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Accurate estimation of the state of charge plays a very important role in ensuring the safe
and effective operation of battery lithium-ion batteries and is one of the most important
state parameters. However, the estimation method of state of charge has various
limitations, so it is of great significance to improve the accuracy and calculation speed
of the method. In this article, we propose an improved recurrent neural network model to
estimate lithium-ion battery state of charge. Simple recurrent units are used to replace the
traditional recurrent neural network basic unit or long short-term memory unit, and the
computation speed is improved by implementing parallel processing. Finally, the prediction
results of the model are fed into an unscented Kalman filter module to remove the
interference of noise on the prediction. This article studies the prediction accuracy and
speed of Samsung INR 18650-20R and INR 18650-25R under various ambient
temperatures, initial state of charge values, and electric vehicle drive cycles. The
results show that the proposed method can obtain accurate state of charge estimation
results in the INR 18650-20R data set. For different temperatures and initial SOC, the root
mean square error is less than 0.015 and 0.016, and the prediction speed is about 30%
higher than that of long short-term memory. In the INR 18650-25R data set, for three
different driving cycles, the root mean square error is less than 0.034, and the average test
speed is about 2.7s, which proves the effectiveness of this method in estimating accuracy
and speed.

Keywords: state of charge, lithium-ion batteries, simple recurrent units, unscented Kalman filter, long short-term
memory

1 INTRODUCTION

With the continuous advancement of ecological environment construction and the key support of
governments around the world, the development of low-energy-consumption, pollution-free electric
vehicles is rapid, and lithium-ion batteries are widely used in electric vehicles due to their superior
characteristics. One of the main technical bottlenecks of electric vehicles is battery technology. The
state prediction is the main difficulty of battery management. State of charge (SOC) of the battery
reflects the remaining energy of the battery, usually using the definition given by the United States
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Advanced Battery Consortium, that is, the percentage of the
remaining power of the battery in the rated capacity under the
condition of a specific discharge rate.

SOC � Qs

Qz
(1)

where Qs is the remaining capacity of the battery, and Qz is the
rated capacity of the battery. SOC quantifies the remaining energy
of the battery and indicates how long the battery can be
maintained before charging. Therefore, an accurate
understanding of SOC is necessary for the mileage and travel
planning of electric vehicles, which plays an important role in
ensuring that the battery works within the safe working window
and prolonging the cycle life.

However, the definition is that in the case of constant current
discharge, in practical work, rate, temperature, and initial state of
discharge will make the calculation of battery power inaccurate.
In addition, the rated capacity of the battery is affected by
temperature, aging, and other factors, which often cannot
show the actual capacity of the battery (Yong et al., 2015;
Hannan et al., 2017). SOC estimation is limited by complex
battery dynamics and different operating conditions, such as
temperature, self-discharge, hysteresis, and battery aging. It
cannot be measured directly but can only be derived indirectly
from measurable battery parameters, so real-time and accurate
SOC estimation is the focus and difficulty in electric vehicle
technology (Dong et al., 2018a). In recent years, there has been a
lot of research on improving the accuracy of SOC estimation from
the aspects of battery model, parameter identification, and state
estimation algorithm. However, SOC estimation methods have
various limitations all the time. It is of great significance to
improve the accuracy and real-time performance of SOC
estimation methods.

1.1 Literature Review
Commonly used SOC estimation methods are mainly divided
into three categories: traditional methods, filtering methods based
on battery model, and data-driven methods (Yang et al., 2019a).
Traditional SOC estimation methods are most widely used in
practice, including the ampere hour (AH) method and the open-
circuit voltage (OCV) method. The AH method calculates the
amount of charge released within a certain period of time by
calculating the integral of the current over time and then adding
or subtracting it from the initial value to obtain the final SOC. The
calculation formula is as follows:

SOC � SOC0 − 1
C
∫t

0
kIdt (2)

where SOC0 is the initial capacity, C is the rated capacity, I is the
charge or discharge current at eachmoment, and k is the coulomb
efficiency coefficient. Only the current changes in the calculation
process of the AH method, so it is easy to monitor in real-time,
and this method is generally used for all kinds of batteries, so it is
the most widely used method in the industry (Truchot et al.,
2014). However, the SOC estimation accuracy based on the AH
method depends on the accuracy of SOC0 and current

measurement. Unknown SOC0 or inaccurate current sampling
accuracy or frequency will lead to SOC calculation error, and its
open-loop working principle is difficult to avoid cumulative error
(Sepasi et al., 2014). The OCV method estimates the SOC by
fitting the mapping relationship between the OCV and the SOC
of the battery through a large number of experiments and
establishing an OCV-SOC table. This method requires the
battery to stand for a period of time to make the electrolyte in
the battery reach a complete equilibrium state and obtain a more
accurate OCV. However, the long-time standing makes it unable
to be used for vehicle real-time SOC estimation, which is often
used for offline detection (Dong et al., 2021). In addition, the
OCV-SOC curve of the lithium-ion battery has a flat area, and a
slight change in voltage in this area will cause a large SOC error,
which has high requirements for the accuracy of the voltage
sampling circuit (Ji et al., 2022).

