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With the rapid growth of wind power penetration into modern power grids, wind speed
forecasting plays an increasingly significant role in the planning and operation of electric
power and energy systems. However, the existing wind speed forecasting methods are
modeled as black boxes, which are very complicated and cannot be written down explicitly
due to the complex fluctuation characteristics of wind speed series. To this end, this study
proposes a novel direct method based on an explainable neural network (xNN) for
deterministic and probabilistic wind speed forecasting. It can theoretically extract the
nonlinear mapping features in wind speed, thereby providing a clear explanation of the
relationship between the input and the output of the forecasting model. Then, the
uncertainties in wind speed are statistically synthesized via the kernel density
estimation method. Finally, we use wind speed data from real wind farms in Belgium
to verify the feasibility and effectiveness of the proposed method. The simulation results
demonstrate that it is not only able to accurately extract the non-stationary feature in the
wind speed series but also superior to other benchmark algorithms in prediction accuracy.
Therefore, the proposed method has a high potential for practical applications in real
electric power and energy systems.
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1 INTRODUCTION

Due to the concerns about reserves of fossil fuels, renewable energy has become an essential part of
global energy (Wang et al., 2019a). Among renewable energy, wind energy is recognized as clean
energy with a high conversion rate, large-scale development, and rich resources (Long et al., 2022).
Moreover, wind energy can reduce greenhouse gas emissions to relieve the energy systems effectively.
Therefore, the level of wind power penetration into modern power grids has correspondingly
increased in the past decades (Anjaiah et al., 2022). However, the randomness, volatility, and reverse
load characteristics of wind power will definitely aggravate the power supply–consumption
imbalance, thus bringing great challenges to the economic operation, stability, and security of
the electric energy system (Desai and Makwana, 2021). Wind speed forecasting affects not only the
reserve capacity and maintenance plan of the energy system but also energy market transactions and
charge and discharge plans of the storage stations (Wang et al., 2018). Therefore, accurate wind speed
forecasting is crucial for availably dispatching wind power resources.

Traditionally, wind speed prediction methods focus on the deterministic forecast, namely point
predictions, which have strong stability and accurately describe the nature of fluctuation of wind
speed (Tang et al., 2020). However, it fails to estimate the uncertainties associated with a given
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prediction of wind speed predictions. These uncertainties play a
key role in improving the economic benefits of day-ahead energy
bidding and reserve scheduling (Fu, 2022). Therefore, it is
necessary to develop probabilistic prediction tools with
consideration of the uncertainty in wind speed predictions,
which can help dispatchers prepare for possible scenarios in
advance (Haque et al., 2014), thus reducing the risk of power
system control and management.

In recent years, considerable research has been conducted to
obtain prediction intervals (PIs) through probabilistic wind speed
forecasts (Xydas et al., 2017). So far, it can be mainly divided into
three categories: physical modeling method, statistical model, and
hybrid artificial intelligence method (Khodayar et al., 2019). The
essence of physical modeling methods is to establish an accurate
mathematical model by assembling various meteorological variables
to obtain the forecast distribution and estimate the uncertainty in the
forecast (Zhao et al., 2018). The statistical method attempts to
establish the relationship between future wind power and
historical samples to minimize the error (Scheu et al., 2017; Wang
Y. et al., 2019; Pokhrel and Seo, 2021). Investigating the uncertainty in
prediction for wind power based on the statistical analysis of wind
speed prediction and errors of the nonlinear power curve is presented
in Zhao et al. (2016). Zhang et al. (2015) proposed a kernel density
estimation method based on logarithmic transformation to estimate
the uncertainty in wind energy. Compared with the other two
methods, artificial intelligence has been developed prosperously
due to its potential ability in data mining and feature extraction
(Liu et al., 2013; Aurore et al., 2020; Madhiarasan, 2020). Besides,
many studies have been done on the combinations of these methods
recently. Wan et al. (2017) combined the extreme learning machine
(ELM) andQR to directly generate quantiles of different proportions.
Wang et al. (2016) proposed a hybrid statistical approach in
combination with wavelet transform, deep belief network and
spline QR to completely extract nonlinear features of each
frequency, validated by Bornholm Island wind farm. Moreover,
Wang et al. (2017) proposed an ensemble of wavelet transforms
and a convolutional neural network for probabilistic wind speed
forecasts and separately identified the model misspecification and
data noise. The probability distribution of wind power data can be
expressed by statistical models. In addition, the hybrid algorithm of
neural network and optimization algorithms are widely used in
probabilistic predictions. Wan et al. (2014) used particle swarm
optimization (PSO) to directly optimize the output weights of
ELM based on the objective function while the network outputs
PIs with different PI confidence levels (PICP). Wang et al. (2020a)
proposed a wind power interval prediction model based on a spiking
neural network (SNN) and used a group search optimizer introduced
and redesigned to optimize the parameters of SNN and directly
generate the prediction intervals. Thus, it can be concluded that
neural networks (NNs) play a significant role in the field of
probabilistic predictions.

