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The battery energy storage system (BESS) can accommodate the uncertainties of
renewable energy sources (RESs) and load demand. Proper allocation of the BESS in
the distribution network (DN) can bring cost-effectiveness and enhance system stability. To
realize the reliable and economic operation of BESS in the DN, a multi-objective
optimization model for optimal BESS allocation is established, which aims at
minimizing the annual overall cost of the whole system, including life cycle cost (LCC),
power loss cost, peak-shaving cost, tie-line fluctuation penalty, and voltage deviation
penalty. Then, a novel implementation of the improved equilibrium optimizer (IEO) algorithm
is proposed to solve the optimal BESS allocation scheme. In order to verify the
effectiveness of the proposed method, the simulation experiment based on the IEEE
33-bus test system is performed. Simulation results prove that the IEO algorithm is capable
of rapid stable convergence and efficient searching for optimum in the multidimensional
space. By the end of the iteration, the annual overall cost of the whole system records a
minimum value of $1.8692e+06 every year. A meticulous techno-economic analysis
demonstrates that the obtained BESS allocation scheme not only effectively ensures
cost-effectiveness of BESS but also significantly reduces power loss, load peak-valley
difference, tie-line power fluctuation, and voltage deviation.

Keywords: distribution network, battery energy storage system, optimal allocation with techno-economic
consideration, improved equilibrium optimizer, meta-heuristic

1 INTRODUCTION

With rapid expansion of global economy, excessive exploitation and utilization of various traditional fossil
fuels has aggravated ecological environment degradation in the past fewdecades, which significantly hinders
the world’s sustainable and stable development (Yang et al., 2018; Zhang et al., 2019a). To solve this thorny
issue, a variety of renewable energy sources (RESs) such as wind, solar, and wave energy have obtained
widespread concerns (Yang et al., 2021). However, due to the intermittent and randomness of RESs, the
integration of a significant amount of RESs into power grids will pose crucial challenges to the safe, stable,
and economical operation of the system such as load peak-valley difference, tie-line power fluctuation,
voltage violation, RESs curtailment, and line congestion (Das et al., 2018; Guchhait and Banerjee, 2020).

The battery energy storage system (BESS) is not only regarded as one of the most promising candidates
for adjusting energy structure and building an environmentally friendly world due to its prominent
advantages, for example, high energy conversion efficiency, reliable operation stability, and emission-free
(Luburić et al., 2018) but also BESS has been a viable solution which can provide diverse economic benefits
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and technical support to different power system stakeholders,
especially distribution network (DN), including power loss
reduction, stability enhancement, and congestion alleviation (Luo
et al., 2015). In addition, the BESS can provide an effective
supplement for RESs in smoothing output fluctuations.

However, optimal placement and sizing of the BESS are two
crucial factors to ensure satisfactory performance of BESS application.
Given this, considerable research studies have been carried out either
in BESS allocation models or solution algorithms (Yang et al., 2020).
Nazaripouya et al. (2015) performed voltage sensitivity analysis to
optimize the best placement and sizing of the BESS, where voltage
regulation in the presence of RESs is achieved. In the study by Zakeri
and Syri (2015), the dynamic programming method is used to plan
the BESS in a low-voltage grid so as tominimize power loss. However,
such traditional methods as analytical methods and mathematical
optimizations consume a long time to converge due to computational
complexity and easily trap at local optimum and so has low solution
efficiency and accuracy. BESS planning is a complex nonlinear
optimization problem with discrete optimization variables, and it
is difficult to solve the problem effectively with the abovementioned
numerical methods. Meta-heuristic algorithms are popular for
various optimization problems by means of their merits of model-
free, minimal storage requirement, high convergence rate, and strong
search ability (Iba, 1994; Jayasekara et al., 2016). In the study by
Kerdphol et al. (2016), particle swarm optimization (PSO) is
implemented to obtain optimum sizing of the BESS with high
economic profitability. In the study by Wong et al. (2019), a
whale optimization algorithm is introduced to optimize placement
and sizing of the BESS for power loss reduction, while the
performances of these algorithms do not achieve huge
breakthroughs. Also, most of the literature only has a single
technical benefit or economic benefit.

