − a)

m xi < a
F13 Penalty 2 f(x) = 0.1{sin2 (3πx1) +∑

n
i=1(xi − 1)

2 [1+ sin2 (3πxi + 1)] M,N 30 [-50, 50]
+(xn − 1)

2 [1+ sin2 (2πxn)]} +∑
n
i=1u(xi,5,100,4)

u(xi,a,k,m) =
{{
{{
{

k(xi − a)
m xi > a

0 −a < xi < a
k(−xi − a)

m xi < a

where vout , vin, vr , v, and pwr are cut-out wind speed, cut-in wind
speed, rated wind speed, actual wind speed, and rated output
power, respectively.

The total cost of wind energy consists of direct cost associated
with scheduled power, penalty cost of underestimation,
and reserve cost for overestimation (Biswas et al., 2017), as

represented below:

CTw,iw = Cdw,iw +Cuew,iw +Coew,iw (3)

with

Cdw,i = dw,iPws,i (4)
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TABLE 6 Findings of CFPA9 vs. FPA for benchmark functions.

F1 Min Mean Max SD p_value F2 Min Mean Max SD p_value

FPA 987.7615 1813.9519 3076.6316 545.043 3.0199e-11 FPA 21.3294 28.7538 38.265 4.2938 3.0199e-11
CFPA1 18.8979 37.8227 70.6619 12.4083 3.0199e-11 CFPA1 6.1936 10.4859 19.1768 3.5008 3.0199e-11
CFPA2 15.2688 43.1387 88.8292 18.6365 3.0199e-11 CFPA2 6.7896 11.1042 16.0422 2.4499 3.0199e-11
CFPA3 1258.4533 2661.0104 4567.0668 710.4051 3.0199e-11 CFPA3 61.5172 148.965 755.6519 144.622 3.0199e-11
CFPA4 15.0316 38.5099 76.3622 14.8528 3.0199e-11 CFPA4 4.9912 12.1014 24.394 4.7077 3.0199e-11
CFPA5 23.1757 43.8091 72.9427 15.1079 3.0199e-11 CFPA5 4.7404 9.9657 24.8079 3.8124 3.0199e-11
CFPA6 11.0005 23.7962 52.5251 9.1254 3.0199e-11 CFPA6 4.4785 7.5265 14.6163 2.1619 3.0199e-11
CFPA7 27.3814 59.4427 106.8978 18.9277 3.0199e-11 CFPA7 5.7318 12.1761 21.7348 4.0836 3.0199e-11
CFPA8 4.6289 12.1613 24.4056 4.7231 7.3891e-11 CFPA8 2.6943 4.4985 7.6511 1.0836 4.9752e-11
CFPA9 1.0647 2.9895 8.2161 1.6148 N/A CFPA9 0.9667 1.8497 3.5175 0.54024 N/A
CFPA10 10.8239 26.8769 47.5537 8.8553 3.0199e-11 CFPA10 4.0099 7.9738 15.6067 2.3742 3.0199e-11

F3 Min Mean Max SD p_value F4 Min Mean Max SD P_value

FPA 817.5153 1426.5649 2128.5952 384.2886 3.0199e-11 FPA 15.2297 23.9169 30.718 3.7871 3.0199e-11
CFPA1 210.0864 500.6509 812.7857 139.1303 9.9186e-11 CFPA1 12.0775 15.5532 19.1873 2.292 3.0199e-11
CFPA2 61.4608 173.2704 429.5542 69.5031 0.6735 CFPA2 8.5739 11.7783 15.0979 1.5906 1.1023e-08
CFPA3 1736.9821 2949.5291 4049.0219 732.418 3.0199e-11 CFPA3 24.3423 30.104 36.2199 3.151 3.0199e-11
CFPA4 185.6065 338.6332 547.2509 90.9088 1.8567e-09 CFPA4 9.5883 12.9835 18.1114 1.8006 2.8716e-10
CFPA5 224.7663 549.3806 889.2149 170.4986 7.3891e-11 CFPA5 10.5032 15.537 19.34 2.0655 4.5043e-11
CFPA6 85.2148 223.806 652.1387 120.0867 0.036439 CFPA6 7.7718 11.5285 17.3048 2.0679 7.5991e-07
CFPA7 215.594 569.3826 1097.0103 204.3891 7.3891e-11 CFPA7 12.9187 16.4057 22.3479 2.2246 3.0199e-11
CFPA8 259.8553 486.0341 867.1772 144.4948 7.3891e-11 CFPA8 10.4875 14.2149 19.8762 2.2857 7.3891e-11
CFPA9 54.605 164.8643 406.3104 72.719 N/A CFPA9 5.9426 8.6958 12.0491 1.4307 N/A
CFPA10 62.9848 245.3469 499.73 95.7697 0.00037704 CFPA10 8.9852 11.4911 14.1238 1.3772 1.85e-08

F5 Min Mean Max SD P_value F6 Min Mean Max SD P_value

FPA 78.4035 127.0658 168.1878 24.3275 3.0199e-11 FPA 1104.3457 1904.3965 3029.3486 490.8553 3.0199e-11
CFPA1 29.9156 34.9191 39.3811 2.3696 3.6897e-11 CFPA1 20.9924 39.089 73.4933 11.4795 3.0199e-11
CFPA2 28.8628 33.1424 43.6933 2.6705 3.6897e-11 CFPA2 16.7506 39.5676 72.1516 14.5482 3.0199e-11
CFPA3 76.0367 166.6979 289.1476 498287 3.0199e-11 CFPA3 1288.717 2781.523 4386.024 905.969 3.0199e-11
CFPA4 29.1252 32.8262 38.4111 1.9846 4.0772e-11 CFPA4 18.9928 38.8026 72.1817 13.9181 3.0199e-11
CFPA5 30.7926 34.384 37.5103 1.7939 3.0199e-11 CFPA5 18.1488 48.2489 119.7437 20.2277 3.0199e-11
CFPA6 29.4226 31.4961 33.9494 1.1896 4.0772e-11 CFPA6 12.2911 31.1671 62.3194 13.2006 3.0199e-11
CFPA7 32.026 36.1206 49.9884 4.0035 3.0199e-11 CFPA7 23.1488 58.2114 87.3031 17.5175 3.0199e-11
CFPA8 28.1309 29.9648 32.6632 1.0156 1.6947e-9 CFPA8 5.9684 12.2077 18.1556 3.7633 9.9186e-11
CFPA9 26.5194 28.1439 30.0759 0.70781 N/A CFPA9 1.3985 3.9986 9.0732 2.0616 N/A
CFPA10 28.7147 31.7536 39.2258 2.2741 1.2057e-10 CFPA10 5.5157 25.5495 88.5343 15.5952 5.4941e-11