In order to improve the accuracy of SOC real-time estimation
and solve the problem of cumulative error, the filtering method
based on the battery model has attracted extensive attention
(Rahimi-Eichi et al., 2013). This method needs to model the
battery first and then realize SOC estimation through an adaptive
filtering method. The performance of this SOC estimation
method largely depends on the quality of the equivalent model
and parameter identification. Battery models generally include an
electrochemical model (EM) based on a porous electrode and
concentrated solution theory and an equivalent circuit model
(ECM) using various circuit components to form a circuit to
describe various dynamic changes in the battery (Chen et al.,
2018). EM is limited by different battery materials and cannot be
used for different types of batteries; it is difficult to adapt to the
changes in a working environment. Therefore, ECM is preferred
in the model-based SOC estimation method. The description of
ECM is more simple and more intuitive, the equation is simpler,
the detailed calculation of the internal electrochemical process is
avoided, and the parameters of the model are easier to identify
(Lai et al., 2018; Dong et al., 2018b). Common ECMs include Rint

(Nemes et al., 2019), Thevenin (Hentunen et al., 2014), and
PNGV (Zhang et al., 2017). In order to realize dynamic SOC
estimation, the filtering algorithm is often combined with a
battery model to form a model-based SOC estimation method.
The model-based estimationmethod uses a closed-loop structure,
which can estimate the SOC with an unknown initial state and
adaptively adjust the cumulative error. The widely used filtering
methods include extended Kalman filter (EKF), unscented
Kalman filter (UKF), particle filter (PF), and H infinite filter
(HIF). He et al. (2013) proposed an enhanced battery model, used
UKF to estimate SOC, and compared the estimation results of the
EKF algorithm. Wang et al. (2018) proposed an improved UKF
noise suppression algorithm to estimate the SOC. The algorithm
has the advantages of moderate computational complexity and
short computational time. Especially under the obvious noise
interference, it can effectively suppress the signal noise. Zhang
et al. (2012) proposed a SOC estimation method based on HIF.
This method can still ensure the SOC estimation accuracy
without requiring the accuracy of the system and
measurement error and is not sensitive to the uncertainty of
external signals and dynamic models. The model-based method
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can calculate the error gain through the nonlinear estimation
algorithm and effectively improve the accuracy of SOC. However,
the online identification of model parameters is difficult, and the
lithium-ion battery is a highly complex nonlinear time-varying
system (Dong et al., 2019). The established battery model is
difficult to accurately simulate the battery state under different
discharge conditions. The estimation performance depends on
the model accuracy and parameter identification degree of
accuracy.

The data-driven method refers to the direct estimation of SOC
by measuring parameters such as current, voltage, and
temperature. Different from the model-based method, it does
not need to understand the internal chemical reaction process of
the battery or establish an equivalent model. It only directly
establishes the nonlinear mapping relationship between SOC and
measurements (Yang et al., 2016), which avoids the complex
process of model parameter identification and the use of filtering
algorithms for gain calculation (Chemali et al., 2018). In recent
years, with the rapid development of the field of machine
learning, the SOC estimation method based on neural
networks and deep learning has received extensive attention.
The intelligent algorithm automatically learns the parameters
of the network and obtains the mapping relationship between
battery measurements and SOC so as to realize the real-time and
accurate estimation of SOC (Hossain lipu et al., 2019; Hu et al.,
2016). Cui et al. (2018) combined an adaptive wavelet neural
network with discrete wavelet transform and proposed a new
hybrid wavelet neural network model based on wavelet transform
and the Levenberg Marquardt algorithm to estimate the SOC of
lithium-ion batteries. Chaoui and Ibe-Ekeocha (2017) et al. used
the recurrent neural network (RNN) to estimate the SOC and
health status of lithium-ion batteries and used two different types
of batteries to evaluate their performance. The results show that
the RNN model is robust to battery aging, hysteresis, dynamic
current curve, nonlinear dynamic characteristics, and parameter
uncertainty. When the sequence becomes longer due to the
phenomenon of gradient disappearance or explosion in the
process of back propagation training, RNN cannot use the
training framework based on the classical gradient to solve the
long-term dependence, which makes the gradient-based training
method difficult to apply (Bengio et al., 1994; Pascanu et al.,
2013). In order to solve this problem, RNN with long short-term
memory (LSTM) (Hochreiter and Schmidhuber, 1997) and gated
recurrent unit (GRU) (Cho et al., 2014) is proposed, which
essentially weakens the probability of gradient disappearance.
Yang et al. (2019a) used an LSTM-RNN network to simulate the
complex dynamic process of lithium iron phosphate battery. The
network is trained offline with battery data to establish the
mapping relationship between battery measurements and SOC.
The LSTM unit performs a nonlinear transformation on the input
data, generates a storage state for historical information, and
establishes a dependency relationship between SOC in different
time periods. Yang et al. (2019b) proposed a SOC estimation
model based on GRU. GRU-RNN has fewer layers and neurons, a
simple structure, and easy training. The training process takes
several hours in a GPU environment, but the test time is very
short, so it is suitable for real-time vehicle applications. Generally,

