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In consideration of vertical formation heterogeneity, a basic nonlinear model of 1D
commingled preferential Darcian flow and non-Darcian flow with the threshold pressure
gradient (TPG) in a dual-layered formation is presented. Non-Darcian flow in consideration
of the TPG happens in the low-permeability tight layer, and the Darcian kinematic equation
holds in the other high-permeability layer. The similarity transformationmethod is applied to
analytically solve the model. Moreover, the existence and uniqueness of the analytical
solution are proved strictly. Through analytical solution results, some significant
conclusions are obtained. The existence of the TPG in the low-permeability tight layer
can intensify the preferential Darcian flow in the high-permeability layer, and the intensity of
the preferential Darcian flow is very sensitive to the dimensionless layer thickness ratio. The
effect of the layer permeability ratio and layer elastic storage ratio on the production sub-
rate is more sensitive than that of the layer thickness ratio. In addition, it is strictly
demonstrated that moving boundary conditions caused by the TPG should be
incorporated into the model. When the moving boundary is neglected, the preferential
Darcian flow in the high-permeability layer will be exaggerated. Eventually, solid theoretical
foundations are provided here, which are very significant for solving non-Darcian seepage
flow problems in engineering by numerical simulation validation and physical experiment
design. Furthermore, they are very helpful for better understanding the preferential flow
behavior through the high-permeability paths (such as fractures) in the water flooding
development of heterogeneous low-permeability reservoirs; then, the efficient profile
control technology can be further developed to improve oil recovery.

Keywords: exact analytical solution, threshold pressure gradient, heterogeneity, Darcian flow, low-velocity non-
Darcian flow, moving boundary

1 INTRODUCTION

Abundant physical experiments (Bear, 1972; Prada and Civan, 1999; Dou et al., 2014; Wang et al.,
2016; Hu et al., 2018; Tian et al., 2018;Wang and Cheng, 2020; Chi andWang, 2021; Zhao et al., 2021;
Yin et al., 2022) and theoretical analysis (Cai, 2014; Wang et al., 2018; Zhang et al., 2018; Zhang et al.,
2019a; Ye et al., 2019) have demonstrated when the formation permeability is low, the seepage flow in
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the formation will belong to the low-velocity non-Darcian flow
with a threshold pressure gradient (TPG). The TPG can introduce
additional formation energy consumption, which hinders the
fluid flow ability through the formation. The low-velocity non-
Darcian flow phenomena can be explained by the boundary layer
theory and strong fluid–solid interaction (Xiong et al., 2009; Yang
et al., 2016) in tiny micro-throats in low-permeability porous
media. In addition, there also exists a TPG during the non-
Newtonian Bingham fluid seepage flow process (Wang et al.,
2006; Wang and Yu, 2011; Fusi and Farina, 2017; Bauer et al.,
2019; Zhang et al., 2019b; Zhang et al., 2022). It can be explained
by the existence of yield stress in the Bingham fluid. Many
engineering problems relate to this non-Darcian flow behavior,
such as low-permeability petroleum reservoir development,
heavy oil reservoir development, water resource development,
contaminant transport in porous media, and the consolidation of
soils in hydrology. In fact, the resultant mathematical model is a
strongly nonlinear moving boundary (MB) problem (Liu et al.,
2012; Zhao et al., 2020; Jiao et al., 2021), owing to the effect of
TPG. This threshold problem is really distinct from the classical
Stefan MB problem (Voller et al., 2004; Olguín et al., 2007) in the
heat conduction theory, although its governing equation has the
same form as the heat conduction governing equation of the
Stefan problem. Their main difference is that for the Stefan
problem, the MB velocity is proportional to the first derivative
of the potential (temperature) with respect to distance from the
MB (Voller et al., 2004; Olguín et al., 2007). However, for the MB
problem of the non-Darcian flow with the TPG, it has been
proved theoretically that the MB velocity is proportional to the
second derivative of the potential (pressure) with respect to
distance from the MB (Liu et al., 2012; Liu et al., 2019a; Liu,
2019). Recently, for this type of MB problem, some exact
analytical solutions (EASs) (Chen et al., 2004; Xie et al., 2010;
Liu et al., 2012; Liu et al., 2019a; Liu, 2019; Zhou, 2019; Liu W. C.,
2020; Liu W. C., 2020) have been presented, especially for the
three basic cases of the 1D flow (Chen et al., 2004; Xie et al., 2010;
Liu et al., 2012; Liu W. C., 2020; Wang et al., 2021; Zhou et al.,
2021), the two-dimensional radial flow (Liu et al., 2019a; Zhou,
2019), and the three-dimensional spherical centripetal flow (Liu,
2019) in the homogenous porous media; both the existence and
the uniqueness of the EASs are also strictly proved (Liu et al.,
2012; Liu et al., 2019a; Liu, 2019; Liu W. C., 2020), respectively.
Even more, the correctness of some numerical solutions (Yao
et al., 2013; Li et al., 2016; Liu et al., 2019b) has been strictly
verified by these EASs successfully, and they can also be applied to
the inverse problems, such as the physical experiment design for
testing the TPG.

Heterogeneity along the direction vertical to the flow (Shen and
Reible, 2015; Song et al., 2015; Wu et al., 2016; Afshari et al., 2018;
Gao et al., 2018; Swami et al., 2018; Li et al., 2019; Kaffel, 2019;
Nijjer et al., 2019; LiuW. C., 2020;Ma et al., 2021; Shen et al., 2022),
different from the heterogeneity along the flow direction (Liu et al.,
2022), is a critical feature of the porous media in the real world. For
example, the vertically stratified oil reservoirs (Song et al., 2015;
Gao et al., 2018) with vertical permeability heterogeneity are
commonly encountered in petroleum engineering, the
contaminant transport (Shen et al., 2015; Swami et al., 2018) in