Therefore, this study establishes a multiobjective mathematical
model for BESS optimal allocation, in which life cycle cost (LCC) of
the BESS, power loss, peak-shaving effect, tie-line fluctuation, and
voltage deviation of theDN are comprehensively considered. In order
to solve this model, a novel metaheuristic algorithm, improved
equilibrium optimizer (IEO), is proposed to search an optimal
solution for the BESS allocation strategy. The proposed algorithm
owns advanced updating mechanisms of searching agents, which can
effectively avoid falling into local optimum and reach significant
improvement on search ability. To verify the effectiveness, the
proposed model and algorithm are implemented in the extended
IEEE-33 bus test system.

The remaining of this article is organized as follows: Section 2
is system description of the BESS connected to the power grid;
Section 3 develops the optimal allocation model of the BESS; the
IEO algorithm for the model solution is introduced in Section 4;
Case studies are undertaken in Section 5; Section 6 summarizes
the main contributions of this study.

2 SYSTEM DESCRIPTION

The schematic diagram for BESS access to the power grid is
shown in Figure 1. The energy storage controller controls the fast
charging/discharging operation of the BESS via real-time

monitoring operation condition of the system so as to realize
energy exchange between the BESS and the power grid. The
remaining charge of the BESS at any moment, namely, the state of
charge (SOC) is an important parameter to characterize the
charging/discharging operation of the BESS. This relationship
needs to be taken into account in the optimal configurationmodel
of the BESS, and rated capacity and charging/discharging power
of the BESS are regarded as control variables. SOC of the ith BESS
at time t is calculated as follows (Farrokhifar, 2016):

⎧⎨⎩ SOCi(t) � (1 − δ · Δt) · SOCi(t − 1) + (Pcha,i(t) · ηcha,i) · Δt, s.t.Pcha,i(t)> 0,
SOCi(t) � (1 − δ · Δt) · SOCi(t − 1) − (Pdis,i(t)/ηdis,i) · Δt, s.t.Pdis,i(t)< 0. (1)

The power exchanged between the BESS and power grid can
be expressed as

Pgrid,i(t) � Pcha,i(t) − Pdis,i(t). (2)
It should be noted that charging power and discharging power

at the same time are mutually exclusive, so the power exchange
between the BESS and the power grid must be satisfied as follows:

Pcha,i(t) · Pdis,i(t) � 0. (3)

3 OPTIMAL ALLOCATION MODEL OF THE
BATTERY ENERGY STORAGE SYSTEM

In this study, the allocation of the BESS of the DN is expected to
minimize investment and operation costs of the BESS, power loss,
peak-valley difference of load and tie-line power fluctuation, and
voltage deviation. Therefore, a high-dimensional multi-objective
optimization model is established. Here, it is considered that all
goals are of equal importance, and thus a simple weighting

FIGURE 1 | Typical configuration of the BESS directly connected to the
power grid.
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method is adopted to simplify this multi-objective model.
Therefore, the optimal allocation model of the BESS that takes
annual overall cost including the previously mentioned expenses
as the optimization objective is as follows:

{min F(x) � min(F1(x) + F2(x) + F3(x) + F4(x) + F5(x))
s.t.H(x)≤ 0 ,

(4)
where F(x) denotes target space that consisted by five objective
functions, that is, F1, F2, F3, F4, and F5 are, respectively, life cycle
costs (LCC) of the BESS, power loss cost, peak-shaving cost, tie-
line power fluctuation penalty fee, and voltage deviation penalty
fee; x means the decision space that constituted by all
optimization variables, that is, optimal placement and sizing of
BESS;H(x) represents all equality and inequality constraints that
need to be satisfied in the optimal allocation model of BESS.

3.1 Objective Functions
3.1.1 Life Cycle Cost
Life cycle cost (LCC) is an important indicator to evaluate the
economy of the BESS, which accommodates all the expenses
expected to occur during the lifetime of the BESS, such as total
capital cost (TCC), maintenance cost (MC), operation cost (OC),
replacement cost (RC), and disposal and recycling cost (DRC)
(Zakeri and Syri, 2015). From an ownership perspective, it is
crucial to perform a comparative LCC analysis of the BESS. Here,
LCC is mathematically formulated as annualized cost, as follows:

F1 � LCCBESS � TCC +MC + OC + RC −DRC. (5)
It should be noted that the main cost parameters of the BESS

were taken from both the National Renewable Energy Laboratory
(Ran et al., 2018), which are tabulated in Table 1.