However, in the decision-making process, these models fail to
judge whether NNs have made decisions on the basis of general
features or random features in the training data (Yildiz et al.,
2021). To date, an explainable probabilistic prediction model
designed for wind speed forecasting has not yet been considered
in the published literature. Therefore, this study aims to fill this

gap and proposes a new explainable probabilistic prediction
model for wind speed forecasting. This work, which
investigates a deep wind speed forecasting framework and a
hybrid intelligent approach based on xNN, bootstrap method,
and KDE, is originally proposed to enhance prediction efficiency
and provide a clear explanation of the relationship between the
input of this model and its output. The main advantage of the
proposed probabilistic prediction framework is that it can express
how the input variables affect the output results through
mathematical formulations. By analyzing the behavior of the
model, we can understand which features of wind act as the
main factors affecting the prediction accuracy and determine
whether the input-output relationship of NN is consistent with
the common knowledge in the wind energy system. By comparing
with the existing methods, this approach takes the measured data
of wind farms as the micro-scale NWP data, and it focuses on the
following key aspects:

(1) For the first time, a new explainable prediction NN is
originally proposed for wind speed forecast, which can
learn the interpretable features of wind speed and express
how the input variables affect the result by formulation.

(2) Based on the aforementioned discussion, this study proposed
a deterministic forecasting model, which introduces the
bootstrap method to reduce the noise of training data and
the misspecification of the NN model for regression, so it is
called B-xNNs.

(3) The KDE can avoid inaccurate predictions caused by the
unreasonable assumption error distribution independently
without setting hypotheses for the wind power error
distribution in advance. According to the prediction results
from B-xNNs, the uncertainty of prediction is devoted to
obtaining the probability prediction results with high reliability.

(4) The proposed method has been tested using the measurement
data of a wind farm in Belgium after comprehensively evaluating
the feasibility of the forecasting results. The effectiveness and
interpretability of the proposed approach have been
demonstrated by the results.

The rest of this research is organized as follows: Section 2
introduces a probabilistic forecasting formulation based on xNN.
Section 3 describes PIs evaluation indices including reliability
and sharpness. In Section 4, comprehensive numerical studies are
implemented and the superiority of the proposed method is
demonstrated. Finally, the conclusion is drawn in Section 5.

2 PROBABILISTIC FORECASTING
FORMULATION BASED ON EXPLAINABLE
NEURAL NETWORK
2.1 Explainable Neural Network
This section introduces the structure and mathematical model of
xNN, as presented in the left half of Figure 1. It is a feed-forward
neural network with one input layer, two linear layers, and one
nonlinear layer with Legendre polynomial. The mathematical
models of the four layers are given below.
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Given the datasets with N arbitrary distinct samples
Dt � {(xi, ti)}Ni�1, where ti is the wind speed of ith time and Xi

is the input vector including historical wind speed, wind direction
and radiation, and NWP, it can be expressed as
Xi � [xi1, xi2, ..., xin]T. Therefore, the input layer is responsible
for inputting wind power-related features and time series data
into the xNN structure. As shown in Figure 1, the input layer is
fully connected to the first hidden layer and consists of K nodes.
In this layer, a linear activation function is employed, so each
neuron in this layer learns a linear combination of the input
features and time series data. Equation 1 denotes the input
weight of the jth node, expressed by

βj �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ω1j

ω2j

...
ωnj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (1)

Therefore, the output of jth node of this layer can be expressed
by the following equation:

Vj � βTj X �∑n
i�1
ωijXi. (2)

The second hidden layer is used to learn the ridge functions
gj(·), which is taken as the activation function of the nonlinear
neuron in this layer. As shown in Figure 1, connections
between the first hidden layer and the second one can
cause a potentially nonlinear transformation of the input.
The output of jth node of the second hidden layer is
expressed as

hj � gj(Vj) � gj(βTj X). (3)
As shown in Figure 1, the output layer consists of a single node

using a linear activation function. Therefore, the output layer is a
linear combination of the second hidden layer to ensure that all
features of the previous layer can be learned.