vertically layered formations is frequently involved in environment
engineering, and the rainfall infiltration into layered soils (Wu
et al., 2016; Afshari et al., 2018; Kaffel, 2019; Nijjer et al., 2019) is
very common in municipal engineering. Although the research
area on the mass transfer through heterogeneous porous media is
very challenging due to the involvement of the nonlinear flow
process and complex flow situations in the actual engineering
background, abundant research on the seepage flow problems in
multi-layer porous media considering the heterogeneity has been
carried out in recent years. In other words, through the separation
of the variable technique, Shen and Reible (2015) obtained an EAS
for a 1D solute transport model, which allowed an arbitrary
number of layers, and the EAS was also verified through
comparing with the numerical solution. Wu et al. (2016)
conducted finite-element numerical solution research on a 1D
water flow model in the unsaturated dual-layered porous media,
and the rainfall infiltration process under different conditions was
analyzed. Afshari et al. (2018) applied direct pore-level numerical
simulations tomodeling the dispersion and solute transport during
the pore-scale miscible displacements in the heterogeneous layered
formation, and it was demonstrated that the dispersion scale
dependency was mainly affected by layering configuration. Gao
et al. (2018) conducted numerical simulation research on the
development of low-permeability multi-layer reservoirs, and a
stratified hydraulic fracturing method was put forward for oil
recovery enhancement. By employing the semi-analytical
solution method, Swami et al. (2018) studied the asymptotic
solute transport behavior in stratified porous media and also
proposed an asymptotic relation that could provide valuable
information on the mass transfer coefficient during solute
transport. Li et al. (2019) defined a main flow channel index to
identify the type of main flow channel in heterogenous petroleum
reservoirs and put forward a quantitative classification method for
themain flow channels. Through the numerical simulationmethod
with high resolution, the permeability heterogeneity effect on the
miscible displacement process in layered formation at three
different flow times was analyzed by Nijjer et al. (2019). Liu W.
C. (2020) focused on the exact analytical study on a generalized
nonlinear MB problem of the 1D low-velocity non-Darcian flow in
heterogeneous low-permeability multi-layered formation with the
TPG; however, the Darcian flow is not involved in the flow
behavior analysis, and the existence and the uniqueness of the
EAS are not demonstrated in theory.

As far as we know, due to the strong nonlinearity, the studies on
the EAS of low-velocity non-Darcian flow MB problems in
heterogeneous layered formation are few at present, although they
have been extensively involved in actual engineering problems (Song
et al., 2015; Gao et al., 2018). In particular, the basic research topic on
the preferential flow along the high-permeability porous media layer
in the heterogeneous low-permeability reservoir is widely involved in
the technical reservoir engineering problems for enhanced oil
recovery, such as the high-permeability layer blocking by the in-
depth profile control technology in the water flooding process (Zhou
et al., 2017; Li et al., 2018; Zhao et al., 2018). Here, based on the
concerns, considering the vertical permeability heterogeneity of
porous media, a basic nonlinear model of the 1D commingled
preferential Darcian flow and non-Darcian flow with the TPG in
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a dual-layered formation is studied. Although this commingled flow
model can be considered as a partially degenerated case of the
previously generalized MB model (Liu W. C., 2020), the
mechanics of the high Darcian flow and non-Darcian flow
happening simultaneously in each layer is first involved. For the
commingled flow model, the non-Darcian flow in consideration of
the TPG happens in the low-permeability tight layer (Liu et al., 2012;
Dou et al., 2014), while the Darcian flow happens in the other high-
permeability layer. The EAS of the nonlinear model is presented;
moreover, both the existence and the uniqueness of the EAS are
strictly proved. Consequently, some significant conclusions are
obtained from the discussion of the EAS results.

2 MATHEMATICAL MODELING

The 1D commingled preferential Darcian flow and non-
Darcian flow in a heterogeneous dual-layered rectangular
formation is involved here, which is shown in Figure 1.
The flow direction is parallel to the x coordinate. The upper
tight layer (the thickness h1 and the wideness L) has a very low
permeability. The low-velocity non-Darcian flow with the TPG
happens in the low-permeability tight layer (Dou et al., 2014);
its kinematic equation is as follows (Liu et al., 2012; Dou et al.,
2014) (Figure 1):

υ1 �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 0≤
zp1

zx
≤ λ,

−k1
μ
· (zp1

zx
− λ) zp1

zx
> λ,

(1)

where subscript 1 represents the low-permeability tight layer;
k1 is the tight layer permeability; λ is the TPG; υ1 is the fluid
velocity; μ is the fluid viscosity; and p1 is the pressure.

However, the lower layer (the thickness h2 and the
wideness L) has a much higher permeability, and the
preferential flow in the high-permeability layer obeys
Darcy’s law. Darcy’s law for the flow in the high-
permeability layer is as follows:

υ2 � −k2
μ
· zp2

zx
, (2)

where subscript 2 represents the high-permeability tight layer;
k2 is the permeability; υ2 is the fluid velocity; and p2 is the
pressure. It is worth mentioning that we assume the flow in
the high-permeability layer is not fast enough to be affected by
inertia and turbulence (Elkady et al., 2022), and thus, the flow
obeys Darcy’s law.

In addition, there exists a very thin impermeable barrier
layer (nearly zero thickness) between the low-permeability
tight layer and the high-permeability layer; and then, there is
no cross flow (Debbabi et al., 2017) in the z direction between
the two different layers. At the outlet end, i. e., x = 0, the
variable production rate from the low-permeability tight layer
is noted as Q1(t); and the variable production rate from the
high-permeability layer is noted as Q2(t). Furthermore, the
total production rate Q0 keeps constant, i. e., Q1(t)+Q2(t) =
Q0. t is the time.

Some assumptions are defined for mathematical modeling.
The dual-layered porous medium is infinitely long, and the
low-permeability tight layer and the high-permeability layer
are both homogeneous, respectively. In the isothermal
environment, the single-phase fluid flows in the dual-
layered porous medium. Both the porous medium and the
fluid are slightly compressible. The gravity effect is not
considered. Initially, the pressure in the dual-layered
porous medium stays constant as pi. Both the liquid storage

FIGURE 1 | Schematics of the 1D commingled preferential Darcian flow and non-Darcian flow in a heterogeneous dual-layered rectangular formation.
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and the skin effect (Ehlig-Economides and Joseph, 1987; Liu
and Wang, 1993) at the outlet end are not considered.