3.1.1.1 Total Capital Cost of the Battery Energy Storage
System

TCC � μCRF ·∑NBESS

i�1 (cins + cbat · EBESS,i + cEPCD · PBESS,i), (6)
whereNBESS means the number of BESSs deployed in DN; cins is the
initial construction cost of energy storage power station; Cbat

represents battery cost per unit capacity; cEPCD represents the
engineering, procurement, and construction (EPC) costs and
developer cost of the BESS; EBESS,i is energy capacity of the ith
BESS; PBESS,i is power capacity of the ith BESS; μCRF denotes capital

recovery factor (CRF), which signifies the costs throughout the
lifetime of the BESS to the initial moment of investment, as follows:

μCRF �
r · (1 + r)y
(1 + r)y − 1

, (7)

where y is BESS lifetime and is assumed to be 15 years; r means
discount rate calculated by the weighted average cost of capital
(Harvey, 2020) in Eq. 8 and is calculated as 6%.

r � fd · id + (1 − fd) · ie. (8)

3.1.1.2 Maintenance Cost of the Battery Energy Storage
System
MC of the BESS refers to the maintenance cost to ensure BESS
operation, which is proportional to the rated power of the BESS,
as follows:

MC � ∑NBESS

i�1 cFMC · PBESS,i, (9)
where CFMC denotes annual fixed maintenance cost.

3.1.1.3 Operation Cost of the Battery Energy Storage System
In terms of energy arbitrage of the BESS in the electricity market,
the BESS is cost-effective if the algebraic sum of purchasing
electricity cost and selling electricity income is a negative
number. Annual OC is computed as follows:

OC � 365 ·∑NBESS

i�1 ∑T

t�1(cpur(t) · Pcha,i(t) − ρsell(t) · Pdis,i(t)),
(10)

where Tmeans 24 h in a day; cpur and ρsell, respectively, represent
the time-of-use (TOU) price to purchase and sell electricity
(Zhang et al., 2019b); Pcha,i and Pdis,i, respectively, are denote
charging and discharging power of the ith BESS.

3.1.1.4 Replacement Cost of the Battery Energy Storage
System
RC of the BESS is mainly from replaceable batteries, as follows:

RC � μCRF ·∑NBESS

i�1 ∑nB

k�1((1 − α)ktr
(1 + r)ktr · cbat · EBESS,i), (11)

where nB and tr mean replacement times of the battery during the
lifetime of the BESS and replacement period and are, respectively,
3 and 5; α denotes annual reduction rate of battery cost, set to 8%;
r is the discount rate.

3.1.1.5 Disposal and Recycling Cost of the Battery Energy
Storage System

DRC � μCRF ·∑NBESS

i�1 ∑nB

k�1
r

(1 + r)kt − 1
· (γB · cbat · EBESS,i), (12)

where γB is recovery coefficient of the battery, set to 30%.

3.1.2 Power Loss Cost
The grid-connected BESS will change the power flow of DN
(Injeti and Thunuguntla, 2020). Furthermore, different

TABLE 1 | Main cost parameters of the BESS.

Cost parameter Variables Value

Station construction cost cins 147000 ($/per BESS)
Battery cost cbat 225000 ($/MWh)
EPC and developer cost cEPCD 175000 ($/MW)
Fixed maintenance cost cFMC 4000 ($/MW year)
Reduction rate of battery cost α 8%
Recovery coefficient of battery γB 30%
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placement and sizing of the BESS will have different influences on
power loss. For the sake of minimizing the total active power loss,
the power loss index in the form of expenses is established in the
optimization model, as follows:

F2 � ∑T

t�1(Ploss(t) · ρsell(t)) , (13)
Ploss(t) � ∑L

j�1RjI
2
j(t), (14)

where F2 denotes the power loss expense quantified by a dollar
value; Ploss(t) represents power loss at time t; L is the total
number of lines in the DN; Rj means the resistance on the jth line;
Ij(t) denotes the current on the jth line at time t. The lower F2 is
that the greater positive effect of BESS deployment in reducing
power loss.

3.1.3 Peak-Shaving Cost

F3 � ∑T

t�1(aP2
G(t) + bPG + c) + (Pmax

load · cpun, FL), (15)
where F3 represents the peak-shaving cost, including operation
cost of the thermal power unit and additional peak shaving cost of
maximum load; PG represents the active output of thermal power
units at time t; a, b, and c are generation cost coefficients of
conventional generators; Pmax

load represents maximum equivalent
load for the year; cpun, FL is additional peak shaving cost for
maximum load, set to 200000 ($/MW) (Jayasekara et al., 2016).