F7 Min Mean Max SD P_value F8 Min Mean Max SD P_value

FPA 0.15624 0.32455 0.65059 0.13231 3.0199e-11 FPA -1653.42 -1131.81 -850.42 143.875 7.3891e-11
CFPA1 0.057706 0.12494 0.20889 0.03765 9.5332e-07 CFPA1 -1741.17 -1542.75 -1364.24 105.639 5.1857e-07
CFPA2 0.067287 0.10801 0.18623 0.033423 0.00016813 CFPA2 -1657.24 -1382.22 -1184.77 100.013 9.9186e-11
CFPA3 0.28667 0.99622 2.0141 0.36293 3.0199e-11 CFPA3 -1322.50 -1043.29 -862.753 108.658 3.0199e-11
CFPA4 0.048361 0.11212 0.19141 0.036538 0.0001585 CFPA4 -1643.94 -1488.54 -1334.67 83.792 4.1997e-10
CFPA5 0.062162 0.14842 0.3241 0.062084 2.0283e-07 CFPA5 -1729.71 -1497.70 -1290 100.362 2.4386e-09
CFPA6 0.043699 0.10542 0.19245 0.030208 0.0001325 CFPA6 -1759.15 -1503.80 -1273.80 130.255 1.5964e-07
CFPA7 0.090922 0.16125 0.25181 0.039206 2.8716e-10 CFPA7 -1813.13 -1492.34 -1331.88 106.527 5.4617e-09
CFPA8 0.06351 0.11408 0.21664 0.033287 3.3242e-06 CFPA8 -1789.16 -1626.58 -1421.25 90.0144 0.00117
CFPA9 0.03185 0.07478 0.1562 0.02663 N/A CFPA9 -1888.13 -1712.25 -1525.25 88.4066 N/A
CFPA10 0.035172 0.099694 0.15984 0.031864 0.0020523 CFPA10 -1702.30 -1475.93 -1291.01 90.456 3.4742e-10

F9 Min Mean Max SD P_value F10 Min Mean Max SD P_value

FPA 1025.9694 2169.5338 2996.8382 511.3697 3.0199e-11 FPA 5.3115 7.5831 9.9519 1.278 3.0199e-11
CFPA1 283.9165 403.1899 545.4251 54.3511 3.1589e-10 CFPA1 4.2955 5.8949 7.3575 0.78624 3.0199e-11
CFPA2 297.7482 411.5311 507.8917 54.5288 1.4643e-10 CFPA2 4.7235 5.782 7.2107 0.57168 3.0199e-11
CFPA3 1980.8766 3366.1027 4991.3019 804.2698 3.0199e-11 CFPA3 11.8103 15.4704 19.3244 1.9464 3.0199e-11
CFPA4 307.0152 391.24 535.5801 55.27 1.3289e-10 CFPA4 4.2618 5.5218 6.9342 0.59866 3.0199e-11
CFPA5 329.1627 393.4048 536.2299 42.2453 4.5043e-11 CFPA5 4.0261 5.686 6.9911 0.73228 3.6897e-11
CFPA6 302.8157 376.3266 448.7993 38.9004 2.6099e-10 CFPA6 3.8597 5.1244 6.3385 0.64606 3.6897e-11
CFPA7 323.1578 424.4181 557.3205 53.0316 3.6897e-11 CFPA7 5.0223 6.298 9.2557 0.92042 3.0199e-11
CFPA8 264.1107 326.2561 401.1862 33.973 5.462e-06 CFPA8 3.3149 4.2157 4.9121 0.43329 2.0338e-09
CFPA9 206.9029 279.2901 346.3255 32.2428 N/A CFPA9 2.2458 3.0972 4.2158 0.48377 N/A
CFPA10 278.6275 360.4726 463.1863 45.4313 8.4848e-09 CFPA10 3.7075 4.8073 5.9214 0.53391 7.3891e-11
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TABLE 6 (Continued) Findings of CFPA9 vs. FPA for benchmark functions.

F1 Min Mean Max SD p_value F2 Min Mean Max SD p_value

F11 Min Mean Max SD P_value F12 Min Mean Max SD P_value

FPA 10.0273 17.1392 31.1986 4.6426 3.0199e-11 FPA 10.0087 160.1734 2890.9879 523.0314 3.0199e-11
CFPA1 1.1884 1.3695 1.7622 0.13387 3.0199e-11 CFPA1 3.2916 5.5136 9.4395 1.4506 8.1527e-11
CFPA2 1.1943 1.5145 2.2726 0.23114 3.0199e-11 CFPA2 3.5414 5.8917 9.3688 1.5095 4.0772e-11
CFPA3 11.5455 25.5432 44.0943 8.0236 3.0199e-11 CFPA3 25.0823 5100.2113 50800.3797 11213.2137 3.0199e-11
CFPA4 1.2056 1.3445 1.5901 0.10144 3.0199e-11 CFPA4 2.3269 4.8953 7.6598 1.3673 1.6947e-09
CFPA5 1.1681 1.4789 2.1694 0.20091 3.0199e-11 CFPA5 2.7669 5.9584 8.8701 1.4442 1.3289e-10
CFPA6 1.0822 1.2914 1.6952 0.13654 3.0199e-11 CFPA6 3.4101 5.1621 9.6344 1.1146 7.3891e-11
CFPA7 1.2083 1.5551 2.2949 0.24763 3.0199e-11 CFPA7 4.2472 7.6579 12.0013 1.9544 3.0199e-11
CFPA8 1.0535 1.0997 1.2496 0.037536 3.0199e-11 CFPA8 1.9255 3.9657 5.5922 1.1247 4.8011e-07
CFPA9 0.8517 1 1.0518 0.042834 N/A CFPA9 0.82248 2.2613 3.8752 0.83324 N/A
CFPA10 1.0881 1.2361 1.3862 0.088953 3.0199e-11 CFPA10 2.6975 4.6512 6.9048 1.1221 1.5465e-09

F13 Min Mean Max SD p_value

FPA 769.5354 10.441e04 33.351e04 1.002e05 3.0199e-11
CFPA1 10.7621 18.0696 25.3133 4.317 4.0772e-11
CFPA2 9.3378 18.7755 30.6838 5.2009 4.5043e-11
CFPA3 15.374e03 29.315e04 17.289e05 3.404e05 3.0199e-11
CFPA4 8.4825 17.1962 24.9967 5.2347 1.4643e-10
CFPA5 10.5432 20.0204 31.9404 5.7094 4.5043e-11
CFPA6 8.1749 16.0164 34.4679 5.6702 3.4742e-10
CFPA7 12.5089 23.8955 39.2147 6.2935 3.0199e-11
CFPA8 5.2528 12.9477 27.8667 5.1748 3.0811e-08
CFPA9 1.0607 5.2817 11.99 3.0905 N/A
CFPA10 5.5711 13.5865 23.4509 4.6388 4.1825e-09

Cuew,i = Kuew,i∫
Pwr,i

Pws,i
(pw,i − Pws,i) fw (pw,i)dpw,i (5)

Coew,i = Koew,i∫
Pws,i

0
(Pws,i − pw,i) fw (pw,i)dpw,i (6)

where dw,i is the coefficient of direct cost of the ith wind
generator. Koew,i and Kuew,i are the over- and under-estimation
cost coefficients pertaining to the ith wind power plant. pws,i is
the scheduled power. fw (pw,i) is the probability density function
of the ith wind power plant.