By applying a mathematical modeling method in the previous
work (Liu W. C., 2020) for the fluid flow in multi-layered
formation, a dimensionless mathematical model for the
fundamental MB problem of the 1D commingled preferential
Darcian flow and non-Darcian flow with the TPG in a dual-
layered formation can be built. It is as follows:

2α1 · z
2U1

zX2
� zU1

zT
, 0≤X≤ δ(T), (3)

δ(0) � 0, (4)
U1|T�0 � 0, (5)

U1|X�δ(T) � 0, (6)
zU1

zX

∣∣∣∣∣∣∣X�δ(T)
� −Λ, Λ> 0, (7)

2α2 · z
2U2

zX2
� zU2

zT
, 0≤X< +∞, (8)

U2|T�0 � 0, (9)
U2|X→∞ � 0, (10)

β1 ·
zU1

zX

∣∣∣∣∣∣∣X�0
+ β2 ·

zU2

zX

∣∣∣∣∣∣∣X�0
� −(1 + β1 · Λ), Λ> 0, (11)

U1|X�0 � U2|X�0, (12)
where X is the dimensionless distance; U1 and U2 are the
dimensionless pressures, respectively; T is dimensionless time;
Λ is the dimensionless TPG; δ is the dimensionless MB distance;
ω1 and ω2 are dimensionless layer elastic storage ratios (LESRs),
respectively; H1 and H2 are dimensionless layer thickness ratios
(LTRs); D1 and D2 are dimensionless layer permeability ratios
(LPRs); α1, α2, β1, and β2 are defined parameters; υw0 is the flow
velocity in average.

These dimensionless variables in the model are shown as
follows:

X � x

L
, (13)

T � k1 + k2
μ · (ϕi1Ct1 + ϕi2Ct2) · L2

t, (14)

δ � s

L
, (15)

U1 � k1 + k2
υw0Lμ

(pi − p1), (16)

U2 � k1 + k2
υw0Lμ

(pi − p2), (17)

Λ � (k1 + k2)λ
υw0μ

, (18)

ω1 � ϕi1Ct1

ϕi1Ct1 + ϕi2Ct2
, (19)

ω2 � ϕi2Ct2

ϕi1Ct1 + ϕi2Ct2
, (20)

H1 � h1
h1 + h2

, (21)

H2 � h2
h1 + h2

, (22)

D1 � k1
k1 + k2

, (23)

D2 � k2
k1 + k2

, (24)

α1 � D1

2ω1
, (25)

α2 � D2

2ω2
, (26)

β1 � H1 ·D1, (27)
β2 � H2 ·D2, (28)

υw0 � Q0

h1 · L + h2 · L, (29)

where ϕi1 and ϕi2 are the initial porosity for the two layers,
respectively; Ct1 and Ct2 are comprehensive compressibility
coefficients for the two layers, respectively; s is the distance of
the transient MB; t is time; Q0 is the constant total
production rate.

3 EXACT ANALYTICAL SOLUTIONS

The model has a strong nonlinearity. It can be attributed to the
existence of MB conditions, i. e., Eqs. 6, 7. However, the model
can show a fully self-similarity property, which can be found by
carrying out the stretching transform on the model (Ames, 1965).
Then, some similarity transformations can be introduced as
follows (Liu et al., 2012; Liu et al., 2019; Liu, 2019):

η � U1

2T
1
2
, (30)

ψ � U2

2T
1
2
, (31)

ξ � X

2T
1
2
, (32)

θ � δ

2T
1
2
. (33)

Then, through Eqs. 30–33, the mathematical model, i. e., Eqs.
3–12 can be equivalently transformed as follows:

α1 · d
2η

dξ2
+ ξ · dη

dξ
− η � 0, 0≤ ξ ≤ θ, (34)

η
∣∣∣∣ξ�θ � 0, (35)

dη
dξ

∣∣∣∣∣∣∣
ξ�θ

� −Λ, Λ> 0, (36)

α2 · d
2ψ

dξ2
+ ξ · dψ

dξ
− ψ � 0, 0≤ ξ < +∞, (37)

ψ
∣∣∣∣ξ→+∞ � 0, (38)

β1 ·
dη
dξ

∣∣∣∣∣∣∣
ξ�0

+ β2 ·
dψ
dξ

∣∣∣∣∣∣∣
ξ�0

� −(1 + β1 · Λ), Λ> 0, (39)
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ψ
∣∣∣∣ξ�0 � η

∣∣∣∣ξ�0. (40)

Equations 34–40 belong to an ordinary differential equation
system. It is linear and closed, which means it can be analytically
solved with ease. By using the similar solution procedures in the
previous work (Liu W. C., 2020), the EAS of the model, i. e., Eq. 3
–Eq. 12 can be deduced as follows:

U1(X,T) � −Λ ·X −
�
2

√
2

· Λ · θ · exp( θ2

2α1
) · ��

π
√ · erf⎛⎝ �

2
√
2

·
��
θ2

α1

√ ⎞⎠ ·
���
X2

α1

√
+Λ · θ · exp( θ2

2α1
) · exp( − X2

8α1T
) · 2T1

2

+
�
2

√
2

· Λ · θ · exp( θ2

2α1
) · ��

π
√ · erf⎛⎝ �����

X2

8α1T

√ ⎞⎠ ·
���
X2

α1

√
, 0≤X≤ 2θ · T1

2 ,

(41)

where erf is the error function (Liu, 2019).