3.1.4 Tie-Line Fluctuation Penalty Fee
Owing to the intermittency of RESs in their nature, the
integration into the power grid poses significant power
fluctuation in the grid connection point. However, the BESS
can smooth power fluctuation brought from RESs to improve
power stability (Sun et al., 2019). Tie-line power fluctuation in the
form of expenses can be expressed as

F4 � 365 ·
������������������∑T

t�1(Pgrid(t) − �Pgrid)2√
· cpun,g, (16)

where F4 is total penalty fee brought from tie-line power
fluctuation in the grid connection point through the year;
Pgrid(t) represents tie-line power fluctuation at time t; �Pgrid

means the mean value of tie-line power over a day; cpun,g
means penalty coefficient for tie-line power fluctuation, set to
50 ($/MW).

3.1.5 Voltage Deviation Penalty Fee
To ensure the power quality of DN, node voltages should be
stabilized at a certain level. Here, the penalty fee of voltage
deviation encourages node voltages to the nominal voltage
(Jayasekara et al., 2016), which is calculated as

F5 � 365 ·∑Nnodes

j�1 ∑T

t�1
∣∣∣∣Vj(t) − �Vj

∣∣∣∣ · cpun,v, (17)

where F5 is voltage deviation penalty fee through the year; Nnodes is
node number of DN; Vj(t) represents the voltage per-unit value in
the node j at time t; �Vj means the average voltage in the node j over a
day; cpun,v is penalty fee for voltage deviation, is set to 50 ($/p.u.).

3.2 Constraints
3.2.1 Power Balance

⎧⎪⎨⎪⎩ Pi(t) � Vi(t)∑N

j�1Vj(t)(Gijcosθij(t) + Bijsinθij(t)),
Qi(t) � Vi(t)∑N

j�1Vj(t)(Gijsinθij(t) − Bijcosθij(t)), (18)

where Pi(t) and Qi(t) represent the injected active power and
reactive power at ith node in the DN at time t, respectively; Gij

and Bij represent admittance and susceptance between the ith
node and the jth node, respectively; θij(t) is power angle between
the ith node and the jth node at time t.

3.2.2 Range of Node Voltages

Vmin
i <Vi <Vmax

i , (19)
where Vmin

i and Vmax
i represent the upper and lower limits of

voltage of the ith node, respectively. The voltage limits are now a
priority.

3.2.3 Power Limits of Grid Connection Point

{Pmin
grid ≤Pgrid(t)≤Pmax

grid

Qmin
grid ≤Qgrid(t)≤Qmax

grid

, (20)

where Pmax
grid , P

min
grid, Q

max
grid , and Qmin

grid are the upper and lower
limits of active and reactive power of the connection point,
respectively.

3.2.4 Range of Battery Energy Storage System
Capacity

{EBESS,i ≤Emax
BESS

PBESS,i ≤Pmax
BESS

, (21)

where Emax
BESS and Pmax

BESS denote the upper limits of energy capacity
and power capacity of the BESS, respectively.

3.2.5 Charging and Discharging Power Limits of the
Battery Energy Storage System

{ 0≤Pcha,i(t)≤PBESS,i · ηcha
−PBESS,i · ηdis ≤Pdis,i(t)≤ 0

. (22)

3.2.6 State of Charge Limits of the Battery Energy
Storage System

SOCmin < SOC(t)< SOCmax, (23)
where SOCmin and SOCmax, respectively, mean the upper and
lower limits of SOC, which are 20% and 90%.
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3.2.7 Charging Rate Limits of the Battery Energy
Storage System

{Crate≤ 4C,
Crate � kC, k � 0.5, 1, 2, 4,

(24)

where C represents the current intensity of the BESS when it is
fully discharged within 1 hour. The charging rate of the BESS is
generally 0.5 C, 1 C, and 2 C, and the maximum is 4 C.

4 MODEL SOLUTION BASED ON
IMPROVED EQUILIBRIUM OPTIMIZER

The optimal allocation of the BESS is a highly non-convex
optimization problem with high dimensions, multi objectives, and
complicated constraints (Li et al., 2018). To solve this problem, an
IEO algorithm is designed in this study. The search mechanisms of
the proposed IEO and the overall optimization procedure for BESS
allocation are elaborated in this section.