2.1.2 Solar power
The probability distribution function used to calculate the

PV output power is lognormal distribution, as shown below
(Chang, 2010):

f (G) = 1
Gσ√2π

exp[
−(ln x− μ)2

2σ2
], G ≻ 0 (7)

The available power Ps(G) of solar irradiationG is determined as
follows (Chang, 2010):

Ps (G) =
{{{{
{{{{
{

Psr(
G2

GstdRc
)0 ≺ G ≺ Rc

Psr(
G
Gstd
)Rc ≤ G

(8)

where Psr , Gstd, G, and Rc are the rated output power of solar
PV, solar irradiation in standard environment, forecasted solar
irradiation, and certain irradiance point, respectively.The PV’s
total cost is formulated as follows (Biswas et al., 2017):

CTs,is = Cds,is +Cues,is +Coes,is (9)

with

Cds,i = ds,iPss,i (10)

Cues,i = Kues,i∫
Psr,i

Pss,i
(ps,i − Pss,i) fs (ps,i)dps,i (11)

Coes,i = Koes,i∫
Pss,i

0
(Pss,i − ps,i) fs (ps,i)dps,i (12)

where ds,i is the coefficient of direct cost of the ith wind generator.
Pss,i is the scheduled power. Koes,i and Kues,i are the over- and
under-estimation cost coefficients of the solar power plant.
fs (ps,i) is the probability density function of the ith solar power
plant.

2.2 Optimal power flow model

As mentioned before, the OPF is one of the most significant
power system issues. Its major task is recognizing the optimal
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FIGURE 4
Convergence curves for chaotic FPAs on benchmark functions.
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TABLE 7 Findings of CFPA9 vs. well-known algorithms for benchmark functions.

Functions ABC GOA DA FPA CFPA9

F1 Mean 116.6601 36.7677 2416.3327 1963.2259 2.9818
SD 64.452 23.2903 1613.6725 474.3919 1.4201
p_value 3.0199e-11 6.0658e-11 3.0199e-11 3.0199e-11 N/A

F2 Mean 46.1637 177.2225 14.8472 29.3898 1.9905
SD 30.146 860.3 4.7841 6.5254 0.66801
p_value 4.6159e-10 3.0199e-11 3.0199e-11 3.0199e-11 N/A

F3 Mean 69521.8929 2619.8066 16094.2627 1590.9756 158.4073
SD 12499.4266 1502.5193 11378.0237 572.8565 61.1223
p_value 3.0199e-11 3.0199e-11 3.0199e-11 3.0199e-11 N/A

F4 Mean 62.0671 14.8371 31.1783 23.9382 8.2198
SD 3.8302 4.7927 10.7295 2.7977 1.5409
p_value 3.0199e-11 2.6015e-08 3.0199e-11 3.0199e-11 N/A

F5 Mean 345.9334 28.433 141.3843 120.9345 28.093
SD 108.852 0.92553 64.046 23.2648 0.49997
p_value 3.0199e-11 0.077272 3.0199e-11 3.0199e-11 N/A

F6 Mean 112.6667 37.5686 1878.3772 1852.3413 3.5872
SD 75.1871 29.0042 963.0336 491.316 1.4723
p_value 3.0199e-11 5.4941e-11 3.0199e-11 3.0199e-11 N/A

F7 Mean 1.4799 0.041089 0.62517 0.34205 0.065387
SD 0.52768 0.014518 0.39842 0.15655 0.023687
p_value 3.0199e-11 N/A 3.0199e-11 3.0199e-11 0.0001325

F8 Mean -5.6303e+58 -1240.4494 -1040.9488 -1095.3226 -1695.7838
SD 1.4059e+59 138.0314 127.9084 108.4415 111.014
p_value N/A 3.0199e-11 3.0199e-11 3.0199e-11 3.0199e-11

F9 Mean 436.0523 443.7524 2665.0095 2274.6595 280.0637
SD 75.9649 159.8135 1238.7848 580.6494 24.1048
p_value 3.6897e-11 2.8314e-8 3.0199e-11 3.0199e-11 N/A

F10 Mean 7.4231 5.4142 10.8368 7.288 2.855
SD 1.1225 1.2559 1.5819 0.99471 0.32758
p_value 3.0199e-11 3.0199e-11 3.0199e-11 3.0199e-11 N/A

F11 Mean 2.1745 1.152 19.7806 18.1328 1.0222
SD 0.53328 0.11201 11.4345 4.7354 0.034169
p_value 3.0199e-11 7.1186e-09 3.0199e-11 3.0199e-11 N/A

F12 Mean 6792882.4494 8.2236 25978.5502 151.4782 2.5887
SD 8644976.7061 17.0986 569127.2029 105867.7541 2.5436
p_value 3.0199e-11 1.3289e-10 3.0199e-11 3.0199e-11 N/A

F13 Mean 14599925.2831 36.9686 290628.383 103326.9928 4.853
SD 8644976.7061 17.9086 569127.2029 105867.7541 2.5436
p_value 3.0199e-11 7.3891e-11 3.0199e-11 3.0199e-11 N/A

The bold values indicates the best results.

steady-state operation of power system network components to
satisfy the power flow equations and constraints. It is worth
noting that the employment of a stochastic technique within
power systems has seen important progress over the last few
years. The objective functions to be optimized in this work are
fuel cost, emission, voltage deviation, and power loss. To this end,
the formulation of all variables, objectives, and constraints can be
mathematically formulated as follows:

Minimize : F (s,c)

Subject to : g (s,c) = 0

h (s,c) ≤ 0 (13)

where F(s,c) is the fitness function to be minimized, g(s,c) is the
equality constraints, h(s,c) is the inequality constraints, s and c
are the vectors of state and control variables.

2.2.1 Variables
The state variables s can be defined as follows

(Biswas et al., 2017):

s = [Pg1,VL1,…,VLNpq,Qg1,…,QgNg,Sl1,…,SlNl] (14)

where Pg1 is the active power output at the slack bus. VL is the
voltagemagnitude at PQ buses.Qg is the reactive power output of
all generator units. Sl is the transmission line loading (line flow).
Npq, Ng , and Nl denote the number of load buses, number of
generating units, and number of transmission lines, respectively.

The control variables c can be expressed as follows
(Biswas et al., 2017):

c = [Pg2,…,PgNg,Vg1,…,VgNg,Qc1,…,QcNc,T1,…,TNT] (15)

where Pg is the active power generation at the PV buses, except
at the slack bus. Vg is the generation bus voltage magnitude at
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PV buses. T is the transformer tap settings. Qc is the shunt VAR
compensation. Ng , Nc, and NT are the number of generators,
number of regulating transformers, and number of VAR (shunt)
compensators, respectively.