U2(X,T) � −
�
2

√
2

· ��
π

√ · Λ · θ · exp( θ2

2α1
) ·

��
1
α2

√
·X

+Λ · θ · exp( θ2

2α1
) · exp( − X2

8α2T
) · 2T1

2

+
�
2

√
2

· Λ · θ · exp( θ2

2α1
) · ��

π
√ · erf⎛⎝ �����

X2

8α2T

√ ⎞⎠ ·
���
X2

α2

√
, 0≤X< +∞,

(42)

where the value of θ can be determined for any given positive
value of Λ by the following equation:

��π√ · β1 · Λ · θ · exp( θ2

2α1
) · erf⎛⎝ �

2
√
2

·
��
θ2

α1

√ ⎞⎠ ·
��
1
α1

√
+ ��π√ · β2 · Λ · θ · exp( θ2

2α1
) ·

��
1
α2

√
� �

2
√

.

(43)

However, it is necessary to prove the existence and uniqueness
of the positive solution of θ through Eq. 43. The following is the
proof process.

By Eq. 43, a function f(θ) is defined:

f(θ) � ��π√ · β1 · Λ · θ · exp( θ2

2α1
) · erf⎛⎝ �

2
√
2

·
��
θ2

α1

√ ⎞⎠ ·
��
1
α1

√
+ ��π√ · β2 · Λ · θ · exp( θ2

2α1
) ·

��
1
α2

√
− �

2
√

.

(44)
From Eq. 44, the following equations can be obtained:

f(0) � − �
2

√
, (45)

lim
θ→+∞

f(θ) � +∞ . (46)

By using Eqs. 45, 46, it is obviously known that a positive value
of θ noted as θ1 exists, which satisfies f (θ1) > 0.

Then, the derivative of f is deduced from Eq. 44:

f′(θ) � ��
π

√ · β1 · Λ · exp( θ2

2α1
) · erf⎛⎝ �

2
√
2

·
��
θ2

α1

√ ⎞⎠ ·
��
1
α1

√

+ ��π√ · β1 · Λ · θ2 · exp( θ2

2α1
) · erf⎛⎝ �

2
√
2

·
��
θ2

α1

√ ⎞⎠ ·
��
1

α3
1

√
+2 · β1 · Λ · θ2 · exp( θ2

2α1
) · exp( − 1

2
· θ

2

α1
) ·

��
1
α1

√
·

�
2

√
2

·
��
1
α1

√
+ ��π√ · β2 · Λ · exp( θ2

2α1
) ·

��
1
α2

√
+ ��π√ · β2 · Λ · θ2 · exp( θ2

2α1
) ·

��
1
α2

√
· 1
α1
.

(47)
From Eq. 47, the following equations can be obtained as

follows:

f′(0) � ��
π

√ · β2 · Λ ·
��
1
α2

√
> 0, (48)

f″(θ) � ��
π

√ · β1 · Λ · exp( θ2

2α1
) · erf⎛⎝ �

2
√
2

·
��
θ2

α1

√ ⎞⎠ ·
��
1
α1

√
· θ
α1

+2 · β1 · Λ · exp( θ2

2α1
) · exp( − 1

2
· θ

2

α1
) ·

��
1
α1

√
·

�
2

√
2

·
��
1
α1

√
+2 · ��π√ · β1 · Λ · θ · exp( θ2

2α1
) · erf⎛⎝ �

2
√
2

·
��
θ2

α1

√ ⎞⎠ ·
��
1

α31

√

+ ��π√ · β1 · Λ · θ3 · exp( θ2

2α1
) · erf⎛⎝ �

2
√
2

·
��
θ2

α1

√ ⎞⎠ ·
��
1
α51

√
+2 · β1 · Λ · θ2 · exp( θ2

2α1
) · exp( − 1

2
· θ

2

α1
) ·

��
1

α31

√
·

�
2

√
2

·
��
1
α1

√
+4 · β1 · Λ · θ ·

��
1
α1

√
·

�
2

√
2

·
��
1
α1

√
+ ��

π
√ · β2 · Λ · θ · exp( θ2

2α1
) ·

��
1
α2

√
· 1
α1

+2 · ��π√ · β2 · Λ · θ · exp( θ2

2α1
) ·

��
1
α2

√
· 1
α1

+ ��
π

√ · β2 · Λ · θ3 · exp( θ2

2α1
) ·

��
1
α2

√
· 1
α21

> 0, θ ≥ 0 .

(49)

FIGURE 2 | Schematics of the existence of a unique positive value of θ
that satisfies f(θ) = 0.
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It is indicated from Eq. 49 that the derivative of f increases
with the increment of θ ≥ 0. As a result, it is known from Eq. 48
that the derivative of f is larger than zero as θ ≥ 0. Consequently, it
is shown that f is a strictly monotonically increasing function as
θ ≥ 0. In consideration of the strict monotonicity of f, it can be
known from Eqs. 45, 46 that there exists a unique positive value
of θ noted as θ0 that satisfies Eq. 43(Figure 2).

4 RESULTS AND DISCUSSION

In accordance with actual physical parameter values (Yao et al.,
2013), the values of dimensionless variables are assigned
appropriately: D1 = 0.03, D2 = 0.97, H1 = 0.9, H2 = 0.1, ω1 =
0.85, and ω2 = 0.15. From Eqs. 25–28, it can be calculated that
α1 = 0.0176, α2 = 3.2333, β1 = 0.0270, and β2 = 0.097. It is worth
mentioning that according to the assigned values of the
dimensionless variables, thickness-weighted permeability kavg
for 1D flow in the whole formation (Zhang et al., 2015) can
be calculated approximately as follows:

kavg � D1 ·H1 +D2 ·H2

H1 +H2
· (k1 + k2)

≈ 3.97 · k1.
(50)

Equation 50 is based on Darcy’s law, and thus, the
weighted permeability must be overestimated. Therefore, it
can be concluded from Eq. 50 that this permeability on
average for the dual-layered formation and the low-

permeability k1 are on the same order of magnitude.
Therefore, from the definition of the dimensionless TPG,
i.e., Eq. 18, it can be deduced that its value for the
commingled flow is much higher than the value (Liu et al.,
2012; Yao et al., 2013; Liu W. C., 2020) that corresponds to the
pure non-Darcian flow with the TPG in the low-permeability
tight formation. It can be attributed to the reason that k1+k2 is
much higher than the low permeability k1, while their flow
velocity υw0 is nearly of the same order of magnitude based on
the aforementioned average permeability analysis. Here, the
value of Λ is set as 20.0 appropriately. From Eq. 43, θ = 0.1297.

