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This study obtains the analytical inverse system of a permanent magnet synchronous
motor (PMSM)model based on the traditional magnetic field orientation decoupling control
mode by analyzing the inverse quality of the PMSM. Using the neural network’s excellent
approximation ability and well learning functions, a neural network inverse system (NNIS) of
the decoupling control system was established by identifying and offline training the back
propagation neural network (BPNN) and radial basis function neural network (RBFNN). The
data collected from the analytical inverse system of the PMSM model are used to analyze
and compare the prediction accuracy and running time of the neural network, so as to
optimize the structure and parameters of the neural network. The simulation results of
three PMSM decoupling control systems show that the PMSM decoupling control system
based on RBF NNIS has good dynamic and static decoupling performance, and
robustness.
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INTRODUCTION

PMSM is an efficient and energy-saving motor, and it is a nonlinear, multivariable, and strongly
coupled control object (Bu et al., 2015; Sun et al., 2016; Bu et al., 2019a). The control effect of
traditional motor control methods is not ideal. Various control methods of modern motors are
essentially decoupling control. At present, the industry adopts field-oriented control to realize
decoupling control through id = 0. This is a decoupling method based on an accurate mathematical
model, which has good performance in steady-state decoupling. However, the system performance in
the dynamic process and when the motor parameters change is not very ideal, and intelligent control
is the development trend in the future. This kind of the control method does not have high
requirements for the mathematical model. At present, it has many successful applications (Li et al.,
2019a; Jie et al., 2020), such as NNIS. This method is an important branch of intelligent decoupling
control of the PMSM.

In the decoupling strategy of the NNIS, the key is the design and construction of the neural
network, but the relevant research and literature have not been discussed too much. A typical
error in the back-propagation feed-forward neural network (BPNN) is selected in many
documents to identify the inverse system (Bu et al., 2019b; Xie and Xie, 2020). There is no
detailed description on how to select the parameters and algorithm in the BPNN. Similarly,
RBFNN with good approximation and fitting ability has not been used to identify the inverse
system, let alone compare the decoupling performance of two different neural network
structures.
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This study deeply discusses the structural design of the BPNN,
compares the decoupling effect between RBFNN and BPNN
inverse systems, and finally obtains a PMSM decoupling
system with excellent dynamic and static performance, and
strong robustness when the parameters change and load
disturbances occur.

NEURAL NETWORK IDENTIFICATION AND
SAMPLE COLLECTION

The original training data of neural networks can be obtained
through MATLAB simulation experiment of closed-loop
analytical inverse decoupling control. Each group of training
data of neural networks includes 5 input signals y1, y1, y2, y2’,
and y2″, and 2 output signals ud and uq of the neural network
(Wang et al., 2018; Bu and Li, 2019).

The stator current input is given as 0, the speed input is given
as a random quantity with amplitude ranging from 40 rad/s to
140 rad/s, and the sampling system of the PMSM NNIS is shown
in Figure 1.

DESIGN AND DECOUPLING OF BP NNIS
FOR THE PERMANENT MAGNET
SYNCHRONOUS MOTOR
BPNN (Back Propagation Neural Network)
BPNN is an error back propagation feedforward neural network.
The structure of the BPNN is shown in Figure 2. The sample
input vector p=(p1, p2, . . . , pn) is normalized to obtain the input
layer vector x∈(x1, x2, . . . , xn)T. There are m neurons in the
hidden layer, and the hidden layer output h=(h1, h2, . . . , hm)

T is
obtained. There are k neurons in the output layer, and the output
y=(y1, y2, . . . , yk)

T of the output layer is obtained. The output is
de-normalized to obtain q=(q1, q2, . . . , qk)

T sample training
output. The weight between the input layer and the hidden layer
iswij, and the threshold is θj. The weight between the hidden layer
and the output layer is vjh, and the threshold is τh.

The output of neurons in each layer meets the following
requirements:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
hj � f⎛⎝∑n

i�1
wijxi − θj⎞⎠

yh � f⎛⎝∑m
j�1
vjhhj − τh⎞⎠

(1)

FIGURE 1 | PMSM inverse system sampling simulation diagram.