2.2.2 Objective functions
In this division, five fitness functions are considered as

objectives:

2.2.2.1 Fuel cost only
The conventional generator total fuel cost of the network

is modeled as a quadratic function, and its formulation can be
expressed as follows (Biswas et al., 2017):

F1 = Fc (s,c) =min{∑Ng
i=1

ai + biPgi + ciP
2
gi

+ |di ∗ sin(ei ∗ (P
min
gi − Pgi)) | (16)

where ai, bi, ci, di, and ei are the conventional generator cost
coefficients.

2.2.2.2 Emission
The emission function is formulated using an exponential

function and the previous quadratic function as shown below
(Biswas et al., 2017):

F2 = E (s,c)

=min{
Ng

∑
i=1

10−2 (αi + βiPgi + γiP
2
gi) + ξi exp(λiPgi) (17)

where αi, βi, γi, ξi, and λi are the emission coefficients of the
power plant.

2.2.2.3 Fuel cost with renewable energy cost
The network total cost including the wind-solar-thermal

powers is expressed as follows (Biswas et al., 2017):

F3 =min{F1 +CTw,iw +CTs,is (18)

The voltage deviation and power loss are also important in
the power system. These two functions are calculated as shown
below.

2.2.2.4 Voltage deviation
The load bus voltages are picked from 1.0 per unit in order to

grab the problem of an unattractive voltage profile. The voltage
deviation can be defined as follows (Elattar and ElSayed, 2019):

F4 = VD (s,c) =min{ ∑Npq
i=1
|VLi − 1.0| (19)

2.2.2.5 Power loss
The transmission system power losses are necessary

due to the inherent resistance of lines. Its mathematical

modeling is formulated by the following expression (Elattar
and ElSayed, 2019):

F5 = Ploss (s,c) =min{ ∑Nl

l=1
Gl(i,j) (V

2
i +V

2
j − 2ViVjcos(δij))

(20)

where Gl(i,j) represents the conductance of line l. δij = δi − δj
represents the voltage angle difference between bus i and bus j.

2.2.3 Constraints
The equality and inequality constraints play an important

role in optimal power flow studies; they stand for the limitations
of physical equipment. These constraints have been modeled as
shown below.

2.2.3.1 Equality constraints
Thepower flow equations are assumed as equality constraints

that are represented by the following (Elattar and ElSayed, 2019):

{
{
{

Pgi − Pdi − |Vi|∑
Nb
j=1
|Vj| [Gij cos(θij) +Bij sin(θij)] = 0

Qgi −Qdi − |Vi|∑
Nb
j=1
|Vj| [Gij sin(θij) −Bij cos(θij)] = 0

(21)

where Nb is the number of buses. Qgi and Pgi are generated
reactive and active power, respectively. Qdi and Pdi are reactive
and active power demand, respectively. Gij and Bij represent
the admittance matrix components Yij = Gij + jBij named
conductance and susceptance.

2.2.3.2 Inequality constraints
The inequality constraints are given as shown below (Elattar

and ElSayed, 2019):

– Generator constraints:

Vmin
gi ≤ Vgi ≤ V

max
gi i = 1,…,Ng (22)

Pmin
gi ≤ Pgi ≤ P

max
gi i = 1,…,Ng (23)

Pmin
ws,i ≤ Pws,i ≤ P

max
ws,i i = 1,…,Nwg (24)

Pmin
ss,i ≤ Pss,i ≤ P

max
ss,i i = 1,…,Nsg (25)

Qmin
gi ≤ Qgi ≤ Q

max
gi i = 1,…,Ng (26)

Qmin
ws,i ≤ Qws,i ≤ Q

max
ws,i i = 1,…,Nwg (27)

Qmin
ss,i ≤ Qss,i ≤ Q

max
ss,i i = 1,…,Nsg (28)

where Vmin
i and Vmax

i indicate the minimum and maximum
limits of the bus voltage. Pmin

gi and Pmax
gi represent the lower and

upper bounds of the active power generator. Qmin
gi and Qmax

gi
are the minimum and maximum reactive power limits of the
generator. Pmin

ws,i , P
max
ws,i , P

min
ss,i , P

max
ss,i , Q

min
ws,i , Q

max
ws,i , Q

min
ss,i , and Qmax

ss,i are
the bounds of energy resources.Ng,Nwg, andNsg are the number
of generations, wind and solar, respectively.
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FIGURE 5
Convergence curves of CFPA9 vs. well-known approaches for benchmark functions.

Frontiers in Energy Research 12 frontiersin.org

https://doi.org/10.3389/fenrg.2022.941705
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Daqaq et al. 10.3389/fenrg.2022.941705

FIGURE 6
Runs of best CFPA9 versus well-known algorithms.
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FIGURE 7
Single-line diagram of the IEEE 30-bus test system with wind and solar power.

– Transformer constraints:

Tmin
i ≤ Ti ≤ T

max
i i = 1,…,NT (29)

where NT is the number of tap changer transformers. Tmin
i

and Tmax
i represent the minimum and maximum limits of the

transformer, respectively.

– Shunt VAR compensator constraints:

Qmin
ci ≤ Qci ≤ Q

max
ci i = 1,…,Nc (30)

where Nc is the number of capacitor components. Qmin
c,i and

Qmax
c,i are the minimum and maximum limits of the shunt

compensators.

– Security constraints:

Vmin
Li ≤ VLi ≤ V

max
Li i = 1,…,Npq (31)

Sli ≤ S
max
li i = 1,…,Nl (32)

whereNl is the number of transmission lines. Sli and S
max
li indicate

the maximum limit of the transmission line.

3 Optimization methodology

3.1 Flower pollination algorithm

Flower pollination algorithm (FPA) is a stochastic approach
in the field of swarm intelligence algorithms. It was proposed
for solving nonlinear single-objective optimization problems by
Xin-She Yang in 2012 (Yang, 2012). As its name signifies, FPA is
inspired by the flower pollination process. Besides, the transfer
of pollen generally leads to flower pollination, and this transfer
is often associated with some pollinators such as butterflies,
bats, birds, etc. As a matter of fact, certain insects and flowers
have developed a very specialized flower–pollinator partnership
(Yang, 2014). Generally speaking, the pollination process can
be categorized into two sorts of pollination: cross-pollination
and self-pollination. The self-pollination or abiotic pollination
transfers the pollen itself without requiring any pollinators;
thus, this process is used for local pollination. Meanwhile,
cross or biotic pollination requires pollinators to transfer the
pollen from one plant to another, and these pollinators carrying
pollen move in a way that obeys the distribution of the Lévy
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TABLE 8 Findings for case 1 and case 2 (IEEE 30-bus).