The dimensionless pressure distribution change in the two
different layers under different dimensionless times is shown
in Figure 3. It is indicated from Figure 3 that the pressure
distribution curve corresponding to the Darcian flow in the
high-permeability layer is much smoother than the one
corresponding to the non-Darcian flow in the low-
permeability tight layer. The pressure drop area in the
high-permeability layer is much larger than that in the
low-permeability tight layer (U1 > 0). Furthermore, due to
the existing TPG, there exists a large undisturbed area in the
low-permeability tight layer (U1 = 0); and the pressure
distribution curves corresponding to the non-Darcian flow
in the low-permeability tight layer with the TPG can show the
characteristics of compact supports (Yao et al., 2013)
(Figure 3).

The change of the dimensionless transient pressure at X =
0 with dimensionless time is shown in Figure 4. It is indicated
from Figure 4 that with dimensionless time increasing, the

FIGURE 3 | Variation of dimensionless pressure distributions with dimensionless time.

Frontiers in Energy Research | www.frontiersin.org August 2022 | Volume 10 | Article 9416056

Wang et al. Commingled Preferential Darcian and Non-Darcian Flow

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


dimensionless transient pressure also increases gradually
(Figure 4).

By using the model solution, from Eqs. 1, 2, and 11, the
dimensionless production rate Q1D from the low-permeability
tight layer can be written as follows:

Q1D � −β1 · (
zU1

zX

∣∣∣∣∣∣∣X�0
+ Λ)

� β1 ·
�
2

√
2

· ��
π

√ · Λ · θ · exp( θ2

2α1
) · erf⎛⎝ �

2
√
2

·
��
θ2

α1

√ ⎞⎠ ·
��
1
α1

√
.

(51)
The dimensionless production rate Q2D from the high-

permeability layer can be written as follows:

Q2D � −β2 ·
zU2

zX

∣∣∣∣∣∣∣X�0

� β2 ·
�
2

√
2

· ��
π

√ · Λ · θ · exp( θ2

2α1
) ·

��
1
α2

√
.

(52a)

Through Eq. 43, it can be easily proven that Q1D + Q2D = 1.
For this case, Q1D = 0.72, and Q2D = 0.28.
Next, based on the basic case, the influences of the

dimensionless TPG, dimensionless LTR, LPR, and
dimensionless LESR are discussed, respectively, by using the
EAS results. Moreover, the necessity that the MB should be
incorporated in the mathematical modeling for describing the
effect of the TPG is demonstrated.

4.1 Effect of the Dimensionless Threshold
Pressure Gradient
Here, the dimensionless TPG is assigned five different values,
respectively: Λ = 0, Λ = 10, Λ = 15, Λ = 20, and Λ = 25.
Correspondingly, by Eq. 43, θ can be calculated, as shown in
Table 1. It is indicated from Table 1 that the larger dimensionless
TPG corresponds to a smaller value of θ, which indicates a smaller
dimensionless MB distance from Eq. 33. Figure 5A shows the
influence of the dimensionless TPG on dimensionless pressure

FIGURE 4 | Variation of the dimensionless transient pressure with dimensionless time.

TABLE 1 | Values of θ, Q1D, and Q2D corresponding to Λ.

Λ θ Q1D Q2D

25 0.1182 0.70 0.30
20 0.1297 0.72 0.28
15 0.1451 0.73 0.27
10 0.1673 0.75 0.25
0 +∞ 0.79 0.21
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distributions. It is shown from Figure 5A that the dimensionless
TPG affects not only the pressure distribution in the low-
permeability tight layer but also the pressure distribution in

the high-permeability layer. When the dimensionless distance
from X = 0 is smaller, the influence becomes bigger. The TPG can
decrease the pressure drop area in the low-permeability tight layer

FIGURE 5 | Effect of the dimensionless TPG. (A) On dimensionless pressure distributions; (B) on dimensionless transient pressure.
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(U1 > 0), and it can also increase the pressure drop in the high-
permeability layer (the increment of formation energy
consumption). As the dimensionless TPG increases, the
sensitivity of the influence declines (Figure 5A). Under
different values of the dimensionless TPG, some curves of the
dimensionless transient pressure are plotted in Figure 5B. It is
indicated from Figure 5B that the larger dimensionless TPG
corresponds to a larger dimensionless transient pressure.
Furthermore, when dimensionless time is longer, the influence
of the TPG increases. However, as the dimensionless TPG
increases, the sensitivity of the influence declines (Figure 5B).
Table 1 also shows the influence of the dimensionless TPG on
production rates from each layer. From Table 1, it is concluded
that with the TPG increasing, less and less production rate comes
from the low-permeability tight layer, and then, more and more
production rates come from the high-permeability layer when the
total production rate Q0 is constant. Therefore, the existence of
TPG in the low-permeability tight layer can intensify the
preferential Darcian flow in the high-permeability layer.

Physical interpretation: The larger TPG can reduce the flow
ability in the low-permeability tight layer, which makes MBmove
more difficultly. As the total production rate is constant, the
larger TPG can introduce a larger pressure drop (more energy
consumption) in the layers, which alsomeans less production rate
from the low-permeability tight layer.