the data-driven method depends on the analysis of the
measurable parameters of the battery in the process of charge
and discharge. It does not need to have an in-depth
understanding of the internal characteristics of the battery and
the chemical reaction process. It avoids the problems of difficult
parameter identification and high computational complexity of
using a nonlinear observer in the model-based method. It has the
advantages of speed and generalization. Therefore, in this study,
the deep neural network method and filtering algorithm are
combined to estimate the SOC for lithium-ion batteries.

1.2 Contributions of the Work
Existing SOC estimation models based on LSTM and GRU and
their improved versions can significantly improve the estimation
accuracy. Since the estimation performance of data-driven
methods is highly dependent on the quality and quantity of
data, a large amount of data is often needed to obtain features
between sequences in order to ensure the accuracy of deep
models. However, due to the large amount of data, the
training of RNN and its variant models in traditional parallel
computing takes too long, and the time consumption in one
operation cycle increases. The low computational efficiency
increases the time for SOC acquisition, and it is difficult to
meet the real-time requirements in practical applications.

In order to solve this problem, this work proposed an
improved RNN-based method combined with UKF. While
considering the spatiotemporal dependence between battery
charge and discharge sequences, simple recurrent units (SRU)
is used to realize parallel computing to improve the calculation of
RNN, and UKF is used to smooth the estimation results and filter
out noise to improve the anti-interference ability of the algorithm.
In order to verify the effectiveness and robustness of the proposed
method, experiments and analysis are carried out through a test
bench and an authoritative data set. The effects of various
temperatures, initial SOC, and drive cycles on the estimation
accuracy and speed are discussed. The contribution of this work is
as follows.

1) A SRU–RNN model for SOC estimation is proposed, which
can capture the long-term time dependence of battery
sequence in the forward and backward directions and
ensure the accuracy of SOC estimation. In addition, the
parallel mechanism can significantly improve the
computing power of the constructed model.

2) A UKF is added to the SRU model to filter the model output
noise and improve the stability of the model estimation
results.

3) The effects of various temperatures, initial SOC, and drive
cycles on the accuracy of the model are analyzed through
experiments, and the effectiveness of the proposed SOC
estimation method based on SRU–UKF is verified by using
a test bench and a public data set.

1.3 Organization of This Article
The rest parts of this article are as follows: Section 2 introduces
the modeling and algorithms in detail and introduces a SOC
estimation method using SRU–UKF; Section 3 and Section 4
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introduce the data preparation, experiment setup, verifications
and analysis; Section 5 presents the conclusion.

2 SRU–UKF BASED SOC ESTIMATION
METHOD

2.1 SRU Network
RNN can increase the consideration of time correlation, which
overcomes the disadvantage that the traditional ANN model
cannot capture the relationship between data and time, and it is
very suitable for the application of time series prediction. By adding
cyclic connections to neurons, RNN can build sequence-to-sequence
mapping between input and output. Therefore, the output of each
time step is affected by the input of the previous, which makes RNN
have the characteristic of “information storage”. Although RNN can
process time-series data, with the passage of time, RNN may not be
able to capture the long-term correlation or even cause gradient
disappearance or explosion. The basic structure of the RNNmodel is
the unit, among which the more common ones are the LSTM unit
and the GRU. They have a gating mechanism inside, which can
adjust the information flow and understand which data in the
sequence needs to be retained or discarded. By passing relevant
information to long sequences for estimation in this way, RNN
models can solve short-term memory problems. However, the
development of LSTM and GRU comes from the increased
model capability and related calculation, which often involves
larger and deeper neural networks. Although the deep neural
network has brought significant performance improvement, it
also greatly increases the training cost of the model.