Case 1 Case 2
Control variables Min Max FPA CFPA9 Control variables Min Max CFPA9

Pg2 20 80 48.1132 48.5164 Pg2 20 80 40.9239
Pg5 15 50 22.8765 21.3983 Pws1 0 75 37.5287
Pg8 10 35 20.2906 21.0749 Pg8 10 35 10.0000
Pg11 10 30 10.0014 12.0981 Pws2 0 60 17.6498
Pg13 12 40 12.4070 12.0000 Pss 0 50 49.9846
Vg1 0.95 1.1 1.0999 1.0999 Vg1 0.95 1.1 1.10000
Vg2 0.95 1.1 1.0897 1.0883 Vg2 0.95 1.1 1.0869
Vg5 0.95 1.1 1.0568 1.0616 Vg5 0.95 1.1 1.0620
Vg8 0.95 1.1 1.0652 1.0717 Vg8 0.95 1.1 1.0645
Vg11 0.95 1.1 1.0799 1.0974 Vg11 0.95 1.1 1.0928
Vg13 0.95 1.1 1.0876 1.0979 Vg13 0.95 1.1 1.10000
Qc10 0 5 1.6304 4.4487 Qc10 0 5 5.0000
Qc12 0 5 3.2084 4.7963 Qc12 0 5 2.7045
Qc15 0 5 3.7831 4.1751 Qc15 0 5 3.5921
Qc17 0 5 5.0000 4.9658 Qc17 0 5 3.2589
Qc20 0 5 3.9598 4.8145 Qc20 0 5 0.0000
Qc21 0 5 3.0930 3.7935 Qc21 0 5 1.1542
Qc23 0 5 0.9155 3.9068 Qc23 0 5 2.7377
Qc24 0 5 4.8312 5.0000 Qc24 0 5 2.1904
Qc29 0 5 2.6265 1.3365 Qc29 0 5 3.2935
T11 0.9 1.1 1.0470 1.0392 T11 0.9 1.1 1.0306
T12 0.9 1.1 0.9059 0.9088 T12 0.9 1.1 0.9000
T15 0.9 1.1 1.0367 0.9835 T15 0.9 1.1 0.9559
T36 0.9 1.1 0.9542 0.9594 T36 0.9 1.1 0.9661
Fuel cost ($/h) - - 799.6144 798.9867 Total cost ($/h) - - 696.9185
Wind cost ($/h) - - - - Wind cost ($/h) - - 173.4157
PV cost ($/h) - - - - PV cost ($/h) - - 56.0963
E (ton/h) - - 0.3701 0.3656 E (ton/h) - - 0.1557
VD (p.u.) - - 0.9057 0.4969 VD (p.u.) - - 0.6845
Ploss(MW) - - 8.7543 8.5794 Ploss(MW) - - 5.9584
Pg1 50 200 178.4656 176.8915 Pg1 50 140 133.2713
CPU time (s) - - 61.8980 68.0380 CPU time (s) - - 153.625

The bold values indicates the best results.

FIGURE 8
Fuel cost convergence and run for FPA vs. CFPA9 for case 1. (A) Convergence curves of CFPA9 versus FPA and (B) runs of CFPA9 versus FPA.
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TABLE 9 Comparison analysis of 30-bus and 57-bus test system
case 1 and case 3.

Approaches 30-bus 57-bus

CFPA9 798.9867 41 631.2601
FPA 799.6144 41 666.432
BSA Chaib et al. (2016) 799.0760 -
GEM Bouchekara et al. (2016a) 799.0463 -
ALO Trivedi et al. (2016) 799.155 -
MSAMohamed et al. (2017) 800.5099 41 673.721
NISSO Nguyen, (2019) 798.9936 41 665.54
ICBO Bouchekara et al. (2016b) 799.0353 -
MSA–GSA Shilaja and Arunprasath, (2019) 799.01 41 658.58
ECHT-DE Biswas et al. (2018a) 800.4131 41 667.82
IMFO Taher et al. (2019a) 800.3848 41 667.1497
DSA Abaci and Yamacli, (2016) 800.3887 41 686.82
ISA Bentouati et al. (2017) 799.2776 41 676.9466
IEM Bouchekara et al. (2016c) 799.1821 41 810.261
TSA El-Fergany and Hasanien, (2018) - 41 685.07
LAPO Taher et al. (2019b) 800.59 -
AGOA Alhejji et al. (2020) 800.0212 -
AMTPG-Jaya Warid, (2020) 800.1946 -
SOS Duman, (2017) 801.5733 -

The bold values indicates the best results.

flights (Pavlyukevich, 2007). This type of pollination can be
recognized as global pollination. Moreover, the global and local
pollination are controlled using a random parameter p called
switch probability in which its value is in the range [0,−,1].
The mathematical representation of these two processes is given
below:

• The global pollination is governed by the following
(Yang, 2012):

xt+1i = x
t
i + γL (λ) (gbest − x

t
i) (33)

where xti denotes the solution vector i at iteration t, γ is the
scaling factor, gbest indicates the best solution obtained at the
actual iteration, and L(γ) represents the step size parameter. The
Lévy flight distribution is formulated as follows (Yang, 2012):

L∼ 1
s1+λ

λΓ (λ) sin (πλ/2)
π

, (0 < s0 ≪ s) (34)

where Γ(λ) is the gamma function distribution (Yang, 2014)
that is valid for 0≪ s. The s0 expression with the Gaussian
distributions U and V are as shown below:

s = U
|V|1/λ
, V∼N (0,1) , U∼N(0,σ2) (35)

where N(0,σ2) and N(0,1) signify a zero mean for both U and
V and a variance of σ2 for U and 1 for V. The variance can be
calculated by the following (Yang, 2014):

σ2 = [
sin (πλ/2)
2(λ−1)/2

Γ (1+ λ)
λΓ ((1+ λ)/2)

]
1/λ

(36)

• The local pollination process is represented by the following
(Yang, 2012):

xt+1i = x
t
i+ ∈ (x

t
j − x

t
k) (37)

where xtj and xtk indicate the pollen produced from the same
plant and dissimilar flowers. ∈ represents a random value which
is bounded by 0 and 1.

Selecting FPA is due to its tendency to search both global and
local search space, its easiness of implementation, and its small
number of parameters. This method is efficient in dealing with
the problems which have lower dimensions; in contrast, it faces
some difficulties in handling the higher-dimensional constrained
optimization issues. Therefore, to tackle these complications, a
chaotic method is suggested in the next section.

3.2 Chaos theory

Generally, chaos theory is a deterministic technique
observed in the dynamical and nonlinear systems, which
are bounded, non-convergent, and non-periodic. The chaos
utilizes chaotic variables instead of random variables (Arora and
Singh, 2017), whichmeans a small change in its initial conditions
may change its future behavior. Besides, owing to the ergodicity
properties of chaos and its non-repetition, its use can be more
advantageous. Furthermore, in recent years, chaotic sequences
have been widely employed in several optimization subject areas
due to the fact that they possess the ability to enhance global
convergence and avoid the local minimum (Letellier, 2019).
For that reason, ten well-known chaos sequences are chosen in
this research work, as depicted in Figure 3 (Sayed et al., 2017).
Their names, mathematical expressions, and ranges are listed in
Table 4.