4.2 Effect of the Dimensionless Layer
Thickness Ratio
The dimensionless LTR H1 is assigned four different values,
respectively: H1 = 0.6 (H2 = 0.4), H1 = 0.8 (H2 = 0.2), H1 =
0.9 (H2 = 0.1), andH1 = 0.95 (H2 = 0.05). Correspondingly, by Eq.
43, θ can be calculated, which is shown in Table 2. From Table 2,
it is indicated that the dimensionless MB distance 2

��
T

√ · θ
increases as the LTR of the low-permeability tight layer H1

increases. The influence of the LTR on pressure distributions
is shown in Figure 6A. It is indicated from Figure 6A that the
bigger the LTR of the low-permeability tight layer, the larger is the
pressure drop (U1 and U2) in both the layers. Moreover, when the
dimensionless distance from X = 0 is smaller, the influence
becomes bigger (Figure 6A). Under different values of the
dimensionless LTR, some curves of the dimensionless transient
pressure are plotted in Figure 6B. It is indicated from Figure 6B
that the larger dimensionless LTR for the low-permeability layer
corresponds to a greater dimensionless transient pressure
(Figure 6B). Table 2 shows the influence of the dimensionless
LTR on production rates from each layer. From Table 2, it is
concluded that asH1 increases, the production rate from the low-

permeability tight layer becomes greater when the total
production rate Q0 is constant. Furthermore, the intensity of
the preferential Darcian flow in the high-permeability layer is
very sensitive to the LTR.

Physical interpretation: The higher value of the LTR H1

indicates a larger thickness of the low-permeability tight layer
and a smaller thickness of the high-permeability layer (H2 = 1.0-
H1). As the value of H1 increases, due to the decrease in the
average permeability of the layered porous media, more pressure
drops will be generated in the layers in order to keep the
production rate constant.

4.3 Effect of the Dimensionless Layer
Permeability Ratio
The dimensionless LPR is assigned four different values,
respectively: D1 = 0.01 (D2 = 0.99), D1 = 0.03 (D2 = 0.97),
D1 = 0.05 (D2 = 0.95), and D1 = 0.1 (D2 = 0.9).
Correspondingly, by Eq. (43), θ can be calculated, which is
shown in Table 3. It is indicated from Table 3 that as the
LPR of the low-permeability tight layer D1 increases, the
dimensionless MB distance 2

��
T

√ · θ increases. Figure 7A
shows the effect of the LPR on pressure distributions. From
Figure 7A, it is indicated that the bigger the value ofD1, the larger
the pressure drop area in the low-permeability tight layer (U1 >
0), and the smaller the pressure drop inside the pressure drop area
in the low-permeability tight layer, the smaller is the pressure
drop in the high-permeability layer when the LPR of the low-
permeability tight layer increases. When the dimensionless
distance from X = 0 is smaller, the influence becomes bigger
(Figure 7A). Under different values of the dimensionless LPR,
some curves of dimensionless transient pressure are plotted in
Figure 7B. It is indicated from Figure 7B that the larger LPR for
the low-permeability layer corresponds to a greater dimensionless
transient pressure. Table 3 shows the influence of the LPR on
production rates from each layer. From Table 3, it is concluded
that as D1 increases, the production rate from the low-
permeability tight layer becomes greater, and the sensitivity of
the influence of the LPR on the layer production sub-rate is not as
much as that of the LTR (Figure 7B).

Physical interpretation: The higher value of D1 directly reflects
the enhancement of theflow ability in the low-permeability tight layer
and, simultaneously, the reduction of the flow ability in the high-
permeability layer (D2 = 1.0-D1). Furthermore, due to the reason that
the thickness of the low-permeability tight layer is nine times that of
the high-permeability layer (H1 = 0.9), the influence of flow ability
enhancement of the low-permeability tight layer is much larger than
the influence of flow ability reduction of the high-permeability layer
on the flow. Therefore, as the value ofD1 increases, the pressure drop
in the layers decreases, and the production rate from the low-
permeability tight layer increases.

4.4 Effect of Dimensionless Layer Elastic
Storage Ratios
The dimensionless LESR is assigned four different values,
respectively: ω1 = 0.7 (ω2 = 0.3), ω1 = 0.8 (ω2 = 0.2), ω1 =

TABLE 2 | The value of θ, Q1D and Q2D corresponding to Λ.

H1 Θ Q1D Q2D

0.6 0.1019 0.26 0.74
0.8 0.1196 0.51 0.49
0.9 0.1297 0.72 0.28
0.95 0.1352 0.85 0.15
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0.85 (ω2 = 0.15), and ω1 = 0.9 (ω2 = 0.1). Correspondingly, by
Eq. 43, θ can be calculated, which is shown in Table 4. It is
indicated from Table 4 that the dimensionless LESR has little

effect on θ. Figure 8A shows the effect of LESR on pressure
distributions. It can be seen from Figure 8A that the LESR
affects the pressure distribution of the low-permeability tight

FIGURE 6 | Effect of the dimensionless LTR. (A) On dimensionless pressure distributions (B) on dimensionless transient pressure.
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TABLE 3 | The value of θ, Q1D and Q2D corresponding to Λ.

D1 Θ Q1D Q2D

0.01 0.1045 0.64 0.36
0.03 0.1297 0.72 0.28
0.05 0.1391 0.74 0.26
0.1 0.1485 0.77 0.23

TABLE 4 | The value of θ, Q1D and Q2D corresponding to Λ.

ω1 Θ Q1D Q2D

0.7 0.1344 0.61 0.39
0.8 0.1312 0.68 0.32
0.85 0.1297 0.72 0.28
0.9 0.1294 0.76 0.24

FIGURE 7 | Effect of the dimensionless LPR. (A) On dimensionless pressure distributions; (B) on dimensionless transient pressure.
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layer a little. However, it has a big effect on the pressure
distribution of the high-permeability layer. Furthermore, the
bigger the value of ω1, the larger is the pressure drop in the

high-permeability tight layer. When the dimensionless
distance increases, the influence of the LESR becomes
bigger (Figure 8A). Under different values of the

FIGURE 8 | Effect of the dimensionless LESR. (A) On dimensionless pressure distributions; (B) on dimensionless transient pressure.
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dimensionless LESR, some curves of the dimensionless
transient pressure are plotted in Figure 8B. It is indicated
from Figure 8B that a larger LESR for the low-permeability
layer corresponds to a bigger dimensionless transient
pressure. As dimensionless time increases, the influence of
the LESR becomes bigger (Figure 8B). Table 4 shows the
influence of the LESR on production rates from each layer.
From Table 4, it can be concluded that with ω1 increasing,
more and more production rates come from the low-

permeability tight layer. The sensitivity of the influence of
the LESR on the layer production sub-rate is also not as much
as that of the LTR.