4.1 Equilibrium Optimizer
4.1.1 Principle of EO
EO is a physics-based meta-heuristic algorithm, which was
first presented by Faramarzi, Heidarinejad, et al. (2019)
(Faramarzi et al., 2020). It is based on control volume mass
balance models, and each particle with its concentration
represents a searching agent. All searching agents randomly

update their concentration based on an equilibrium candidate
to reach an equilibrium state. The equilibrium candidate is
regarded as the best solution.

In the EO algorithm, a generic mass balance formula in the
first-order ordinary differential equation form is utilized to
describe the physical process of mass entering, leaving, and
generated in the control volume, as follows:

V
dC

dt
� QCeq − QC + G, (25)

where V dC
dt denotes the change rate of mass, while C is

concentration in control volume; Q represents flow rate in and
out of control volume; Ceq means concentration under
equilibrium state that is desired to be global optimum; G
represents mass generation rate in the control volume.

Then, Eq. 26 can be obtained by solving differential Eq. 25, as
follows:

C � Ceq + (C0 − Ceq)F + G

λV
(1 − F), (26)

where λ is defined as turnover rate; C0 is the initial concentration
at time t0; factor F is the exponential coefficient as Eq. 27.

F � exp[ − λ(t − t0)]. (27)

4.1.2 Optimization Mechanism of EO
The optimization process of EO is performed based on Eq. 25. As
for an optimization problem, concentration C on the left-hand

FIGURE 2 | Illustration of solutions updating principle of IEO.
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side of the equation represents the current solution; Ceq denotes
the best solution ever found. Similar to the speed updating
mechanism of the PSO algorithm, concentration is regarded as

the individual solution. The collaboration between different
individuals for solutions updating in 2D dimensions is shown
in Figure 2. The optimization mechanisms are designed as
follows (Faramarzi et al., 2020):

4.1.2.1 Initialization
During the initialization stage, concentrations are generated by
performing random initialization within the upper and lower
bounds of each optimization variable, as follows:

C0
i

r

� C
r

min + r
r
i(Cr max − C

r

min), i � 1, 2, ..., n, (28)

FIGURE 3 | Flowchart of IEO for optimal allocation of the BESS.

FIGURE 4 | Extended IEEE-33 bus test system.

TABLE 2 | TOU electricity price.

Period TOU electricity price

Valley period 00:00–06:00, 22:00–24:00 75 ($/MWh)
Flat period 10:00–16:00 170 ($/MWh)
Peak period 07:00–09:00, 17:00–21:00 380 ($/MWh)
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where C0
i

r

means the ith particle’s initial concentration; C
r

max and
C
r

min represent maximum value and minimum value for
dimensions, respectively; �ri is a random vector between 0 and
1; n denotes the number of particles.

4.1.2.2 Equilibrium Pool and Candidates
In order to improve the global search ability of EO and effectively
avoid local optimum stagnation, the ultimately convergent
equilibrium state contains four best-so-far particles, which are
defined as equilibrium candidates, all of which constitute an
equilibrium pool:

C
r

eq,pool � {Cr eq,(1), Cr eq,(2), Cr eq,(3), Cr eq,(4), Cr eq,(ave)}, (29)

where C
r

eq,(1), C
r

eq,(2), C
r

eq,(3), and C
r

eq,(4) are four best-so-far
particles; C

r

eq,(ave) denotes the equilibrium state of four solutions.

4.1.2.3 Exponential Term F
Exponential term F is crucial to properly balance global
exploration and local exploitation during concentration
updating, which is expressed as

�F � e− �λ(t−t0), (30)
where �λ denotes a random vector between 0 and 1, while time t
represents a function of iteration, as follows:

t � (1 − iter

itermax
)(a2 iter

itermax)
, (31)

where iter and itermax represent current and maximum number
of iterations, respectively; and a2 denotes a constant value
adopted for local exploitation adjustment.

FIGURE 5 | Clustered four typical operating scenarios. (A) Scenario 1. (B) Scenario 2. (C) Scenario 3. (D) Scenario 4
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To effectively avoid premature convergence, the following is
also considered, as follows:

�t0 � 1
�λ
ln[ − a1sign( �r − 0.5)](1 − e− �λt) + t, (32)

where a1 denotes a constant value adopted for an adjustment
between global search and local exploitation; sign is symbolic
function; r

r
and λ

r
are random vector between 0 and 1.