In order to enhance computing efficiency, parallel processing
methods have been widely used in the field of deep learning. For
example, the training speed of convolutional neural networks
accelerated by graphics processing units has been significantly
improved, but LSTM cannot achieve parallel processing. This is
because LSTM needs the output state ht-1 at the previous moment
when calculating ht; that is, LSTM must operate the samples one

by one in a sequential order to output the result (Dong et al.,
2022). This way of computing makes it impossible to play the best
role in an environment where multiple machines are computing
in parallel. In order to enable RNN to achieve parallel processing
and improve training speed, SRU was published in 2017. SRU
retains the loop structure of the LSTM. By adjusting the sequence
of operations, the matrix multiplication is placed outside the
serial loop, and the operation of multiplying and then adding is
placed in the serial loop so that the calculation of ht no longer
depends on the calculation of the previous moment, which
improves the operation speed. The process of traditional
LSTM serial computing and SRU parallel computing is shown
in Figure 1. Compared with traditional serialized computing,
SRU sets up an independent simple output in each step and then
combines the outputs to achieve a high degree of parallelism.

Similar in nature to LSTM, SRU is a basic unit of RNN. In
addition to avoiding the disappearance and explosion of gradients
after many time steps, its parallel computing capability can also
effectively improve the training speed of the model. SRU includes
forget gate, reset gate, input xt, output ht, and status of the unit Ct.
A schematic diagram of an SRU is shown in Figure 2.

In order to get rid of the dependence of ft, rt, and Ct on ht-1 and
maintain parallelism and independence, a complete drop
connection is proposed to remove the dependence of ht-1. The
implementation process of SRU is as follows.

~xt � Wxt (3)
ft � σ(Wfxt + bf) (4)
rt � σ(Wrxt + br) (5)

Ct � ft ⊙ Ct−1 + (1 − ft) ⊙ ~xt (6)
ht � rt ⊙ g(Ct) + (1 − rt) ⊙ xt (7)

where ft is the activation vectors of the forget gate, and rt is the
activation vectors of the reset gate. W and b denote the weight
matrix and bias parameter, and σ is the sigmoid activation
function given by

σ(x) � 1
1 + exp(−x) (8)

FIGURE 1 | Traditional LSTM serial computing and SRU parallel
computing.

FIGURE 2 | Schematic diagram of an SRU.
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It can be seen that ~xt, ft, and rt can be calculated in parallel, as
follows:

UΤ � ⎛⎜⎝W
Wf

Wr

⎞⎟⎠[x1, x1,/, xL] (9)

where L is the sequence length, and U ∈ RL×3d is the calculation
matrix.

2.2 Unscented Kalman Filter
The essence of the Kalman filter (KF) is a series of mathematical
calculation equations, which are often used to predict or correct,

and it is an optimal estimation algorithm. The classical KF is
only suitable for linear systems, but its estimation performance
in nonlinear systems is weak, so on the basis of KF, different
forms such as EKF and UKF are derived. EKF uses the
expansion of the Taylor series and ignores the higher-order
terms, so the accuracy will be reduced. At the same time, the
EKF also needs to calculate the Jacobian matrix, which makes
the calculation more complicated. In contrast, UKF combines
unscented transform (UT) and KF. There is no need to calculate
the complex matrix differentiation and simplify the Taylor
series, but the unscented transformation is used to deal with
the nonlinearity of the system, which greatly reduces the
amount of calculation. Therefore, in this work, we used UKF
to improve the SOC estimation model based on SRU and
optimize the estimation performance of the network model
while enhancing the computing power.

The UT first samples the estimated points and approximates
the state variables in the system. This series of sampling points is
called Sigma points. The mean and covariance information
between the Sigma points are the same, and the Sigma point
can capture the state estimation of the system through nonlinear
propagation and weighting calculation. The dimension of the
state vector is n, xa

k−1, and Pk−1 are the mean and covariance of the
Sigma points, and the specific procedure of the UKF algorithm is
listed in Table 1.

2.3 SRU–UKF Model for SOC Estimation
The SRU–RNN structure not only makes it possible to capture
the dependencies of time series like LSTM but also increases
the model’s ability to handle nonlinear input data by taking
advantage of its parallel computing characteristics. UKF
revises the estimated result curve to improve the anti-
interference of the network model. Therefore, this
combinatorial structure can improve the performance of the
SRU–UKF proposed in this article. The overall structure of the
proposed SRU–UKF model for lithium-ion battery SOC
estimation is shown in Figure 3. The input of the model is
battery measurable parameters, such as terminal voltage,
current, and ambient temperature, which can be expressed
as x = [T, I, V], T = [t1, t2, . . . , tn], I = [i1, i2, . . . , in], and V =
[v1, v2, . . . , vn]. The hidden layer uses the SRU with memory
feature to obtain the temporal features of the measured signal.
The fully connected layer maps all the distributed features
output by the SRU to the sample label space and finally merges
the outputs. The output layer gives the pending state of the
SOC: ŷ = [SOC1, SOC2, . . . , SOCn]. Finally, the undetermined
state passes through the UKF module to obtain the final SOC
estimate. Eqs 8 and 9 are the state equation and measurement
equation of UKF, respectively.