3.3 Constraint handling superiority of
feasible solutions

SF is a constrained handling strategy based on the dominant
relationship.This concept is used by Deb (Deb, 2000) in order to
handle the superiority of feasible solutions on infeasible ones.The
feasible candidate can always dominate the infeasible one, while
the candidate with the smaller violation degree always dominates
the one with the higher violation value. The SF technique
uses a tournament selection operator, where two solutions are
compared at a time. Solution Xi is considered superior to Xj if

• An infeasible solution Xj is dominated by a feasible one Xi
• if both Xi, Xj are feasible, but Xj is worse than Xi
• if bothXi,Xj are infeasible, andXj has the greatest constraint
violation.
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Referring to Eq. 13, the equality constraints are converted to
inequality constraints, and thus, total constraint is introduced as
follows (Deb, 2000):

Hi (X) = {
max(hi (X) ,0)
max(|gi (X) | − δ,0)

(38)

where δ is a tolerance parameter for the equality constraints, and
Hi(X) is the inequality constraint.

The overall expression of the constraint violation for an
infeasible solution can be summarized as follows (Deb, 2000):

V (X) =
∑g

i=1
wi (Hi (X))

∑g
i=1

wi
, wi =

1
Hmax,i

(39)

wherewi is a weight parameter, andHmax ,i is themaximum value
for violation of constraint.

3.4 Chaotic flower pollination algorithm
based SF

All the previous studies prove that FPA gets trapped
in local optima and converges slowly toward the minimal
solutions.Therefore, in order tomake FPA an efficient algorithm,
it should properly balance between the diversification and
intensification to approximate the global optima. As was pointed
out earlier, p is the main parameter of FPA, which balances
these two components of the pollination, and it influences
the algorithm convergence speed. In this present study,
chaotic maps are suggested to deal with these shortcomings
and enrich the search behavior due to the fact that chaos
sequences can help swarm algorithms to get rid of the local
optimum. The proposed chaotic flower pollination algorithm
is a hybrid method that tunes the parameter of FPA by
replacing random values with chaotic variables. In addition,
the chaos is applied to manipulate the local pollination and the
switch probability p. This parameter is considered as a single
parameter in standard FPA, but in this study, p is proportionally
decreased by increasing the iteration numbers; it is modified as
follows:

p = pmax + t
pmax − pmin

T
(40)

where T characterizes the maximum value of iterations,
and t signifies the actual iteration value. pmin = 0.6 and
pmax = 0.8 indicate the minimum and maximum value of p,
respectively.

The proposed approach based on FPA, chaos, and SF is
described in Algorithm 1. The rand values in the basic FPA
are substituted in CFPA-SF by the chaotic sequence values to
supply chaos behaviors as shown in steps 9 and 13 in the
pseudo-code, where C(t) is the chaotic sequence value of the tth

iteration.

1: Initialize the chaotic FPA parameters

(Iterations(MaxIter), population size(nPop),

bounds(Ub, Lb), dimension(d), switch

probability(pmin,pmax), chaotic maps(C))

2: Generate the random initial population

of flowers x respect to Ub and Lb: x =

Lb+rand*(Ub−Lb)

3: Compute the optimal value, constraint

violations in the initial population using

Equations (38) and (39)

4: Generate random numbers using chaotic

maps(C)

5: Determine the switch probability Equation

(40), p ∈ [pmin,pmax] : p = pmax +t
pmax−pmin
MaxIter

6: while t < MaxIter (stopping criteria) do

7: Update parameter values for SF constraint

handling technique

8: for i = 1:nPop do

9: if C(t) < p then

10: Draw the step size parameter L

which obeys lévy distribution

11: proceed global pollination through

Equation (33), xt+1
i
= xt

i
+ γ L(λ)(gbest −x

t
i
)

12: else

13: Draw ∈ from chaotic maps through

∈= C(t)

14: proceed local pollination through

Equation (37), xt+1
i
= xt

i
+C(t)(xt

j
−xt

k
)

15: end if

16: Compute the new optimal fitness value,

total constraint violations using Equations

(38) and (39)

17: If new solution is better, update it

in the population

18: end for

19: Update the current global best solution

20: end while

21: Extract the optimal solution reached

Algorithm 1. Chaos Flower Pollination Algorithm based SF (CFPA-SF).

4 Experimental results

4.1 Simulation results of benchmark
functions

In this subsection, all the outcomes are averaged over 30
independent runs, for 13 test suites that have 30 dimensions.
The population size considered for all functions is nPop = 30, the
maximum iteration number is fixed at T = 500, and the switch
probability value is set at p = 0.8 for the traditional FPA. All the
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FIGURE 9
Voltage profile and convergence curves of CFPA9 for cases 1 and 2. (A) Voltage profile of PQ buses and (B) convergence curves of CFPA9.

FIGURE 10
Fuel cost convergence and runs for FPA vs. CFPA9 for case 3. (A) Convergence curves of CFPA9 versus FPA and (B) runs of CFPA9 versus FPA.

approaches are executed on a personal computer core i5 with a
4 GB-RAM Processor @1.8GHz using MATLAB R2016b.

The 13 test functions are utilized in order to prove the
performance of the suggested approach CFPA. Their details
are tabulated in Table 5, where D and Bound represent the
dimension (number of variables) and limits of variables,
respectively. Additionally, these test suites are classified into
four types: multimodal, unimodal, separable, and non-separable.
Thus, the multimodal functions are more suitable for assessing
the potential performances of algorithms’ exploration, although
the exploitation capability can generally be checked using the
unimodal functions. Therefore, to demonstrate which of the

ten CFPAs is significantly improved compared to the standard
FPA, five different testing parameters were investigated including
the Min, Max, and Mean fitness values, p_value of Wilcoxon’s
rank sum test, and standard deviation (SD ) (Wilcoxon, 1945),
(Derrac et al., 2011). The p_value less than 5% implies the
significant improvement of the algorithm and determines which
chaotic sequence is the best. As shown in Table 6, the optimal
findings are shown in bold text, while the N/A indicates
“not applicable,” meaning that the best chaotic map could not
statistically be compared with itself.The experimental results
provide that all CFPA algorithms are much superior to the
classical FPA except CFPA3 (Gausse/mouse map). Moreover,
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TABLE 10 Findings for case 3 and case 4 (IEEE 57-bus).