Substituting Eq. 32 into Eq. 30, yields

F
r � a1sign(rr − 0.5)[e−λr t − 1]. (33)

It is noted that the higher the a1, the better the exploration
ability and consequently the lower exploitation performance.
Similarly, the higher the a2, the better the exploitation ability,
and the lower the exploration ability. In addition, sign (r−0.5)
affects the direction of exploration and exploitation.

4.1.2.4 Generation Rate G
Generation rate G is critical to improve the local exploitation
stage, and G is devised as follows:

FIGURE 6 | Clustering for typical diurnal curves.

TABLE 3 | Allocation results of IEO algorithms.

The obtained allocation scheme of BESS Objective function value under different allocation scheme

Installation
bus

Rated
power
(MW)

Rated
energy
(MWh)

F
($/year)

F1
($/year)

F2
($/year)

F3
($/year)

F4
($/year)<

F5
($/year)

BESS
Ⅰ

32 0.2504 1.0015 1.8692 e+06 -7.4236 e+04 1.0551 e+05 1.3542 e+06 2.8294 e+05 2.0075 e+05

BESS
Ⅱ

7 0.8535 1.7069

FIGURE 7 | Real-time operation conditions of two BESSs. (A) First BESS and (B) second BESS
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G
r � G

r

CP(Cr eq − λ
r

C
r ), (34)

G
r

CP � { 0.5r
r

1
, if r2 ≥ 0.5 0, otherwise , (35)

where G
r

CP is defined as the control parameter of generation rate;
r
r
1 and r2 are two random variables between 0 and 1.

4.1.2.5 Solutions Update
Therefore, the overall updating rule of EO can be described by

C
r � C

r

eq + (Cr − C
r

eq) · Fr + G
r

λ
r

V(1 − F
r). (36)

4.2 Improved Equilibrium Optimizer
Compared with the original EO algorithm, different equilibrium
candidates of the IEO algorithm are allocated by different selection
probabilities to all equilibrium candidates according to their fitness
values instead of randomly selecting an equilibrium candidate from
the equilibrium pool. That is to say, an equilibrium candidate with
a smaller fitness value will receive a higher selection probability,
which can achieve a deeper exploitation modified equilibrium
candidate assignment mechanism.

It should be noted that the fitness values of all equilibrium
candidates are normalized to range from 0 to 1, and then the
selection probabilities can be obtained by

pj � pmin + (pmax − pmin) × max
i∈Ep

Fi − Fj

max
i∈Ep

Fi −min
i∈Ep

Fi
, j ∈ Ep (37)

where pmin and pmax are the minimum and maximum selection
probabilities, respectively; pj denotes probability of selecting the
jth equilibrium candidate; Fj denotes fitness value of the jth
equilibrium candidate; Ep is the set of equilibrium candidates.

Due to IEO dynamically adjusting equilibrium candidate
selection probabilities based on their fitness value during
iterations, it can implement deeper exploitation and improve
overall optimization efficiency to search for a higher quality
optimum.

4.3 Design of Improved Equilibrium
Optimizer for Battery Energy Storage
System Allocation Application
4.3.1 Optimization Variable Processing
The IEO individuals are characterized by the optimization
variables, including installation placement, power capacity, and
energy capacity of two BESSs, all of which need to be constricted

TABLE 4 | Optimization results of DN via the BESS.

Case Technical-economic criteria

Annual total power loss
(MW)

Maximum peak-valley difference
(MW)

Average tie-line power
fluctuation (MW)

Average voltage deviation
(p.u.)

Before BESS allocation 1016.15 8.6214 1.237 0.0205
After BESS allocation 477.647 2.9097 0.646 0.0139
Improvement rate 53% 66.25% 47.76% 47.48%

FIGURE 9 | Average node voltage curves under two cases.
FIGURE 8 | Equivalent load curves under two cases.
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in a reasonable range; otherwise, some negative effects on the
power flow, relay protection, voltage, and waveform of the
original power grid will be observed. In this study, nodes in
the range of [2, 33] are selected as the installation node, in which
environmental and geographical nodes need to be considered in
engineering practice. In addition, the limits of power and energy
capacities are determined to consider the topology of DN, the
power limit of the interconnection point, and especially the total
load power. Therefore, the power capacities allowed to access the
power grid of two BESSs are determined so as to satisfy the total
active power load of the power grid. In order to give full play to
the charging and discharging capacity of the BESS, the ratio of
energy capacity limit to power capacity limit is 4 to 1, as follows:

{PBESS,i ≤Pmax
BESS

EBESS,i ≤Emax
BESS

, (38)

where Pmax
BESS and Emax

BESS denote the upper limits of the energy
capacity and power capacity of the BESS, which are, respectively,
2 MW and 8MWh.