Physical interpretation: The higher value of the LESR ω1

indicates more elastic energy from porous media and fluid in the
low-permeability tight layer and, simultaneously, the less elastic
energy in the high-permeability layer (ω2 = 1.0-ω1). When the
pressure in the porous medium drops, more released elastic
energy can cause more fluid to be produced. Therefore, as the

FIGURE 9 | Comparison between two models with and without considering the MB. (A) Pressure distribution comparison; (B) transient pressure comparison.
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value of ω1 increases, the production rate from the low-
permeability tight layer increases, but the production rate from
the high-permeability layer decreases. In addition, with ω1

increasing, it mainly has an effect on pressure drop in the
high-permeability layer.

4.5 Effect of Considering Moving Boundary
Conditions or Not
MB problems usually have a strong nonlinearity. In order to
linearize the mathematical models for simplifying the model
computation, MB conditions that describe the effect of TPG
are not always taken into account in the relevant mathematical
modeling in the previously published literature (Guo et al., 2012;
Zeng et al., 2018;Wu et al., 2019). The TPG effect is just described
through continuity equations or inner boundary conditions.
However, this kind of linearization may introduce a lot of

errors (Yao et al., 2013; Liu et al., 2019a). Here, without
considering MB conditions (Guo et al., 2012; Zeng et al., 2018;
Wu et al., 2019), a dimensionless mathematical model for this 1D
commingled preferential Darcian flow and non-Darcian flow
problem is presented, and its EAS is also presented. Please see
Appendix A for the details of the mathematical model and its
EAS process. Then, this EAS can be compared with the EAS for
the model in consideration of MB conditions. As a result, the
significance of considering MB conditions caused by the TPG can
be demonstrated. Their dimensionless pressure distributions (U1

and U2) at T = 103 are compared in Figure 9A under different
values of Λ: Λ = 0, Λ = 10, Λ = 15, and Λ = 20. It can be seen from
Figure 9A that when MB is not incorporated, dimensionless
pressures U1 and U2 will be overestimated largely, and the
pressure distribution corresponding to the non-Darcian flow
in the low-permeability tight layer with the TPG becomes
much smoother, and then, the characteristics of compact
supports (Yao et al., 2013) for the pressure distribution
corresponding to the non-Darcian flow in the low-
permeability tight layer can be lost. A larger TPG can cause
larger errors. Moreover, as dimensionless distance decreases, the
errors become bigger. In addition, when the MB is not taken into
account in the modeling, the pressure drop area (U1 > 0) in the
low-permeability tight layer will be largely overestimated
(Figure 9A). Dimensionless transient pressures are compared
in Figure 9B under different values of Λ: Λ = 0, Λ = 10, Λ = 15,
and Λ = 20. It can be seen from Figure 9B that when the MB is
not incorporated, the dimensionless transient pressure can be

FIGURE 10 | Variation of the relative error ε with dimensionless TPG Λ.

TABLE 5 | Comparison of Q1D and Q2D corresponding to the two different
models with and without considering the MB.

Λ Considering MB Neglecting MB

Q1D Q2D Q1D Q2D

20 0.72 0.28 0.68 0.32
15 0.73 0.27 0.71 0.29
10 0.75 0.25 0.73 0.27
0 0.79 0.21 0.79 0.21
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over-evaluated largely, especially when the dimensionless TPG is
bigger, and errors also increase with dimensionless time. When
the MB is not considered in the modeling, the relative error ε can
be directly deduced through the two EASs, i. e., Eq. 41 and Eq. A9
(see Appendix B for the details) as follows (Figure 9B). The
relative error affected by the dimensionless TPG Λ is directly
shown in Figure 10. As Λ increases, relative error ε increases, and
its increase rate also grows (Figure 10).

ε �
∣∣∣∣∣∣∣∣∣∣∣∣∣
β1 · erf( �

2
√
2 ·

��
θ2

α1

√ ) ·
��
1
α1

√
+ β2 ·

��
1
α2

√
β1 ·

��
1
α1

√
+ β2 ·

��
1
α2

√ · (1 + β1 · Λ) − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣ × 100%.

(52b)
Table 5 shows the effect of neglecting MB in the modeling on

the dimensionless production rates from the two different layers.
From Table 5, it can be concluded that as the MB caused by the
TPG is neglected, the dimensionless production rate from the
high-permeability layer can be overestimated. In other words, the
preferential Darcian flow in the high-permeability layer can be
exaggerated. A larger dimensionless TPG introduces a larger
deviation. Therefore, MB conditions should be incorporated
into the mathematical modeling of 1D commingled
preferential Darcian flow and low-velocity non-Darcian flow
problems.

5 CONCLUSION

A basic nonlinear problem of the 1D commingled preferential
Darcian flow and non-Darcian flow with the TPG in a dual-
layered formation is studied. The flow in a low-permeability tight
layer obeys the low-velocity non-Darcy kinematic equation with
the TPG, while Darcy’s law holds for the flow in the high-
permeability layer. Also, a nonlinear dimensionless
mathematical model, incorporating MB conditions caused by
the TPG, is presented. The EAS of this nonlinear model is
obtained; in particular, its existence and uniqueness are both
proved strictly. From the EAS results, the influences of the
dimensionless TPG, dimensionless LTR, dimensionless LPR,
and dimensionless LESR on pressure distribution, transient
pressure, and layer production rate are discussed. It is found
that the existence of the TPG in a low-permeability tight layer can
intensify the preferential Darcian flow in the high-permeability
layer; and the intensity of the preferential Darcian flow in the
high-permeability layer is very sensitive to the LTR; however, the
effect of LPR and LESR on the production sub-rate is more

sensitive than that of LTR. Furthermore, it is strictly
demonstrated that MB conditions caused by the TPG should
be incorporated in the model. When the MB is neglected, the
preferential Darcian flow into the high-permeability layer can be
exaggerated. In addition, a relative error formula for calculating
transient pressure, caused by neglecting MB in the model, is
provided.