FIGURE 2 | BPNN structure.

TABLE 1 | Prediction error of BPNN with different hidden layer nodes.

Nodes Percentage of maximum
relative error (%)

Mean square error

10 9.405 8.31501e10-5
11 8.017 6.69010e10-5
12 1.623 1.12043e10-5
13 1.953 1.19563e10-5
14 20.361 2.01616e10-4
15 36.896 6.92855e10-4

Frontiers in Energy Research | www.frontiersin.org June 2022 | Volume 10 | Article 9367762

Da-Wei et al. PMSM Intelligent Decoupling Control Study

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Number of Hidden Layer Nodes
There is a relationship among the number of hidden layer
neurons J, the input vector dimension n, and the number of
partitionsM (Yin et al., 2004). Given the other two of them, one of
the three parameters can be calculated. In the n-dimensional
input space, the maximum number of linearly divisible J hidden
layer neurons is

M(J, n) � ∑n
k�0

( J
k
) (2)

Now consider the case that the size of hidden layer nodes is
small, when n ≥ J,

M � ( J
0
) + ( J

1
) +/ + ( J

J
) � 2J (3)

It is concluded that the hidden layer with 3 nodes will be able
to provide classification, but when J ≥ n, the scale of the input
vector must be larger than 3.

According to the above formula, J required to complete the
classification as M in the n-dimensional pattern space can be
found. This M constitutes the solution of the equation:

M � 1 + J + J(J − 1)
2!

+/ + J(J − 1)/(J − n + 1)
n!

J> n (4)

According to the previous section, the BPNN to be trained has
5 inputs and 2 outputs. Set the number of training iterations at
net. trainparam. epochs: 2000, net. trainparam. goal: 10e-6 when
using MATLAB training. The relationship between prediction
error and the number of hidden layer nodes M is shown in
Table 1.

The accuracy of neural network prediction decreases first and
then increases with the number of nodes increasing. When the
number of nodes is 12, the mean square error of prediction is
minimum, so the number of nodes in the hidden layer is
determined to be 12.

Hidden Layers of the Back Propagation
Neural Network
According to Kolmoagorov’s theorem (the representation
theorem for continuous functions), given a continuous function:

Φ: Em → Rn,Φ(X) � Y (5)
Em is a unit cube, then V can be precisely realized by a three-

layer neural network (Zhao and Wang, 2022a), the first layer of
the neural network has 5 processing units, the middle layer has 12
processing units, and the third layer has 2 processing units. The
continuity theorem guarantees that any continuous function and

mapping can be implemented by a three-layer neural network
(Ting, 2017).

When using the single-layer hidden layer BPNN for training,
the optimal number of hidden layer nodes is determined to be 12
(Zhao and Wang, 2022a). Now consider using the multi-layer
hidden layer, and the prediction error of single-layer and dual-
layer BPNN is shown in Table 2.

Compared with the single hidden layer, the multi-hidden
layer has stronger generalization ability and higher prediction
accuracy, but the training time is longer. When choosing the
number of hidden layers, both network precision and training
time should be considered. When the network precision meets
the requirement, the single hidden layer can be selected to
speed up the process (Li et al., 2021a). The comparative
analysis not only verifies the reliability of the continuity
theorem but also determines the use of the single hidden
layer in training.

Back Propagation Neural Network Transfer
Function
The transfer function is used to calculate the output of the hidden
layer and the output layer, and logsig (S-shaped transfer function)
is available:

f(x) � 1
1 + e−αxi

(6)
tansig (hyperbolic tangent S transfer function):

f(xi) � 1 − e−αxi

1 + e−αxi
(7)

purelin (linear transfer function):

f(xi) � xi (8)
The default settings tansig and purelin are used for offline

training using MATLAB/Simulink as shown earlier. After
repeated comparison of different transfer functions, the
prediction accuracy is greatly improved when tansig and
tansig are used for the transfer functions of the hidden layer

TABLE 2 | Prediction error of BPNN with different hidden layer nodes.

Layer number Percentage of maximum
relative error (%)

Mean square error Running time (s)

Single layer 1.623 1.12043e10-5 5238.44
Double layer 0.059 9.64101e10-7 9196.80

TABLE 3 | Prediction error of BPNN with different activation functions.

