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INTRODUCTION

Thermal energy is stored in a packed bed thermal energy storage (PBTES) system by raising the
temperature of the packing elements. This simple mechanism and economic feasibility
(Gautam and Saini, 2020) make the PBTES promising for applications such as solar
thermal power plants, building cooling systems, and waste heat recovery (Nallusamy et al.,
2007). The traditional PBTES is based on sensible heat transfer and is therefore limited by a low
energy density and temperature stability (Mawire et al., 2020). Compared with the traditional
system, a packed bed latent heat storage (PBLHS) system based on phase-change materials
(PCMs) (Wang H. et al., 2018; Wang J. et al., 2018) offers advantages such as a higher energy
density, higher temperature stability, and few safety issues (Li et al., 2018; Kumar and Saha,
2021; Wang et al., 2021) and therefore is considered a promising solution for thermal energy
storage (Yang et al., 2017; Zhang et al., 2020; Grabo et al., 2021).

This study reviews recent progress on low-temperature PBLHS systems with phase-change points
below 100°C. A brief discussion of the working principle and impact factors of the PBLHS system is
presented based on results from recent studies (Alptekin and Ezan, 2021). The performance and
applications of PBLHS systems are also discussed.

CHARACTERISTICS OF THE PACKED BED LATENT HEAT
STORAGE SYSTEM
Structure and Working Principle of the Packed Bed Latent Heat
Storage System
A typical low-temperature PBLHS system (Liu and Zhao, 2021; He et al., 2022) consists of a heat
storage tank, a heat transfer fluid (HTF), and heat storage media (HSM). The structure of a PBLHS
system is shown in Figure 1A. Capsules containing low-temperature PCMs constitute the HSM,
which is supported by a screen in the lower portion of the heat storage tank. The heat storage tank is
surrounded by a layer of insulation material to reduce thermal energy loss. During the charging and
discharging process, the HTF percolates through the HSM (Singh et al., 2010). The HSM packing is a
porous medium with a high surface-to-volume ratio at the macroscopic level, which enhances heat
transfer (Yang et al., 2019; Yang et al., 2020). Heat transfer between the HSM and HTF enables the
charging and discharging of the PBLHS system (Guo et al., 2021). The buoyancy effect causes the
high-temperature HTF to enter the top of the heat storage tank during the charging process
(Zanganeh et al., 2012). The HSM near the inlet is heated first. The temperature gradient across the
HSM from the inlet to the outlet results in the lower portion of the HSM also being heated by the
upper portion of the HSM (Qin et al., 2012). During the discharging process, the thermal energy
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stored in the HSM is released by heat transfer between the low-
temperature HTF and the high-temperature HSM.

Materials of the Packed Bed Latent Heat
Storage System
HSMs in the form of spherical capsules have been found to exhibit
superior thermohydraulic performance (Singh et al., 2013). In a low-
temperature PBLHS system, the HSM consists of spherical capsules
filled with PCMs, such as paraffin (Nallusamy et al., 2007;Wang et al.,
2017), water (Fang et al., 2010), n-tetradecane (Wu et al., 2010), and
compositematerials (Cheng andZhai, 2018). Themacro-encapsulated
PCMs can be made by filling a pre-made shell with liquid PCM (Liu
et al., 2018). The micro-encapsulated PCMs can be fabricated by
physical, chemical, or physicochemical methods, that is, spray drying
(Alva et al., 2017), interfacial polymerization (Milián et al., 2017), and
droplet microfluidics (Chen et al., 2013; Han et al., 2020). The use of
large PCM capsules results in poor thermal performance and low
energy loss. However, small PCM capsules induce a large pressure
drop across the HTF (Li et al., 2018; Alptekin and Ezan, 2021).
Therefore, the PCM capsule size should be determined based on a
comprehensive evaluation of the thermal performance and pumping
power of the PBLHS system (Pakrouh et al., 2017).

Both liquids and gases, that is, water (Cheng and Zhai, 2018),
ethylene glycol (Fang et al., 2010), and air (Arfaoui et al., 2017),
can be used as the HTF in the PBLHS system. A liquidus HTF
has a large heat transfer ecoefficiency and can be used to

fabricate a PBLHS system with a high charging/discharging
rate (Felix Regin et al., 2009). However, the large flow
resistance of a liquidus HTF produces a large pressure drop
across the PBLHS system. Air is typically used as a gaseous
HTF because of its low cost and high-temperature resistance.
However, the low thermal conductivity of a gaseous HTF
results in a low charging/discharging rate for the PBLHS
system. Thus, a HTF should be selected by considering the
influence factors for the system, including the HTF cost,
estimated charging/discharging rate of the PBLHS system,
and pumping power (de Gracia and Cabeza, 2017).