All in all, in the article, the major theoretical contributions are
as follows: an EAS of a fundamental MB problem of the 1D
commingled preferential Darcian flow and low-velocity non-
Darcian flow in a dual-layered formation is presented; its
existence and uniqueness are both strictly proved; then, the
commingled flow behavior is analyzed. Therefore, solid
theoretical foundations are provided here, which are very
significant for solving non-Darcian seepage flow problems in
engineering by numerical simulation validation and physical
experiment design. Finally, it is worth mentioning that in the
study, an impermeable barrier layer between the two layers exists,
and thus, the cross flow between the layers is not involved.
However, for the situation under consideration of the cross
flow, the corresponding moving boundary problem will
become more challenging and interesting. It will be our future
research field.
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APPENDIX A

As MB conditions caused by the TPG are neglected, an infinite
outer boundary condition (Liu et al., 2019a; Liu, 2019; Liu W. C.,
2020) has to be used instead. Then, without considering MB
conditions, a dimensionless mathematical model for the 1D
commingled preferential Darcian flow and non-Darcian flow
in a dual-layered formation is built:

2α1 · z
2U1

zX2
� zU1

zT
, 0≤X< +∞, (A1)

U1|T�0 � 0, (A2)
U1|X→+∞ � 0, (A3)

2α2 · z
2U2

zX2
� zU2

zT
, 0≤X< +∞, (A4)

U2|T�0 � 0, (A5)
U2|X→+∞ � 0, (A6)
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+ β2·

zU2
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∣∣∣∣∣∣∣X�0
� −(1 + β1 · Λ), (A7)

U2|X�0 � U1|X�0. (A8)

Similarity transformations including Eqs. 30–32 can still be
used here for the EAS of the self-similarity model formulated by
Eqs. A1–A8. By using the similar solution procedures in the
previous work (Liu W. C., 2020), the EAS of the model can be
expressed as follows:
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APPENDIX B

From Eq. 41, we have a dimensionless transient pressure (noted
as ~U):

~U � U1(0, T) � Λ · θ · exp( θ2

2α1
) · 2T1

2. (B1)
~U corresponds to the model in consideration of the MB caused

by the TPG.
By using Eq. 43, Eq. B1 can be equivalent to the following

equation:
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From Eq. A9, we have another dimensionless transient
pressure (noted as U

−
):
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U
−
corresponds to the model without consideration of the MB

caused by the TPG.
Then, when MB is not considered in the modeling, a relative

error ε can be directly formulated by Eqs. B1 and B3:

ε �
∣∣∣∣∣∣∣∣∣∣U
−

~U
− 1

∣∣∣∣∣∣∣∣∣∣
�
∣∣∣∣∣∣∣∣∣∣∣∣∣
β1 · erf( �

2
√
2 ·

��
θ2

α1

√ ) ·
��
1
α1

√
+ β2 ·

��
1
α2

√
β1 ·

��
1
α1

√
+ β2 ·

��
1
α2

√ · (1 + β1 · Λ) − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣ × 100%.

(B4)

Frontiers in Energy Research | www.frontiersin.org August 2022 | Volume 10 | Article 94160518

Wang et al. Commingled Preferential Darcian and Non-Darcian Flow

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


NOMENCLATURE

Ct1 comprehensive compressibility coefficient of the low-permeability layer,
(0.1 MPa)−1

Ct2 comprehensive compressibility coefficient of the high-permeability layer,
(0.1 MPa)−1

D1 LPR of the low-permeability tight layer, dimensionless

D2 LPR of the high-permeability layer, dimensionless

F Function defined by Eq. 44, dimensionless

h1 thickness of the low-permeability tight layer, cm

h2 thickness of the high-permeability layer, cm

H1 LTR of the low-permeability tight layer, dimensionless

H2 LTR of the high-permeability layer, dimensionless

k1 permeability of the low-permeability tight layer, μm2

k2 permeability of the high-permeability layer, μm2

kavg thickness-weighted formation permeability, μm2

L wideness of the low-permeability tight layer and high-permeability
layer, cm

p1 pressure in the low-permeability tight layer, 0.1 MPa

p2 pressure in the high-permeability layer, 0.1 MPa

pi initial pressure, 0.1 MPa

Q0 total production rate, cm3·s−1

Q1D dimensionless production rate from the low-permeability tight layer,
dimensionless

Q2D dimensionless production rate from the high-permeability layer,
dimensionless

S transient moving boundary distance, cm

t time, s

T dimensionless time, dimensionless

U1 dimensionless pressure in the low-permeability tight layer, dimensionless

U2 dimensionless pressure in the high-permeability layer, dimensionless

~U dimensionless transient pressure when the moving boundary is considered
in the dimensionless model, dimensionless

U
−

dimensionless transient pressure when the moving boundary is not
considered in the dimensionless model, dimensionless

x distance, cm

X dimensionless distance, dimensionless

x, y and z coordinate axes in rectangular coordinate systems, as shown in
Figure 1

α1 and α2 defined parameters, dimensionless

β1 and β2 defined parameters, dimensionless

δ dimensionless moving boundary distance, dimensionless

ε relative error, dimensionless

η, θ, ξ and ψ relevant similarity transformation variables, dimensionless

θ0 unique positive solution of Eq. 43, dimensionless

θ1 positive value of θ which makes f(θ1) > 0, dimensionless

λ threshold pressure gradient, 0.1 MPa cm−1

Λ dimensionless threshold pressure gradient, dimensionless

μ fluid viscosity, mPa·s
υ1 fluid velocity in the low-permeability tight layer, cm·s−1

υ2 fluid velocity in the high-permeability layer, cm·s−1

υw0 constant average flow velocity, cm·s−1

φi1 initial porosity of the low-permeability tight layer, f

φi2 initial porosity of the high-permeability layer, f

ω1 LESR of the low-permeability tight layer, dimensionless

ω2 LESR of the high-permeability layer, dimensionless
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