Case 3 Case 4

Control variables Min Max FPA CFPA9 Control variables Min Max CFPA9

Pg2 30 100 88.9994 85.8167 Pws1 0 150 149.9996
Pg3 40 140 48.4887 46.2558 Pg3 40 140 42.6342
Pg6 30 100 69.5516 71.2833 Pws2 0 150 149.8641
Pg8 100 550 482.0487 466.273 Pg8 100 550 287.2991
Pg9 30 100 76.941 83.1664 Pss 0 120 119.9556
Pg12 100 410 352.9002 366.6004 Pg12 100 410 371.0457
Vg1 0.95 1.1 1.0995 1.0999 Vg1 0.95 1.1 1.0694
Vg2 0.95 1.1 1.1000 1.1000 Vg2 0.95 1.1 1.0787
Vg3 0.95 1.1 1.0960 1.0941 Vg3 0.95 1.1 1.0608
Vg5 0.95 1.1 1.0861 1.0981 Vg5 0.95 1.1 1.0677
Vg8 0.95 1.1 1.0989 1.0998 Vg8 0.95 1.1 1.0535
Vg9 0.95 1.1 1.0968 1.0963 Vg9 0.95 1.1 1.0366
Vg12 0.95 1.1 1.0847 1.0837 Vg12 0.95 1.1 1.0420
Qc18 0 20 9.1497 9.7812 Qc18 0 20 7.1993
Qc25 0 20 16.0636 8.0581 Qc25 0 20 417.7231
Qc53 0 20 15.4616 7.4129 Qc53 0 20 11.3146
T19 0.9 1.1 0.9902 0.9282 T19 0.9 1.1 1.0608
T20 0.9 1.1 0.9877 1.0846 T20 0.9 1.1 1.0990
T31 0.9 1.1 1.0061 1.0309 T31 0.9 1.1 1.0101
T35 0.9 1.1 1.0050 0.9000 T35 0.9 1.1 0.9573
T36 0.9 1.1 0.9815 0.9509 T36 0.9 1.1 0.9970
T37 0.9 1.1 0.9880 0.9952 T37 0.9 1.1 1.1000
T41 0.9 1.1 0.9707 0.9489 T41 0.9 1.1 1.0587
T46 0.9 1.1 1.9377 0.9162 T46 0.9 1.1 0.9149
T54 0.9 1.1 1.0698 0.9697 T54 0.9 1.1 0.9737
T58 0.9 1.1 1.0031 0.9813 T58 0.9 1.1 0.9831
T59 0.9 1.1 1.0094 0.9741 T59 0.9 1.1 0.9501
T65 0.9 1.1 0.9469 0.9923 T65 0.9 1.1 0.9385
T66 0.9 1.1 0.9397 0.9631 T66 0.9 1.1 0.9000
T71 0.9 1.1 0.9958 1.0892 T71 0.9 1.1 1.0862
T73 0.9 1.1 0.9938 1.0699 T73 0.9 1.1 1.0514
T76 0.9 1.1 0.9700 1.0116 T76 0.9 1.1 1.0976
T80 0.9 1.1 0.9967 0.952 T80 0.9 1.1 0.9836
Fuel cost ($/h) - - 41 666.432 41 631.2601 Total cost ($/h) - - 27848.7724
Wind cost ($/h) - - - - Wind cost ($/h) - - 1411.738
PV cost ($/h) - - - - PV cost ($/h) - - 1230.2283
E (ton/h) - - 1.4192 1.3858 E (ton/h) - - 0.8075
VD (p.u.) - - 1.7126 1.6877 VD (p.u.) - - 1.7277
Ploss(MW) - - 15.2661 13.8706 Ploss(MW) - - 13.2593
Pg1 0 576 147.1365 145.2737 Pg1 0 576 143.2610
CPU time (s) - - 72.433 67.251 CPU time (s) - - 168.332

The bold values indicates the best results.

it can be observed that the outcomes of CFPA9 (Sinusoidal
map) occupied the first rank on all types of test functions
compared to the original FPA and its other chaotic variants.
Besides, as it is apparent, most of the obtained Wilcoxon rank-
sum test (p-values) are less than the assumed significant level
of 5% compared to other approaches, which means that the
combination of the sinusoidal map with FPA enhances the
performance of the FPA approach. The fastest convergence
rates toward the global optimum shown in Figure 4 guarantee
its improvement. Also, this figure indicates that the FPA and
CFPA3 algorithms supply the worst solution. Furthermore, to
better validate the efficiency of our proposed hybrid method,
the performance of the Sinusoidal map based on the statistical

mean is compared with the fitness values of three state-of-the-art
algorithms, such as DA, GOA, and ABC, as illustrated inTable 7.
It bears mentioning that the optimal statistical results of each
testing parameter are the lowest values.The bold values designate
the optimum solutions.These numerical findings obviously show
that the CFPA9 ranks first for the various types of the benchmark
suite by supplying 11 significant solutions out of 13 test functions.
Meanwhile, ABC and GOA each rank first for one function, F8
and F7, respectively. Despite the fact that CFPA9 fails to reach
the optimum results for some functions, it holds second place. By
contrast, the DA approach achieves the worst outcomes in most
cases. Consequently, as it can be seen from the evolution curve’s
fitness value shown in Figure 5, CFPA9 converges faster than
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FIGURE 11
Voltage profile and convergence curves of CFPA9 for cases 3 and 4. (A) Voltage profile of PQ buses and (B) convergence curves of CFPA9.

TABLE 11 Statistical results for case 1 and case 3.

Systems Min Mean Max SD p_value

IEEE 30-bus FPA 799.6144 800.3021 801.1084 0.38894 3.0199e-11
CFPA9 798.9867 799.0729 799.2487 0.061643 N/A

IEEE 57-bus FPA 41666.4325 41724.667 41837.2096 36.9454 3.3384e-11
CFPA9 41631.2601 41647.5872 41666.8326 11.8753 N/A

The bold values indicates the best results.

the stochastic algorithms mentioned above for all benchmark
functions exceptF7 andF8,where theGOAandABCoutperform
CFPA9. The best fitness values of all competitive algorithms
have been plotted according to the best run. Moreover, the
comparisons of the optimal fitness value done over 30 runs are
demonstrated in Figure 6, and it is clear that our approach has a
consistent global searching stability and ability.

4.2 Simulation results of optimal power
flow

To ensure the quality of the CFPA-based SF with the
Sinusoidal map, the optimal power flow issue integrating wind-
PV power is investigated. Precisely, the CFPA9 is applied
on the two standard benchmark systems, IEEE 30-bus and
IEEE 57-bus power systems. All the simulation findings have
been implemented for 30 populations, their convergences are
examined from the plots obtained of the various objective
functions over 200 iterations, and they have been independently
run 30 times for each function to perform the statistical analysis.

Besides, the CFPA9 performance is compared with that of the
original FPA and those algorithms found in the literature.The
considered power systems are examined via four case studies
defined as follows:

• Case 1 & 3: Fuel cost minimization

These cases are calculated according to Equation 16. They
reflect the main case, which aims to decrease the cost
of fuel only considering power loss, voltage deviation, and
emission.

• Case 2 & 4: Fuel cost with RES minimization

Equation 18 stands for these test cases; the OPF issue is
described with wind-PV power, taking into account the power
loss, voltage deviation, and emission.