Factors Affecting the Packed Bed Latent
Heat Storage System Performance
The various factors affecting the performance of the PBLHS
system can be categorized into structural and material factors.
As a PBLHS system can be treated as a porous medium at the
macroscopic level, the effect of the packing structure determines
the heat transfer between the HSM and the HTF, as well as the
pressure drop in the PBLHS system (Deng et al., 2017). In order
to maintain a balance between the heat transfer and pressure
drop, the size and aspect ratio of the HSM should be optimized. A
high void fraction, that is, a high ratio of the volume of the voids
in the bed to the total bed volume, enhances the thermal
conductivity of the HSM but induces a large pressure drop
across the PBLHS system.

FIGURE 1 | Structure and applications of a low-temperature PBLHS system. (A) Structure; (B) Applications.

Frontiers in Energy Research | www.frontiersin.org June 2022 | Volume 10 | Article 9351002

Cao et al. Packed Bed Latent Heat Storage System

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


The thermal properties of the materials in the PBLHS system
determine the heat transfer in the system, including convection
and conduction. Specifically, heat transfer within the PBLHS
system combines conduction between the wall and HSM,
convection between the HSM and HTF, convection between
the wall surface and HTF, and even radiation from the HSM.
The effective thermal conductivity is used as a comprehensive
measure of the heat transfer within the PBLHS system.

PERFORMANCE EVALUATION OF THE
PACKED BED LATENT HEAT STORAGE
SYSTEM
Energy efficiency is typically used to evaluate the energy storage
performance of a PBLHS system and is expressed as the ratio
between the energy recovered from the PBLHS system and the
energy delivered to the PBLHS system (Yang and Garimella,
2010). Arfaoui et al. used a PBLHS system with air as the HTF
and CaCl26H2O as the PCM to increase the efficiency of a solar air
collector. The maximum absorbed energy reached 730 kJ, and the
daily energy efficiency was approximately 47% Arfaoui et al. (2017).

However, irreversible losses were not considered in the energy
analysis. The exergy efficiency, the ratio of the total exergy
recovered from the PBLHS system to the total exergy
delivered to the PBLHS system, is preferred as a measure of
the comprehensive system performance (Saha and Das, 2020;
Mawire et al., 2021). Cheng et al. found that the exergy efficiency
decreases from 83.1% to 79.4% as the capsule size increases from
9.5 mm to 47.5 mm (Cheng and Zhai, 2018).

As applications of the PBLHS system are sometimes limited by
the large capital investment involved, it is important to consider
the cost of a PBLHS system. The levelized cost of electricity
(LCOE) is the most commonly used indicator of the economic
feasibility of a PBLHS system. Tehrani et al. performed a techno-
economic comparative analysis on a PBLHS system and a shell-
and-tube latent storage system based on the thermal storage
capacity for a 19.9 MWe solar power plant. The cost of a
PBLHS system with a wall thickness of no more than 0.1 mm
is ~10 US$ kWhth Mostafavi Tehrani et al. (2019).

APPLICATIONS OF LOW-TEMPERATURE
PACKED BED LATENT HEAT STORAGE
SYSTEMS
A low-temperature PBLHS system can be integrated with
residential heating (He et al., 2019b; Xu et al., 2020),
greenhouse heating (Baddadi et al., 2019), and solar collectors
(Desai et al., 2022). Baddadi et al. (2019)designed a greenhouse
with a PBLHS system, utilizing CaCl2.6H2O as the PCM and air

as the HTF. The system was found to enhance the greenhouse
microclimate. Cheng and Zhai (2018) reported a cascaded packed
bed based on cool thermal energy storage, with water and a
composite material (C-L/O) as the HTF and PCM, respectively.
The most efficient 24-stage unit had a 15.1% lower charging time
than a single-stage unit and a similar thermal performance to a
3–5 stage system. He et al. (2019a) designed a PBLHS system
integrated with a water tank to enhance the electric power load
regulation capacity and the heat-supply capacity. The energy
storage capacity increased by 29.62% theoretically. Wu et al.
(2022) also discussed the application and optimization of the
PBLHS system in hot-water supply, theoretically and
experimentally. The system has better thermal stratification
when the PCM units are placed at a higher place and near the
inlet of the high-temperature water, and the flow rate is 3 L/min.
The PBLHS system can also be used for the drying process
(Atalay, 2020), with an average energy efficiency of 68.55%.

CONCLUSION AND PROSPECTS

This study presents a brief introduction to the structure and
the working principles of the PBLHS system. The impact
factors and performance of the PBLHS system have been
discussed. The packing structure of a PBLHS system
significantly affects thermal performance. The PBLHS
system performance is commonly evaluated using the
energy efficiency and exergy efficiency, between which the
exergy efficiency is more accurate and therefore preferred. In
addition, applications of low-temperature PBLHS systems,
especially for buildings, are introduced. However, a few
studies have been carried out on the economic aspects of
low-temperature PBLHS systems. Further investigations on
optimizing the design and economic feasibility of low-
temperature PBLHS systems are encouraged.
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