SOCk+1 � SOCk − (ηΔt
QN

)ik + wk (10)
Ek � SOCk + vk (11)

where ik is the current value at time k, SOCk is the estimated state
value, η is the charge-discharge efficiency, wk and vk are the

TABLE 1 | The calculation procedure of the UKF.
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process noise and measurement noise, respectively, and Ek is the
estimation of the SRU–RNN network.

Due to the different dimensions of ambient temperature,
voltage, and current, if the raw sequence is directly fed into
the network for training, the network will converge slowly or
even be difficult to converge. Therefore,
minimum–maximum normalization is used to process the
input sequence of the network, and the sequence is scaled
between 0–1 to improve the accuracy of the network and
eliminate the impact of inconsistent data dimensions on
network performance. The minimum–maximum
normalization is as follows:

xi � xi − xmin

xmax − xmin
(12)

In deep network models, the network structure design is
crucial. Appropriate network structure or hyperparameter
selection makes the training results easier to converge and
more accurate. Common hyperparameters related to the
network structure include the number of hidden layers and
neurons. The parameters related to the data are the number of
input and output dimensions and time steps. Parameters related
to training are batch size, learning rate, and loss function. In this
study, the batch size and time step of SRU–UKF are set to 128
and 50, respectively, through multiple trials. The number of
neurons in a single hidden layer is 300. ReLU is used as the
activation function in the output layer with the formula f(x) =
max (0, x). Considering possible overfitting during the training
phase, the hidden layer uses a dropout algorithm with a dropout
percentage of 30%. In order to obtain better training results, the
optimization algorithm of the network is Adam. The mean
squared error of the estimated SOC from the measured SOC as a
loss function:

L(θ′) � 1
2
(SOCt − SOCp

t )2. (13)

Three evaluation criteria, including max error, mean
absolute error (MAE), and root mean square error (RMSE),
are used in this research to evaluate the estimation
performance:

max error � max
∣∣∣∣SOC − SOCp

t

∣∣∣∣ (14)

MAE � 1
T
∑T
t�1

∣∣∣∣SOC − SOCp
t

∣∣∣∣ (15)

RMSE � 1
T

���������������∑T
t�1
(SOC − SOCp

t )
√√

(16)

3 LITHIUM-ION BATTERY DATA
PREPARATION

3.1 EV Drive Cycles
The driving cycle, also known as the vehicle test cycle, is a
speed–time curve that describes the driving of the vehicle. In
the study of battery characteristics, the speed of the vehicle is
often converted into the change of power or current. The driving
cycle embodies the kinematics characteristics of vehicle road
driving. It is an important and common basic technology in
the automotive industry, and it is also the main benchmark for
battery testing and calibration and optimization of various
performance indicators. In recent years, developed countries
such as Europe, the United States, and Japan have adopted
standards adapted to their respective driving conditions for
vehicle performance calibration optimization and energy
consumption or emission certification. At present, the most
widely used are the vehicle driving conditions specified by
EPA, which include Federal Test Procedure (FTP), Urban
Dynamometer Driving Schedule (UDDS), US06, and LA92.

FIGURE 3 | The SRU–UKF structure for SOC estimation of the lithium-ion battery.
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The target vehicle speed driving schedules of these four drive
cycles are shown in Figure 4. For FTP driving schedules, duration
= 1874 s, distance = 11.04 miles, and average speed = 21.19 mph.
For UDDS driving schedules, duration = 1,369 s, distance = 7.45

miles, and average speed = 19.59 mph. For US06 driving
schedules, duration = 596 s, distance = 8.01 miles, and average
speed = 48.37 mph. For LA92 driving schedules, duration =
1,435 s, distance = 9.82 miles, and average speed = 24.61 mph.

FIGURE 4 | EPA vehicle speed driving schedules of four drive cycles: (A) FTP, (B) UDDS, (C) US06, and (D) LA92.

FIGURE 5 | Battery test loading profiles in INR 18650-20R dataset: (A) DST, (B) FUDS, (C) US06, and (D) BJDST.
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3.2 Li-Ion Battery Dataset From CALCE
In this work, the lithium-ion battery dataset from the Center for
Advanced Life Cycle Engineering (CALCE) at the University of
Maryland was one of the dataset sources used to validate the
proposed method. CALCE tested the INR 18650-20R lithium-ion
battery with a rated capacity of 2000 mAh; its test platform
included a test sample, incubator, Arbin BT2000 battery test
equipment, and a computer equipped with Arbin software. The
tests included four dynamic current configurations, including
Dynamic Stress Test (DST), Federal Urban Driving Schedule
(FUDS), US06, and Beijing Dynamic Stress Test (BJDST), and its
current configuration is shown in Figure 5.

