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INTRODUCTION

Condensation is a ubiquitous gas–liquid phase change process and is widely applied in industrial
fields, including chemical industry, heat transfer and exchange (Zhang et al., 2017), water collection,
seawater desalination, thermal management (Liu et al., 2013), etc. There are fundamentally two
modes of condensation, that is, filmwise and dropwise, whereas the dropwise condensation is
supposed to be superior as it can provide greater nucleation density, faster droplet departure, and
efficient surface renewal capability induced by faster droplet shedding. With the rising energy crisis
across the globe, conceiving the dropwise condensation is highly necessary, which is deemed to be
conducive in controlling and improving the energy utilization efficiency particularly in applications
of heat transfer. Regarding this, advanced surface science has played a great role, leading to
bioinspired functional surfaces (i.e., prepared by mimicking the surface structures, morphology,
and chemistry of the lotus leaf, pitcher plant, desert beetle, and bamboo leaf) that have served as the
competitive alternatives compared with the pristine surfaces (e.g., copper, aluminum, steel, and
glass). In brief, various bioinspired functional surfaces have been recently proposed and investigated
to realize the dropwise condensation, such as superhydrophobic surfaces that can promote droplet
jumping; slippery liquid-infused porous surfaces (SLIPSs) that have self-healing ability and can
lessen the adhesion force between the liquid and surfaces; wettability gradient surfaces that can
promote droplet self-propulsion even on the horizontally positioned substrates and bi-philic surfaces
that combine the advantages of both hydrophilic and hydrophobic characteristics. This review
summarizes the fundamental factors affecting condensation, and provides the recent progress on
bioinspired functional surfaces for dropwise condensation heat transfer enhancement.

Factors Affecting the Condensation
Wettability
Wettability is a significant factor influencing the condensation characteristics to the greatest extent,
based on which the whole life cycle of the droplets, including nucleation, growth, and shedding, is
decided. Wettability is further affected by the types of surfaces involved (flat or rough) and four
surface regimes, encompassing the superhydrophobic, hydrophobic, hydrophilic, and
superhydrophilic. According to the classical nucleation theory, nucleation prefers to take place
on hydrophilic regions compared with hydrophobic regions because of the higher energy barrier on
the hydrophobic regions (Varanasi et al., 2009). While droplets on hydrophobic regions can slide
faster because of the less adhesion force than those on hydrophilic regions. Thus, wettability of
pristine surfaces needs to be modified by adopting the bioinspired technology, ensuring that the
droplet dynamics is efficient which is necessarily required even during dropwise condensation
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(Gulfam et al., 2022). Briefly, controlling the wetting behaviors of
the droplets through rationally designed surfaces that can
promote the droplet nucleation and detachment help enhance
the dropwise condensation heat transfer.

Non-Condensable Gases
Non-condensable gases (existing between the surface and vapors) are
one of the main external factors influencing the condensation heat
transfer, increasing the diffusion resistance of steam, and forming the
additional thermal resistance at the interface. The quantitative study has
demonstrated that even 1% of non-condensable gases can result in
approximately 50% reduction in dropwise condensation heat transfer
(Ma et al., 2008). Increasing the velocity (Ji et al., 2020), turbulence
(Eimann et al., 2018) of the vapor, and promoting the droplet jumping
(Zhang et al., 2020) can weaken the adverse effect of non-condensable
gases. Besides, several studies have shown that superhydrophobic
surfaces with hierarchical structures have better condensation heat
transfer than hydrophobic surfaces in the presence of a tiny amount
of non-condensable gases. This is due to the more stable Cassie state of
droplets formed by the gases trapped in the cavities of micro-nano
structures of superhydrophobic surfaces (Ma et al., 2012;Hu et al., 2015).