Hidden layer transfer
function

Tansig Tansig

Transfer function of output layer purelin tansig
Percentage of maximum relative error 1.623% 0.160%
Mean square error 1.12043e10-5 2.38189e10-6
Running time 5238.44s 2919.85s
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and output layer. The prediction errors of the BPNN with
different activation functions are shown in Table 3.

Therefore, the BPNN is used to select the hyperbolic tangent S
transfer function for function fitting approximation (Yin et al.,
2004).

The Optimized Back Propagation Neural
Network Module Is Generated
Repeated training is needed to determine the optimal parameters
of the BPNN, and the neural network module generated by
training is used to replace the inverse system for offline
decoupling simulation of the BP NNIS of the PMSM (Yin
et al., 2004; Pang et al., 2020). The main parameters of the
program to generate BPNN are as follows:

net = newff (miN•max (pn) [122], {“tansig”, “tansig”},
“trainlm”, “learngdm”); net. trainPar.epochs = 2000; net.
trainPar.show = 10; net. trainPar.goal = 10e-6; net.
trainPar.min_grad = 1e-15;
net.trainPar.mu_dec = 0.1; net. trainPar.mu_inc = 7; net.
trainPar.goal = 0.04; net. trainPar.lr = 0.5;
The PMSM decoupling control system based on the BP NNIS
can be constructed by replacing the inverse system module
with the generated BPNN module and adding normalization
and inverse normalization modules before and after the neural
network module, as shown in Figure 3.

The parameter setting of PI and PD regulator of BP NNIS is
shown in Table 4.

At 0–0.2 s, the given load torque TL is 6 Nm, and at 0.4 s, the load
torque mutates to 12Nm; at 0–0.4 s, the given rotor speed ωr is
40 rad/s, in 0.4 s,ωr changes to 140 rad/s. Torque and speed response

curves under inverse control mode are shown in Figure 4, and
Figure 5 shows the torque and speed response curves of the inverse
systembased on the BPNNunder the same conditions (Zhang, 2010).

Comparing Figure 4 and Figure 5, it can be found that when
the set load torque changes suddenly, both controls can maintain
the stability of load speed, but the inverse system control method
has long torque response time and large peak value, and the peak
value of torque reaches 17 Nm. The overshoot is 41%, while the
torque response time of BP NNIS is short and the peak value is
small, and the overshoot is only 16%.When the set speed changes
suddenly, the speed response of the two control modes is
relatively fast, and there is basically no overshoot. However, in
the inverse system control mode, the torque fluctuation is large
and the adjustment time is long, while in the BP NNIS, the torque
fluctuation is small and the recovery time is short.

In the test, the speed is kept at 90 rad/s, and the load has
periodic step change between 6 Nm and 12 Nm rated load
torque. The response curve of speed and torque under inverse
control mode is shown in Figure 6. Figure 7 shows the speed and
torque response curves of the inverse system based on the BPNN
under the same conditions.

Comparing Figure 6 and Figure 7, it is not difficult to find that
when the rated load torque changes periodically, the two control
modes can maintain the speed stability, but under the inverse
system control mode based on BPNN, the torque response
overshoot is smaller and the adjustment time is shorter.

INVERSE SYSTEM DESIGN AND
DECOUPLING OF RADIAL BASIS
FUNCTION NEURAL NETWORK FOR
PERMANENT MAGNET SYNCHRONOUS
MOTOR

Radial Basis Function Neural Network
RBFNN as a feedforward network can approximate analytic
nonlinear relations with arbitrary accuracy (Wang et al., 2022;
Yang et al., 2020). It is a powerful tool to deal with complex
nonlinear, uncertain, and coupling problems in MIMO systems.
Now a PMSM decoupling control system based on the RBF NNIS

FIGURE 3 | NNIS of PMSM decoupling control system.

TABLE 4 | PID parameters of BP NNIS.

Regulator parameter PI PD

kp ki kp kd

BPNN 0.03 0.01 1.143 0.0006
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FIGURE 4 | Response curve of inverse system decoupling control.

FIGURE 5 | Response curve of BPNN inverse system decoupling control.