All tests were performed at a low temperature of 0°C, room
temperature of 25°C, and a high temperature of 45°C, and the
initial SOC was 80% and 50%, respectively. Parameters such as
current, voltage, temperature, capacity, and power of the battery
were recorded. The sampling frequency was 1s. A complete
dynamic test process in the INR 18650-20R dataset includes
four stages: 1) Operate in a constant current–constant voltage
(CC-CV) charge mode: constant current 1 A charging to cut-off
voltage 4.2 V, and then constant voltage charging until the
current reaches 0.02 A. 2) Standstill for 2 h 3) Discharge to
80% or 50% SOC. 4) Standstill for 2 h; 5) Drive cycling
according to the standard dynamic current configuration until
the voltage drops to 2.5 V. The voltage distributions of the four
cycle conditions at 0, 25, and 45°C are shown in Figure 6.

The INR 18650-20R dataset from CALCE has the
characteristics of a scientific measurement scheme, high
precision of test instruments, and wide application in lithium-
ion battery research. It is an authoritative public dataset in the
field of lithium-ion battery research. It is widely used in the
research of lithium-ion battery SOC estimation methods, which
provides the possibility to compare the performance of various
SOC estimation algorithms.

3.3 Test Bench
Another source of dataset in this work was the test bench. The test
data of lithium-ion batteries under various environmental

conditions can be obtained by setting the test scheme flexibly.
The test bench is shown in Figure 7. It consists of a testing
sample, ESPEC GMC-71 temperature test chamber,
programmable electronic load IT8818B manufactured by
ITECH, BT3562 battery tester manufactured by HIOKI, and a
PC with IT9000 software. The IT9000 can provide test system
commands, setting constant discharge rate, programmable
current, test switch conditions, and monitor information.

This work tested a new Samsung INR18650-25R battery cell,
and Table 2 shows its basic specifications. The battery cells are
placed inside the ESPEC GMC-71 to simulate the charging and
discharging process of the cells under various temperature
conditions. Usually, the battery needs to be placed at the set
temperature for 2 h before the test to adapt to the environment.
The IT8818B can add programmable loads to simulate the
operation of the battery under different rates or driving cycles.
BT3562 can accurately measure the voltage and AC internal
resistance of the battery. Monitor and save test schedule via
PC and IT9000.

Throughout the experiments, drive cycles were chosen from EPA
standards and CALCE, including FTP, UDDS, US06, LA92, DST,
BJDST, and FUDS. The sampling period was 1s. The test was carried
out at a low temperature of 0°C, a room temperature of 25°C, and ahigh
temperature of 45°C. The specific steps of the experiment are as follows.

• Step 1: Initialization. Charging with 1C constant current,
when the voltage reaches 4.2 V, transferring to constant
voltage charging, until the charging current drops to
100 mA. At this point, the SOC can be considered 100%.

• Step 2: Simulation of the ambient temperature. Placing the
battery in an incubator for 2 h to ensure that the battery
temperature is consistent with the ambient temperature.

• Step 3: Discharge. Discharging according to the drive cycles
until the voltage reaches 2.5 V. The SOC of the battery is
considered to be 0%.

• Step 4: Charge. Charging with 1C constant current, when
the voltage reaches 4.2 V, transferring to constant voltage
charging, until the charging current drops to 100 mA.

FIGURE 6 | Voltage distribution at 0°C, 25°C, and 45°C: (A) DST, (B) FUDS, (C) US06, and (D) BJDST.
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• Step 5: Repetition of steps 2–4. The temperature is set to 0,
25, and 45°C, respectively.

• Step 6: Repetition of steps 2–5. The driving cycle is set to
FTP, UDDS, US06, LA92, DST, and FUDS, respectively.

Public datasets are often only tested for specific scenarios, such as a
single battery sample, a fixed ambient temperature sample, a fixed
charge-discharge rate, and a fixed working condition sample. The test
bench can obtain a large number of battery charge-discharge
measurements under various test conditions, which greatly
improves the test conditions of the public data set, so it is of great
significance for SOCestimation.However, comparedwith authoritative
public data sets, it has the characteristics of insufficient test accuracy,
difficulty in collecting battery aging data, few application scenarios, and
poor feasibility of battery performance estimation methods. Therefore,
in this work, the proposed SOC estimation method was validated and
analyzed by combining two types of datasets.

4 VERIFICATION AND ANALYSIS

The validity of the SRU–UKF model is verified through three
aspects, which are to verify the performance at various

temperatures, various initial discharge conditions, and
different drive cycles.

In this study, the experiments were conducted on a PC with an
Intel(R) Core(TM) i7-6850K CPU @ 3.60 GHz, using Python 3.6.
Under the GeForce RTX 3060 Ti GPU condition, the training
time was approximately 14 min with 500 epochs.