Surface Subcooling
Surface subcooling provides the necessary driving force for
condensation, which is defined as the temperature difference
between the steam and surface. The droplet nucleation rate
improves with the increasing subcooling degree, resulting in higher
condensation heat flux. However, at higher subcooling degrees
particularly for bioinspired functional surfaces, the heat transfer
efficiency is underperformed due to overflow of condensate

(Gulfam et al., 2022), for example, a decline in the condensation
heat transfer coefficient has been experimentally reported (Lee et al.,
2013). Therefore, it is a challenge to explore further ways aiming to
improve dropwise condensation heat transfer under high subcooling
degree for bioinspired functional surfaces (Wen et al., 2018).

BIOINSPIRED FUNCTIONAL SURFACES

Superhydrophobic Surfaces
Superhydrophobic slippery surfaces (e.g., lotus leaf) have the largest
contact angle and lower sliding angle compared with other surfaces,
provided that the droplets maintain a more stable Cassie state.
During condensation, droplet jumping triggered by direct shedding
or coalescence-induced shedding is an exclusive phenomenon on the
superhydrophobic surfaces, promoting the efficient droplet removal
and accelerating the refreshment of the surfaces (Donati et al., 2020).
Boreyko et al. (Boreyko and Chen, 2009) first observed the droplet
jumping caused by coalescence on the superhydrophobic surfaces
with hierarchical structures. They demonstrated that this
phenomenon was induced by the discharge of surplus surface
energy during the coalescence process. Miljkovic et al. (2013b)
experimentally proved that droplet jumping could advance the
heat transfer coefficient by 30%. In addition, the return of the
jumping droplets driven by gravity also influences the dropwise
condensation heat transfer. In that case, Miljkovic et al. (2013a)
further strengthened the condensation heat transfer performance by
50% enhancement by applying the electric field, with which the
droplets could jump in a specific direction and suppress the return of
the jumping droplets. Nevertheless, the superhydrophobic surfaces
are not durable for longer condensation operations due to the
emergence of the Wenzel state, resulting in the enhanced
adhesion force, greater droplet pinning, and flooding on the surface.

Slippery Liquid-Infused Porous Surfaces
Slippery liquid-infused porous surfaces (SLIPSs) are composed of the
porous substrate and injected lubricant that is immiscible with the
condensate (e.g., pitcher plant) (Wang et al., 2017; Wang et al., 2018).
The porous substrate functions as the carrier of lubricant with low
surface energy (Gulfam et al., 2020). SLIPSs have self-healing ability
because the lubricant can spread evenly on the substrate driven by
capillary flow (Gao et al., 2020). Different from the superhydrophobic
surfaces, the lubricant infused in SLIPSs replaces the air entrapped in
themicro-nano structures. In general, SLIPSs have lower adhesion and
smaller contact angle hysteresis (Dai et al., 2018), which can prevent the
droplet pinning and accelerate the faster removal of the droplets. Park
et al. (2016) proposed asymmetric-bump–like SLIPSs, reporting the
enhanced condensation heat transfer. Xiao et al. (2013) proved that
SLIPSs can heighten the condensation heat transfer by 100% compared
with pristine surfaces. Furthermore, the rational selection of the
lubricant can implement the condensation heat transfer
enhancement of the low surface tension liquids. For instance,
ethanol and hexane can realize the firm dropwise condensation on
SLIPSs (Sett et al., 2019), achieving 100% enhancement in heat transfer.
However, loss of the lubricant is themajor challenge for the application
of SLIPSs that degrade their performance (Gulfam et al., 2022).
Therefore, improving the operational and shelf-life durability of

FIGURE 1 | Bioinspired functional surfaces for dropwise condensation
heat transfer enhancement.
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SLIPSs deserves further investigations, in which the lubricant loss via
evaporation, physical shearing, and cloaking need to be avoided.