It should be noted that these four variables, that is, power and
energy capacities of two BESSs are continuous, while these two
variables, that is, installation placement are discrete. In this study,
continuous variables can converge to the optimal value in the
iteration process, while the optimal value of discrete variables is
needed to be rounded in the continuous space (Zhang et al.,
2017).

4.3.2 Fitness Function Processing
The fitness function should be combined with the objective
function and constraint conditions of the BESS optimal
allocation model. First, the updated solutions will perform
power flow calculation, where constraints need to be satisfied,
that is, Eqs. 18–24. Then, objective functions of all solutions are
evaluated based on the results of the power flow calculation. Once
the constraint condition is not satisfied, a large penalty factor will
be added to the objective function. Therefore, the fitness function
can be designed as follows:

Fit(Cr ) � F(Cr ) + ηq, (39)

where η is the penalty factor for violating constraints, generally
set to a larger normal number, and q means the number of
unsatisfied constraints.

4.3.3 Solving Procedure of the Model
To sum up, the execution procedure of IEO for BESS optimal
allocation is given in Figure 3.

5 SIMULATION MODEL AND CASE STUDY

5.1 The IEEE-33 Test System
In this section, BESS optimal allocation is implemented in the
extended IEEE-33 bus system for verifying the effectiveness of the
proposed method. The topology structure of the test system with
the total load of 3.715+j2.3 MVA is depicted in Figure 4

(Goswami and Basu, 1992). In addition, the population size of
IEO is set to be 100, and the maximum iterations are set to be 100.
Some specific parameters are set to the default values. Tables 1, 2,
respectively, provide the main cost parameters of BESS and TOU
electricity prices.

5.2 Case Data of Source and Load Sides
It is assumed that one PV plant and three wind power plants are
in the DN, where the maximum generation limits of wind and PV
are 3 MW and 2.5 MW, respectively. In view of the uncertainty of
load, wind, and PV output powers, this study adopts load, wind,
and PV power curves under different typical daily scenarios to
represent the actual operation of DN in the whole year.

First, annual historical data of load, wind, and PV powers in
one area are generated based on wind and PV output models.
Furthermore, a C-means clustering algorithm (Askari, 2021) is
used to obtain typical daily curves of load, wind, and PV power,
where the temporal correlation of source and load sides is
considered, and four typical scenarios are obtained via scene
fitting, as demonstrated in Figure 5, which can accurately
simulate the uncertainty of DN.

5.3 Simulation Results and Analysis
In order to prove the convergence performance of the proposed
algorithm, taking annual overall cost as optimization objective,
the optimization history (convergence curve) of optimal
individual fitness of the IEO algorithm is presented in
Figure 6. This metric is the fitness of the best-so-far particle
Ceq (1) from the first to the last iteration. It can be seen that the
proposed algorithm can converge to the minimum value with
fewer iterations to avoid falling into the local optimum, which is a
benefit by the design of the exponential term.

BESS optimal allocation scheme and optimization results of
DN obtained by IEO algorithms are given in Table 3. The results
show that the allocation scheme is the most cost-effective when
the BESSs with the capacities of 0.2504 MW/1.0015 MWh and
0.8535 MW/1.7069 MWh, respectively, are installed in bus
32 and bus 7. The annual overall cost including power loss
cost, peak-shaving cost, tie-line fluctuation penalty fee, and
voltage deviation penalty fee, is only $1.8692e+06 in the case
of the BESS for 15 years in the DN with a high proportion of
RESs, of which LCC of the BESS is $-7.4236e+04. It is obvious
that two BESSs are expected to achieve a total profit of
$1.1135+06 in the lifecycle, even where the ancillary services
of the BESS in the electricity market are not considered.