FIGURE 6 | Response curve of BPNN inverse system decoupling control when torque changes periodically.
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is established (Zhao and Wang, 2022b), which makes the system
have good dynamic and static characteristics.

The RBF neural model is shown in Figure 8.
Before using the RBFNN, it is necessary to determine the

number of hidden layer neurons, the center of transfer function,
expansion constant, and a set of corresponding weights.

Structure of the Radial Basis Function
Neural Network
The design methods of the RBFNN can be divided into two
categories (Li et al., 2020; Li et al., 2021b; Huang et al., 2022).

1) The function center is randomly selected from the sample data
and the center is fixed. After the RBF center is determined, the
output of hidden layer is known (Chen, 2021).

Gaussian function is selected as radial basis function, so the
transfer function of radial basis function neural network can be
expressed as

R(X − ci) � exp( − M

d2
m

||X − ci||2) (9)

In the formula, M is the number of neurons in the hidden
layer; dm is the maximum distance between the selected centers.
In this case, the mean square deviation of Gaussian RBF is fixed as

σ � dm
2M

√ (10)

The connection weight of the network can be directly
calculated by the previous formula:

W � R+d (11)
In the formula, d is the desired response vector. R+ is the

pseudo inverse of matrix R, and R is determined by

R � {rji} (12)

gji � exp( − M

d2
m

||Xj − ci||2) (13)

In the formula, Xj is the data quantity of the jth input sample,
and the singular value decomposition method can be used to
calculate the pseudo inverse of the matrix. This method
corresponds to the MATLAB/newrb construction method.

2) In the dynamic adjustment method of function center, the
center of RBF is moved, and its position is determined by self-

FIGURE 7 | Response curve of BPNN inverse system decoupling control when torque changes periodically.

FIGURE 8 | RBF neural model. RBFNN structure as shown in Figure 9.

FIGURE 9 | RBF neural network.
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organizing learning, while the linear weight of the output layer
is calculated by supervised learning rules. The purpose of
learning is to have the center of RBF located in the important
area of input space. The specific steps are as follows:

1) Initialize the cluster center ci. Generally, M samples are
selected from the input sample Xi as the clustering center.

2) The input samples are grouped according to the nearest
neighbor rule (Zuo et al., 2014); that is, M samples in Xi
are assigned to the input sample cluster set θi with center ci,
that is, Xj∈θi, and meet

di � min
∣∣∣∣∣∣∣∣Xj − ci

∣∣∣∣∣∣∣∣ (14)

where di represents the minimum Euclidean distance.

3) Calculate the mean value of samples in θi (i.e., clustering
center ci)

ci � 1
Mi

∑
xj∈θj

Xj (15)

whereMi is the number of input samples in θi. Calculate according to
the aforementioned steps until the distribution of cluster center no
longer changes. After the center of RBF is determined, if RBF is a
Gaussian function, its mean square deviation σ can be calculated by
Eq. 18. The output of the hidden layer can then be calculated. This
method corresponds to the MATLAB/newrbe construction method.

Newrb and newrbe were, respectively, used to establish two kinds
of RBFNNs. The error of the sum of squares was set as 10e-4 pairs of
neurons. By comparing the sum of square error, the structure
prediction error of different RBFNNs is shown in Table 5.

By comparison, it is concluded that newrbe can only be stopped
when the number of neurons reaches the number of training samples.
Although the required error precision is reached, the running time is
too long.On the contrary, newrb can use fewer neurons to achieve the
error precision, and the running time is shorter.

The Spread of the Radial Basis Function
Neural Network
When applying the newrbe function to the design of the radial basis
function neural network, the spread needs to cover as many input
intervals as possible (Li et al., 2019b; Yang et al., 2019), so it needs to be

TABLE 5 | Prediction error of different RBFNN structures.

RBFNN structures Number of neurons Square sum error Running time (s)

Newrb 4000 0.23225 2310.65
Newrbe 258 3.29834 255.39

TABLE 6 | Prediction error of different RBF spread.