Wettability Gradient Surface
The bioinspired functional surfaces consisting of different wetting
regimes, spanning between superhydrophobic, hydrophobic,
hydrophilic, and superhydrophilic regimes, where the contact
angle is changed as the spatial derivative (e.g., desert beetle), are
called wettability gradient surfaces (WGS). They are widely known
to provide directional self-propulsion of droplets, which, however,
strongly depends on the sticky or slippery dynamics. For example,
the directional self-driven motion of droplets from a hydrophobic
regime to a hydrophilic regime has been achieved onWGS (Liu et al.,
2017; Sommers et al., 2020), which has the great potential to further
expedite droplet removal and enhance the condensation heat
transfer (Tokunaga and Tsuruta, 2020; Deng et al., 2022) The
mobility of droplets on the surface with radial wettability gradient
was investigated experimentally in the pure steam (Daniel et al.,
2001), where the droplets demonstrated coalescence with other
droplets during the motion from a hydrophobic regime to a
hydrophilic regime, resulting in the increased droplet velocity.
Consequently, the surface promoted the droplet removal and
heightened the dropwise condensation. Macner et al. (2014)
further studied the droplet size distribution on a radial gradient
surface during condensation, and results revealed that droplets
would grow through direct condensation as well as via
coalescence and then detach from the surface spontaneously,
making room for new nucleation sites. Therefore, the gradient
surface was occupied by small droplets, which guaranteed
sufficient heat exchange area instead of developing into the liquid
film and increasing the thermal resistance. However, more efforts are
still indispensable to resolve the challenges encountered by WGS,
including surface fabrication complexities, increasing the droplet
velocity, achieving the longer droplet transport range, avoiding the
droplet spreading, and pinning in the hydrophilic/superhydrophilic
regimes, amongst others.

Bi-philic Surfaces
The bioinspired functional surfaces combining the bonus of both
hydrophilic and hydrophobic regimes are called bi-philic surfaces
(e.g., bamboo leaf). Indeed, droplets can shed swiftly on the
slippery hydrophobic surface; however, the high-energy barrier
of the hydrophobic regime is still a challenge, rendering the
droplet nucleation more difficult (Shang et al., 2018). To
overcome such deficiencies, various bi-philic surfaces have
been investigated (Wilke et al., 2020), which can
simultaneously enhance nucleation and remove the droplets.
The design of bi-philic surfaces can include various structures,
that is, stripes, grooves, patches, and fins. Peng et al. (2015)
carried out an experimental study in pure steam, mainly

exploring the influence of the size of hydrophilic stripes on
condensation heat transfer. Results revealed that with the
optimal size of hydrophilic stripe, heat flux of the hybrid bi-
philic surface was 23% higher than that of the entire hydrophobic
surface. Besides, hydrophilic groove structure can help reduce
thickness of the condensate and transport it efficiently in the
groove by surface tension (Peng et al., 2020; Chen et al., 2021),
reducing the thermal resistance and improving the heat transfer
performance (Ji et al., 2020). A 3D hybrid surface with a
superhydrophobic ridge and hydrophilic microgrooves was
prepared by Lo et al. (2019). The droplets on the
superhydrophobic ridge moved spontaneously into the
hydrophilic grooves, and the liquid bridges shed through the
grooves, which increased the droplet detachment frequency at
high subcooling and resulted in higher condensation hear
transfer. Also, theoretical models have been recently presented
(Xie et al., 2020), addressing the condensation heat transfer on the
bi-philic surfaces. In addition to the aforementioned works,
further efforts are recommended to establish theoretical
models on the microgroove-based bi-philic surfaces.

CONCLUSION

Bioinspired functional surfaces have great potential to improve
the condensation heat transfer by switching the filmwise mode
into dropwise mode. The main factors affecting dropwise
condensation were discussed. During dropwise condensation,
the droplet nucleation, growth, and shedding are highly
influenced by the surface wettability and droplet dynamics,
which should indeed ensure slippery characteristics for
efficient heat transfer. Non-condensable gases should be
avoided in order to achieve faster condensation process.
Subcooling degree should be controlled depending on the
application demands because bioinspired functional surfaces
normally lead to the best results at low subcooling as reported
until now. Bioinspired functional surfaces, including
superhydrophobic surfaces, slippery liquid-infused porous
surfaces, wettability gradient surfaces, and bi-philic surfaces,
need further efforts addressing the challenges such as
durability enhancement, reducing the fabrication complexities,
and subjecting them abundantly in condensation heat transfer
applications at industrial scales.
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