Ridge function is taken as the activation function of the
nonlinear neuron in this layer as follows:

gjK � 1
K!
(βTj X)K, (4)

where gjK represents an activation function of the Kth neural in
the nonlinear layer. Therefore, the output of the last layer can be
expressed as

f �� 1
i!
∑K
i�1
∑n
j�1
γj(βTj X)i + μ, (5)

where γ is the weight of the second hidden layer and μ is the bias
of the output layer. It can be seen from Eq. 5 that xNN is an
additive index model based on the neural network, which allows
direct calculation of partial derivatives of the function. This
enables xNN to perform derivative-based analysis techniques
without relying on finite difference approximation (Yang et al.,
2021). The effect of input parameters on the output can be
analyzed theoretically by Eq. 5 to provide straightforward
explanations of how the model uses the input features to make
predictions in wind speed.

2.2 Uncertainty in xNN Probabilistic
Forecasting Model
The uncertainty of the model is the primary reason for the
uncertainty of xNN probabilistic forecasting. Specifically, these
uncertainties may be caused by over-training, model
misspecification, and high sensitivity to initial parameters,
among others (Guignard et al., 2021). Although the global
minimum value is reached, the uncertainty of the xNN model
structure will also cause non-negligible errors. In the research of
wind power generation prediction, it is impossible to ensure
consistent generalization performance of xNN for the unknown
future because of the limited samples. Namely, it is impossible to
find perfect parameters and structures to eliminate the
uncertainty of the model. These factors are collectively
referred to as xNN model uncertainty. Therefore, to reduce
the uncertainty of wind speed forecasting and produce
accurate estimation, the development of prediction for the
xNN forecasting framework is based on the bootstrap method.

Bootstrap is regarded as a general method of statistical
inference based on establishing a sampling distribution by
uniform sampling replacing from the raw data (Efron and
Tibshirani, 1993). In order to reduce the uncertainty of wind
speed forecasting, we train B-xNNs on particular bootstrap
samples to adjust the network parameters, whereas the model
misspecification and data noise can cancel each other through
this process (Chen et al., 2018). The flowchart of the proposed
structure is described in detail in Figure 2. Based on historical
wind speed data, we create an original training dataset at first.
Then, the original training data are evenly sampled and replaced
to generate bootstrapped pairs devoted to the input of the xNN.
Afterward, M xNNs will be derived from wind power forecasting
by training based on the M bootstrap replicates. Its average
output is taken as the estimation of the final regression.

FIGURE 1 | Probabilistic forecasting framework based on B-xNNs.
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2.3 Prediction Intervals Construction Based
on xNN
The construction of new wind power prediction intervals is
proposed in this section. The overall structure of the xNN-
based forecasting framework is shown in Figure 1, and wind
power time series data are used as the input of the proposed
method. Lower bound Lαt and upper bound Uα

t of the prediction
interval are the outputs of the proposed method with its
corresponding confidence levels of 100(1-α)%.

2.3.1 Kernel Density Estimation
As shown in Figure 1, to estimate the optimal prediction intervals
statistically, the proposed wind power probabilistic forecasting
method adopts KDE to fit the final regression errors of wind
speed obtained by the xNNs. Wang et al. (2019c) presented that
KDE can be used as an effective mathematical tool to study the
characteristics of data distribution based on the distribution-free
principle instead of using prior distributions. Therefore, the
impact of the hypothesis in wind speed forecasting error on
the prediction accuracy can be appropriately mitigated. Given the
wind speed prediction error datasets S � {s1, s2, s3, ..., sn} with n
arbitrary distinct samples, the probability density function (PDF)
is shown as

f~(s, h) � 1
nh
∑n
i�1
K(s − si

h
), (6)

where h represents bandwidth for determining the width of the
distribution interval of the prediction error and the K(.) termed
the kernel function, and si is the ith sample of wind speed
prediction error. Common kernel functions include Uniform
kernel, Gamma kernel, Epanechnikov kernel, and Gaussian
kernel. In this study, the Gaussian kernel function is selected
as the kernel function, expressed as follows:

K(s) � 1
2π

√ exp(−s2
2
). (7)

Therefore, the PDF can be transformed into the following
equation:

~f(s, h) � 1
2π

√
nh
∑n
i�1
exp( − 1

2
(s − si

h
)2). (8)

The error can be minimized by selecting the appropriate
bandwidth h, which controls the balance between the bias and
variance in the results. So far, there are some studies on the
mean squared error (MSE), integrated squared error (ISE),
and mean integrated squared error (MISE) criteria to select h
(Duan et al., 2021). By comparing with the MISE method, the
other two methods require higher accuracy for single-point
prediction. MISE can be expressed by the following
equations:

M(h) � E∫ ~fh((s) − f(s))2ds
� ∫(E~fh(s) − f(s))2ds + ∫ var~fh(s)ds, (9)

M(h) � h4

4
∫ s2K(s)dx∫ {f′′(s)}2ds + 1

nh
∫K2(s)ds

+ o( 1
nh

+ h4), (10)

where var~fh(s) is the variance of the KDE. According to Xydas et
al. (2017), we can obtain the asymptotic mean integrated squared
error (AMISE):

AMISE � h4

4
∫ s2K(s)dx∫ {f′′(s)}2ds + 1

nh
∫K2(s)ds. (11)

According to Xin et al. (2020), the optimal bandwidth can be
expressed by

hop � ( R(K)
T2(K)R(f})n)1

5

, (12)

where R(K) is the square integral of kernel function K(s) and T(K)
is the second moment of kernel function K(.), represented,
respectively, as R(K) � ∫K2(x)dx and T(K) � ∫x2K(x)dx.

The normal distribution with variance σ2 is used in the
reference distribution of the unknown probability density
function. Thus, Eq. 12 can be transformed into

hop � (4π)− 1
10
3
8
π−1

2σn−
1
5 � (4

3
)1

5

σn−
1
5. (13)

It should be noted that inaccurate estimates will be obtained
when the error probability density is away from the normal
distribution. Therefore, the trial-and-error method is used to
select the appropriate bandwidth (Yang et al., 2018). The
proposed modification of the optimal bandwidth hop is to deal
with unimodal and bimodal densities, expressed as

hop � 0.9min(σ, EIQR

1.34
)n−1

5, (14)

FIGURE 2 | Flowchart of Pairs bootstrap based on xNN.
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where EIQR is the difference between 75% and 25% of the sample
quantile. In Eq. 14, a discrete set near the hop has been defined,
and the trial-and-error method is used to select the appropriate
bandwidth in this discrete set. The fluctuation range of prediction
errors at the confidence level of 100(1-α)% is obtained by the
corresponding cumulative distribution function (CDF) as
follows:

Ie(α) � [F(α), F(1 − α/2)] (0< α< 1) . (15)
Therefore, the 100(1-α)% confidence level PI of the measured

target is a stochastic interval of wind power, expressed by[~L(α)
i (xi), ~U(α)

i (xi)] � [y(α)
i,pre − F*(α), y(α)

i,pre + F*(1 − α/2)], (16)

y(α)
i,pre ∈ [~L(α)

i (xi), ~U(α)
i (xi)], (17)

where y(α)
i,pre is the prediction result of the B-xNNs at the ith

sample under confidence levels of 100(1-α)%.

2.3.2 Probabilistic Forecasting Framework Based
on xNN
The flowchart of the xNN-based probabilistic forecasting
framework is mainly divided into three parts. The first part is
to train the M xNNs based on the training dataset, saving the
model with approximate optimal structure. More specifically, the
training dataset based on the input dataset within the historical
wind speed data and NPWs is devoted to generatingM bootstrap

replicates. All parameters in B-xNNs are randomly initialized and
updated based on the layer-wise pre-training process and fine-
tuning process until they all are converged. In the second part, the
essential idea of the process is to obtain the optimal parameters of
the KDE. In order to obtain the error dataset, we verify the
forecasting performance of B-xNNs on the validation set. Then,
compared with the true regression, the error of model
misspecification uncertainty can be estimated from the
B-xNNs. Subsequently, the error dataset is adopted to calculate
cumulative distribution, and the probabilistic wind speed
forecasting model is statistically established based on the KDE.
Therefore, the wind speed forecasting uncertainties can thus be
probabilistically represented as a set of quantiles. In the last part,
the testing dataset is used to verify the probabilistic forecasting
performance framework. The overall schematic diagram is
illustrated in Figure 3.