4.1 Performance Verification Under Various
Temperatures
In real life, high temperature or severe cold weather is often
encountered, so the SOC estimation model needs to be robust at
various temperatures so as to cope with the situation of the car in
different climates and temperature differences between day and
night. The influence of ambient temperature cannot be ignored.
DST, FUDS, and UDDS in 0, 25, and 45°C environments are used
as the training set, and BJDST is used as the test set to verify the
performance of the proposed model at different temperatures. It
is worth noting that the discharge process of the battery is always
at a fixed ambient temperature. In addition, the proposed method
is mainly to solve the estimation problem of battery discharge
under different operating conditions, so the model is tested with
the discharge process data. The estimated results of BJDST with
80% initial SOC values are shown in Figure 8. Table 2 shows the
comparison among GRU, LSTM, and SRU–UKF at various
ambient temperatures.

It can be seen from Figure 8 that the prediction has a large
error in the initial stage, but it is quickly stable, and then the error
fluctuates greatly when the SOC is lower than 20% in the latter
part of the discharge process. This is because in the early stage, the
internal characteristics are difficult to predict and the number of
input data is small, and the model still needs a certain capture and
convergence time; In the middle of the discharge process, the
predicted curve is stable, which may be related to the battery in

TABLE 2 | Basic electrical characteristics of the INR18650-25R.

Parameter Samsung INR

18650-25R

Capacity 2500 mAh
Nominal voltage 3.6 V
Minimum discharge voltage/maximum charge voltage 2.5 V/4.2 V
Continuous discharge current 20 A
Internal resistance Less than 50 mΩ
Operating temperature −20 to 60°C

FIGURE 7 | Test bench.
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this discharge period, which is in a stable period of voltage, which
is, of course, good for battery load, but for SOC estimation, a
small voltage fluctuation may bring about a large error in SOC
prediction. When the SOC is lower, the internal resistance
increases and the internal characteristics of the battery are
found to change significantly, which is difficult to predict and
reduces the prediction accuracy of the model.

According to the MAE, RMSE, training time, and average
testing time of the GRU, LSTM, and SRU–UKF models at
different temperatures shown in Table 3, the MAE and RMSE
of the model at high temperature and room temperature are
lower because the performance of the battery is better, but the
high temperature will damage the battery and accelerate the
aging of the battery. Perhaps after several cycles, the
performance of the battery will change, and the model will
no longer be applicable to the estimation of the SOC. At low
temperatures, the charge–discharge performance of the battery
deteriorates, the chemical substances inside the battery are
inactive, and the battery characteristics change, making SOC
estimation more difficult. Overall, the proposed model has
reliable SOC estimation results at different temperatures,
and the RMSE tested at all three temperatures is below

0.018. In addition, it can also be concluded from the table
that the proposed model has estimation accuracy similar to
LSTM and GRU, while the training time is only one-sixth of
that of LSTM, and the test time is only three-quarters of that of
LSTM. If the UKF filtering process is abandoned, the training
or testing speed of the SRU-based SOC estimation model will be
faster.

4.2 Performance Verification Under Various
Initial SOC Values
In fact, in daily life, people often use it when the battery power is
not full and conduct prediction experiments when the initial SOC
is 100%, 80%, and 50%; in this way, the prediction robustness of
the proposed model under different initial battery charge
conditions is verified. Figure 9 shows the prediction of GRU,
LSTM, and SRU–UKF models under various initial SOC values.
In this validation, BJDST, FUDS, and UDDS at 25°C are used as
the training set and DST as the test set. It can be seen that,
regardless of the initial state, themodel converges to the real curve
almost immediately, indicating the robustness of the model
against unknown initial states.

FIGURE 8 | Performance of GRU, LSTM, and SRU–UKF models with various ambient temperatures: (A) 0°C, (B) 25°C, and (C) 45°C.

TABLE 3 | Comparison of SOC estimation among GRU, LSTM, and SRU–UKF at various ambient temperatures.

Models MAE RMSE Training time Average testing
time0°C 25°C 45°C 0°C 25°C 45°C

GRU 0.0137 0.0083 0.0084 0.0175 0.0091 0.0106 145 min 3.519 s
LSTM 0.0110 0.0059 0.0059 0.0129 0.0089 0.0073 161 min 3.974 s
SRU–UKF 0.0122 0.0059 0.0076 0.0146 0.0079 0.0101 27 min 2.863 s

The bold values reprsents the minimum values in the group.
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FIGURE 9 | Performance of GRU, LSTM, and SRU–UKF models with various initial SOC values: (A) 100%, (B) 80%, and (C) 50%.

TABLE 4 | Comparison of SOC estimation among GRU, LSTM, and SRU–UKF at various initial SOC values.

Models MAE RMSE Training time Average testing
time100% 80% 50% 100% 80% 50%

GRU 0.0125 0.0171 0.0053 0.0137 0.0227 0.0067 142 min 3.523 s
LSTM 0.0087 0.0071 0.0053 0.0110 0.0104 0.0059 159 min 3.548 s
SRU–UKF 0.0094 0.0112 0.0035 0.0110 0.0154 0.0055 25 min 2.554 s

The bold values reprsents the minimum values in the group.