In addition, the obtained allocation scheme of the BESS by
means of the IEO algorithm can help guarantee two BESSs
operate at the optimum conditions with optimal placement
and sizing in terms of economic and reliability requirements
of DN. Figure 7 shows the charge–discharge power and SOC of
two BESSs. It can be seen from Figure 7 that SOC gradually
increased with the charge of the BESS and decreased with the
discharge of the BESS, all of which are kept at 50% at the start and
end of the day to ensure continuous and stable operation.

In order to verify the technical and economic benefits of the
BESS, Table 4. provides several criteria of DN in two cases and
the corresponding improvement rate. In particular, the annual
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total power loss of DN reduces by 538.5 MWwhen two BESSs are
properly allocated in DN based on the proposed method, the
maximum peak-valley difference decreases to 2.9097 MW from
8.6214 MW, and the improvement rates of average tie-line power
fluctuation and average voltage deviation reach 47%.

In addition, equivalent load curves and average node voltage
curves of DN under two cases are shown in Figures 9, 10. It is
obvious that reasonable BESS planning can significantly reduce
peak-valley difference and load fluctuation and improve voltage
level.

6 CONCLUSION

In this study, a new method for determining the placement and
sizing of the BESS, with the purpose of economy and reliability
improvements in the DN, has been proposed. The contributions
of the proposed method are drawn as follows:

C A multi-objective BESS allocation model takes economic
criteria that incorporate time value into costs and technical
criteria that relate to system reliability into consideration is
established, which aims at achieving excellent cost-
effectiveness and reliable operation of DN with RESs and
BESS. Economic criteria accommodate all the expenses
expected to occur during the lifetime of the BESS. For
the sake of a common dimension of objective function,
technical criteria are quantified by a dollar value, that is,
power loss cost, peak-shaving cost, and the penalty fees of
tie-line fluctuation and voltage deviation.

C A solution algorithm based on IEO is proposed to solve the
BESS allocation model, whose specific application and
design process are given. Compared with EO, the
proposed IEO improves global search ability due to the
fact that it dynamically adjusts equilibrium candidate
selection probabilities rather than random selection of
equilibrium candidate from equilibrium pool, which
owns strong global search ability and good convergence
effect, and thus can quickly search high-quality optimum
solution.

C The multi-scenario clustering using a C-means clustering
algorithm is conducted to capture the time-variable natures
and uncertainties related to RESs and load demand.

Ultimately, four typical scenarios are obtained via scene
fitting according to the probability distribution of different
scenarios. Compared to the direct average for seasonal data
of source and load sides, the scenario clustering and fitting
adopted in this study can more accurately simulate the
actual operation condition of the DN, meanwhile balancing
the simulation accuracy.

C To achieve practical study and verify the effectiveness of the
proposed model and IEO algorithm, a procedure has been
demonstrated on the extended IEEE-33 bus test system,
which effectively verifies the optimality of the solution
found. The optimal BESS allocation strategy obtained by
the IEO algorithm converges to the lowest overall cost,
which substantially reduces power loss, peak-valley
difference, tie-line fluctuation, and voltage deviation.
Hence, it is concluded that the proposed method is
capable of finding the appropriate placement and sizing
of the BESS and is beneficial for DN to increase economic
efficiency and improve system reliability.

The future research work is devoted to investigating smart
charging/discharging operations and suitable grid-connected
control strategy of the BESS to be applied in real-time
networks so as to facilitate BESS planning.
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NOMENCLATURE

Abbreviations
BESS Battery energy storage system

CRF Capital recovery factor

DN Distribution network

DRC Disposal and recycling cost

EPC Engineering, procurement, and construction

IEO Improved equilibrium optimizer

LCC Life cycle cost

MC Maintenance cost

RC Replacement cost

RESs Renewable energy sources

OC Operation cost

SOC State of charge

TOU Time-of-use

Variables
PBESS,i Power capacity of the ith BESS

EBESS,i Energy capacity of the ith BESS

Pcha,i Charging power of the ith BESS

Pdis,i Discharging power of the ith BESS

cpur TOU price to purchase electricity

ρsell TOU price to sell electricity

cpun, FL Additional peak clipping cost for maximum load

cpun,g Penalty fee for tie-line power fluctuation

cpun,v Penalty fee for voltage deviation

C Concentration in control volume that denotes current solutions of all
particles

Ceq Concentration under an equilibrium state that denotes the best solution
ever found

Ceq (avg) Mean concentration of four solutions

Ceq, pool Equilibrium pool contains four candidates and an equilibrium state
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