4.2.1 IEEE 30-bus test system
This power test system possesses 30 buses in which the

1st bus is taken as the slack bus, and there are 6 generators,

Frontiers in Energy Research 20 frontiersin.org

https://doi.org/10.3389/fenrg.2022.941705
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Daqaq et al. 10.3389/fenrg.2022.941705

4 transformers, 41 lines, and 9 shunt VAR compensators. The
generators’ voltage magnitude bounds are assumed to vary
between 0.95p.u. and 1.1p.u.Moreover, the tap ratio transformers
are presumed to be in the range of 0.9p.u. to 1.1p.u. The
bounds of compensators are taken to be between 0 and 5p.u.
The detailed data (line and bus data) for the considered
IEEE system are given in (IEEE 30-bus test system data, 1961).
Reactive and active powers are given as 126.2MVAR and
283.4MW, respectively. Figure 7 depicts the considered IEEE
30-bus test system.

Two different cases were considered for this system. As
depicted before, case 1 minimizes the total fuel cost only, while
the second case reduces the total fuel cost, inserting RESs. The
wind power generators have replaced the traditional generators
at buses 5 and 11; these wind turbines are the sum of 25 and
20 turbines, respectively. Meanwhile, the generator of bus 13 is
changed by a PV generator. The allocation of these RESs into
the grid is selected according to the study by (Biswas et al., 
2017).

• Case 1:Minimization of IEEE 30-bus fuel cost only

All obtained simulation results including control variables of
the CFPA9 and FPA algorithms are tabulated in Table 8. Thus,
according to the best run, Figure 8 illustrates the convergence
curves and distribution runs of the fitness value for case 1. It is
clear from this figure that the suggested CFPA9 is superior and
converges faster to the optimum than its original algorithm.The
fuel cost findings attained in this case for both algorithms, FPA
and CFPA9, are 799.6144 ($/h) and 798.9867($/h), respectively.
In minimizing the cost, the simulation results of power loss,
voltage deviation, and emission are 8.5794(MW), 0.4969(p.u.),
and 0.33656(ton/h), respectively. Furthermore, the comparison
analysis of the outcomes found from all optimization approaches
is illustrated in Table 9. From that, it is clearly seen that the fuel
cost minimum is better than those reported in the literature.
According to Figure 9A, all load bus voltage profiles obtained
from both FPA and CFPA9 are within their specified limits,
which means that the feasibility is checked.

• Case 2: Minimization of IEEE 30-bus fuel cost with wind
and PV

This case aims to optimize the power flow issue by
minimizing the total fuel cost that includes the wind-PV cost.
Figure 9B illustrates the convergence curves of CFPA9 with and
without including RESs. The optimal values of control variables
are given in Table 8. The obtained total fuel cost, emission,
voltage deviation, and power loss values are 696.9185($/h),
0.1557(ton/h), 0.6845(p.u.), and 5.9584(MW). The cost
functions of wind and solar power achieved 173.4157($/h) and
56.0963($/h), respectively. Based on these findings, the value

of the fuel cost is reduced by 12.77% in comparison with the
previous case study.

4.2.2 IEEE 57-bus test system
The proposed approach is implemented on the 57-bus test

system in this section. The reactive and active power demands
of the studied system are 336.4 (MVAR) and 1250.8 (MW),
respectively. The line and bus data are taken from (IEEE 57-
bus test system data, 1960). This system has seven generating
units in which bus 1 is chosen as the slack bus and 80 lines,
50 load buses, three shunt reactive power injections, and 15
transformers.The tap setting for transformers is assumed to vary
between 0.9 p. u. and 1.1 p. u. The bounds of voltage magnitude
are assumed to be within the range of 0.94–1.06 p. u. The limits
of compensators are taken to be between 0 and 20 p. u. Like the
first system, the 57-bus test systemhas been changed by replacing
some generators with RESs; two of them are changed by wind
generators at buses 2 and 6, and these wind turbines are the sum
of 50 and 40 turbines, respectively. Then, bus 9 is considered as
the PV generator.

• Case 3:Minimization of IEEE 57-bus fuel cost only

For this case study, the attained outcomes are recorded
in Table 10. Figure 10 shows a comparison graph of original
FPA and the best chaotic FPA on the basis of the best run
which consists of the convergence curves and distribution runs.
The fuel cost of both algorithms are 41666.432 ($/h) and
41631.2601($/h). In addition, the achieved emission, voltage
deviation, and power loss values are 1.3858(ton/h), 1.6877(p.u.),
and 13.8706(MW), respectively. Furthermore, compared to the
outcomes obtained from the newest research studies as illustrated
in Table 9, the CFPA9 has a lower fitness value. Hence, it
should be noted that the simulation findings yielded in this case
disclose that the CFPA9 provides better fitness values than other
approaches without any violation of any constraint as presented
in Figure 11A.

• Case 4: Minimization of IEEE 57-bus fuel cost with wind-
solar

Similar to case 2, CFPA9 has been employed to optimize
the optimal power flow issue by minimizing the total fuel cost
with the wind and PV generators. Regarding the convergence
curves shown in Figure 11B, the CFPA9 converges faster to the
optimum solution than FPA. According to the best solutions
of CFPA9 presented in Table 9 (case 4), the fuel cost value
is 27848.7724(ton/h). This fuel cost was reduced by 33.11%
compared to case 3 (without RESs). Moreover, the wind and PV
costs are 1411.738(ton/h) and 1230.2283(ton/h), respectively.

To evaluate the performance of the CFPA9, a statistical
result was used.Minimum,maximum,mean, standard deviation,
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and p_value of 30 runs’ values were calculated as shown in
Table 11 and demonstrated the improvement of CFPA9. To
this end, it is observed that the attained statistical findings of
CFPA9 are close, which means that the outcomes are statistically
significant.

5 Conclusion

In this current study, an efficient constrained flower
pollination algorithm based on chaos has been suggested and
successfully employed to deal with the optimal power flow issue
integrating hybrid wind-solar power for case studies involving
30-bus and 57-bus power systems. First, ten different chaotic
sequences were employed to enhance the FPA performance.
Thus, in view of validating the proposed chaotic algorithms,
thirteen benchmark tests are utilized, some of which are
multimodal. Accordingly, the obtained results confirm the
efficiency and capability of the chaotic FPAs in getting the best
solutions, as it outstripped the standard version of the FPA
and the well-known approaches ABC, GOA, and DA. Along
these lines, these proposed novel chaotic flower pollination
algorithms have the ability to handle the various drawbacks
of the basic algorithm, in terms of balancing between the
exploration and exploitation processes as well as improving the
convergence speed. In addition, the overall statistical results
proved that the Sinusoidal chaotic map CFPA9 significantly
enhances the features of accuracy, reliability, and efficiency in
finding the global optimal solution. Second, the best-performing
chaotic map, CFPA9, out of the ten chaotic sequences has
been recommended to deal with the real-world problem of
OPF incorporating wind-PV energy. Furthermore, the outcomes
show that CFPA9 with the appropriate constraint handling
technique superiority of feasible solution can efficiently improve
all objective functions of OPF, which implies that the suggested
method is slightly potential and powerful in solving constrained

nonlinear complex real-world problems. In accordance with
these remarkable outcomes, the authors recommend CFPA with
Sinusoidal sequence and SF strategy to handle the OPF issue for
a realistic and higher dimension as considered in this present
research.
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