FIGURE 10 | Performance of GRU, LSTM, and SRU–UKF models against three drive cycles: (A) FTP, (B) LA92, and (C) US06.
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Table 4 lists the results of GRU, LSTM, and SRU–UKF models
under different initial SOC values. The proposed SRU–UKFmodel
has a similar RMSE to the classical LSTM, and the estimation
accuracy is slightly higher than that of GRU, and the RMSE is both
less than 0.016, indicating that the proposed model can have good
prediction effects under different initial SOC values. In addition,
the parallel processingmechanism enables it to significantly reduce
the training time and testing time of the model. Due to the addition
of a UKF filtering process at the end of the test process, the larger
the test sample, the more obvious the speed advantage. In this test,
the DST sequence lengths used for testing are about 14,000, 11,000
and 7,000, and the average test time of GRU, LSTM, and SRU–UKF
models is 3.523, 3.548, and 2.554 s, respectively.

4.3 Robustness of the Proposed Method
Against Different Drive Cycles
The abovementioned training and testing were all based on the
CALCE dataset. In order to simulate the SOC estimation using the
data from the actual measurement of lithium-ion battery discharge
and verify the robustness of the proposedmethod, the SOC estimation
performance under different driving cycles was verified using the
dataset from the test bench. In this test, UDDS, DST, BJDST, and
FUDS at 25°C were taken as training sets, while FTP, LA92, and US06
were taken as test sets. Figure 10 shows the performance of GRU,
LSTM, and SRU–UKF models against FTP, LA92, and US06.

It is obvious from Figure 10 that curves fluctuate significantly
in this dataset because the data quality obtained is affected by
sensor and sampling error in the charge–discharge process,
indicating the importance of data quality for data-driven
methods. On the other hand, SRU–UKF can still obtain the
decreasing trend of the electric quantity despite the continuous
jitter during the full discharge process of the predicted result, and
the estimated error of most sampling points is kept within 4%,
except for the error increase caused by some noise.

Table 5 shows the MAE and RMSE against FTP, LA92, and
US06. Compared with GRU and LSTM, the proposed SRU–UKF
obtained lower RMSE on LA92 and US06 test sets. Although the
RMSE of LSTM on FTP was 0.0292, the results of the three
models showed little difference. This verifies the robustness of
SRU–UKF under different drive cycles. In terms of the training
speed of the model, it took 19 min for SRU to train 300 epochs,
which was about one-fifth of the training time of LSTM,
indicating that the proposed model had similar estimation
accuracy to LSTM and the training time was greatly reduced.
In addition, for sequences with a length between 10,000 and
15,000, the test time was about 2.7 s. Compared with classical
LSTM, it saves one-third of the time.

5 CONCLUSION

Based on the data-driven SOC estimation method, this study
proposed an SRU–UKF method for SOC estimation of lithium-
ion batteries. The contribution of this work mainly focuses on three
aspects. 1) A lightweight recursive unit SRU that balances model
capacity and scalability is used to provide expressive recursion and
support highly parallel implementation to facilitate the training of the
depth model. 2) A UKF algorithm is added to the model to balance
the noise interference and enhance the anti-interference of the
model. 3) The estimation performance and robustness of the
model under various ambient temperatures, initial SOC values,
and driving cycles are completed through experiments.

The experimental results based on the CALCE dataset show that
SRU–UKF can obtain better estimation accuracy under three
temperatures and various initial SOC values. The RMSE is less
than 0.018. Compared with LSTM, the training speed is increased by
about five times and the prediction speed is increased by about 30%.
The evaluation results of the dataset from the battery test bench
show that SRU–UKF can be applied to SOC estimation under
various driving cycles. For US06 driving cycle, RMSE is less than
0.016, and the average test time is about 2.7 s, which shows that the
proposed SRU–UKF SOC estimation method obtains satisfactory
estimation results for prediction speed and accuracy. For FTP,
LA92, and US06 used for testing, RMSE is less than 0.034,
indicating the robustness of the SRU–UKFmodel for driving cycles.
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TABLE 5 | Comparison of SOC estimation against three drive cycles.

Models MAE RMSE Training time Average testing
timeFTP LA92 US06 FTP LA92 US06

GRU 0.0215 0.0161 0.0185 0.0296 0.0260 0.0224 88 min 4.040956
LSTM 0.0191 0.0186 0.0149 0.0293 0.0235 0.0179 93 min 4.05669
SRU–UKF 0.0229 0.0188 0.0128 0.0338 0.0220 0.0157 19 min 2.70351

The bold values reprsents the minimum values in the group.
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