Spread Number of neurons Square sum error Running time (s)

0.8 523 15.18543 613.22
1.0 258 3.29834 255.39
1.2 917 25.32467 1019.17

By comparison, when spread is set as the default value 1, the number and running time of
neurons have advantages when the sum of square error requirements are met.

TABLE 7 | PID parameters of RBF NNIS.

Regulator parameter PI PD

kp ki kp kd

RBFNN 0.003 0.001 14 0.01

FIGURE 10 | Response curve of RBFNN inverse system decoupling control.
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set as large as possible. However, too large spread will lead to the
difficulty of numerical calculation, and the corresponding regions cross
too much, which will reduce the accuracy. Reasonable selection of
spread values has great influence on the prediction accuracy of the
RBFNN. Newrb is used to construct the RBFNN and spread is set as
different values for comparison (Wang andXu, 2012; Pang et al., 2020).
The prediction errors of different RBF spreads are shown in Table 6.

Generating Optimized Back Propagation
Neural Network Module
In addition, the display interval was set as 1, themaximumnumber of
neurons was set as 600, and the neural network module generated by
training was used to replace the inverse system for the decoupling
offline simulation of the inverse system of the RBFNN of the PMSM.
The main parameters of the program to generate the RBFNN (Zuo
et al., 2014) are as follows:

goal = 0.0001; spread = 1; MN = 600; DF = 1;
net = newrb (pn, tn, goal, spread, MN, DF);
By replacing the inverse system module with the generated

RBFNNmodule, and adding the normalized and anti-normalized
modules in the front and back to the neural network module, a
PMSM decoupling control system based on the NNIS can be
constructed, as shown in Figure 3.

The parameter setting of PI and PD regulator of RBF NNIS is
shown in Table 7.

1) Static decoupling experiment under the same conditions as
section 3:

Figure 10 shows the torque and speed response curves under
the RBF NNIS control mode under the same conditions.

Comparing Figure 10A with Figure 5A, it can be found
that when the speed remains unchanged and the torque
changes suddenly, the control mode based on the RBF
NNIS has faster response speed and shorter system stability

time than BPNN. When the speed changes suddenly, the RBF
NNIS also has a faster response speed.

2) Dynamic decoupling experiment against load disturbance
under the same conditions as in Section 3:

Figure 11 shows the torque and speed response curves under
the RBF NNIS control mode under the same conditions.

ComparingFigure 7AwithFigure 11A, it can be found that when
the set speed remains unchanged and the torque changes step
periodically, the control method based on the RBF NNIS has
faster response speed, smaller overshoot, and more stable torque
in a steady state than BPNN torque regulation. Comparing
Figure 11B with Figure 7B, it can be found that when the torque
changes suddenly, the speed of the RBF NNIS is also more stable.

Decoupling Performance Analysis
The static decoupling test can verify the static decoupling
performance of the system, that is, the stability of one variable
when the other variable changes. It can be seen from Figure 5 that
the inverse decoupling control system based on the RBFNN has a
very small overshoot, basically no oscillation, and the fastest
response time when the speed and torque change.

The anti-load disturbance experiment can verify the dynamic
decoupling performance of the system, and the dynamic decoupling
performance is an important criterion for evaluating the advantages
and disadvantages of the decoupling system. As can be seen from
Figure 7, the inverse decoupling control system based on the RBFNN
responds rapidly and is basically synchronized with the given load.
The speed response under the control mode of the inverse system
decoupling control system based on the RBFNN has no overshoot,
the oscillation amplitude is very small, and the stability value is
quickly restored. The speed response of the inverse systemdecoupling
control system based on the BPNN has overshoot and large
oscillation amplitude. Under the control mode of the inverse
system decoupling control system (Bu et al., 2018), speed has a
long-time jitter, and the recovery to the stable value is slow.

FIGURE 11 | Response curve of RBFNN inverse system decoupling control when torque changes periodically.
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CONCLUSION

After verification and comparative analysis, it can be
confirmed that the PMSM based on the RBF NNIS control
mode has excellent static decoupling characteristics and better
dynamic decoupling control performance. The simulation
research based on RBF NNIS decoupling control has good
robustness and stability compared with the other two
decoupling controls. This is an optimized NNIS PMSM
decoupling control system, which has a certain
application value.
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