3 PERFORMANCE EVALUATION METRICS

3.1 Deterministic Forecast Evaluation
In order to comprehensively assess the overall prediction
performance of B-xNNs, three widely used metrics in statistics
are employed: mean absolute error (MAE), mean absolute
percentage error (MAPE), and root mean square error
(RMSE) (Xu et al., 2021). Calculation formulas for these
evaluation indicators are as follows:

MAE � 1
N
∑N
i�1

∣∣∣∣∣∣yi − yi

∣∣∣∣∣∣, (18)

MAPE � 100%
N
∑N
i�1

∣∣∣∣∣∣∣∣∣∣yi − yi

yi

∣∣∣∣∣∣∣∣∣∣, (19)

RMSE �


1
N
∑N
i�1

∣∣∣∣∣∣yi − yi

∣∣∣∣∣∣2
√√

, (20)

where yi represents the predicted value of the input samples
generated by the B-xNNs, yi represents the true regression, andN
represents the number of samples.

3.2 PI-Based Forecast Evaluation
According to the definition of prediction interval (PI), the target ti
with PI nominal confidence (PINC) 100(1-α)% is in the
constructed prediction interval:

ti ∈ [~L(α)
t (xi), ~U(α)

t (xi)], (21)

where ~L
(α)
t (xi) and ~U

(α)
t (xi) are the lower and upper bounds of PI

with nominal confidence of the future target ti.
As a major attribute of probabilistic prediction models,

reliability is denoted by the probability of target between
prediction intervals because low reliability will lead to
systematic bias in subsequent decision problems (Li et al.,
2016). PI coverage probability (PICP) is used to evaluate the
reliability of the prediction interval, which is defined by

FIGURE 3 | Flowchart of probabilistic forecasting based on xNN.
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PICP � 1
Nt
∑Nt

i�1
di

(α), (22)

where Nt is the number of the sample and di is the Boolean
variable, expressed by

di �
⎧⎨⎩ 0 ti ∉ [~L(α)

t (xi), ~U(α)
t (xi)]

1 ti ∈ [~L(α)
t (xi), ~U(α)

t (xi)] . (23)

The coverage probability of derived PIs is expected to
approach the nominal level of confidence asymptotically as
close as possible. Average coverage error (ACE), therefore, can
be used for the evaluation of the PIs, defined by

A(α)
t � PICP − PINC. (24)

The interval score index is served to evaluate the quality of the
prediction interval by rewarding narrower PIs and punishing
wider PIs (Wan et al., 2014), expressed as follows:

S(α)t (xi) �
⎧⎪⎪⎨⎪⎪⎩

−αI(α)t (xi) − 2[~L(α)
t (xi) − ti] ti< ~L

(α)
t (xi)

−αI(α)t (xi) ti ∈ [~L(α)
t (xi), ~U(α)

t (xi)]
−αI(α)t (xi) − 2[ti − ~U

(α)
t (xi)] ti > ~U

(α)
t (xi)

.

(25)
The average score can be obtained by

�S
(α)
t � 1

Nt
∑Nt

i�1
S(α)t (xi). (26)

Obviously, simply increasing or decreasing the width between
the bounds of PI can easily lead to high reliability. However, the
resultant PIs are useless in practice because of the degradation of
interval sharpness (IS) (Guignard et al., 2021). Therefore, sharper
PIs have higher quality and would be preferred under the
condition of high reliability.

3.3 Interpretability of the Proposed
Approach
According to the analysis in Section 2, the final output of the
B-xNNs can be expressed as

�f �� 1
Mi!

∑M
m�1
∑K
i�1
∑n
j�1
γj(βTj X)i + μ, (27)

which is actually a nonlinear mapping function of the input
vector X. Therefore, the new B-xNNs model for wind speed
prediction is proposed to quantitatively analyze how the input
variables of B-xNNs affect the prediction results by explicit
formulation. In the process of probabilistic forecasting, we can
obtain the optimal parameters of the KDE by estimating the
uncertainty of B-xNNs prediction. It can be seen from Eq. 8 that
the input-output relationship of PDF is actually a polynomial of
the error data S. Obviously, the proposed probabilistic forecasting
structure in Figure 1 is designed to explicitly learn the measured
data of wind farms and the prediction interval with different

confidence relationship. From Eqs 8 and 27, we can not only
extract the interpretable features in wind speed but also
theoretically analyze how the input variables affect the interval
prediction results. It means that the corresponding relationship
can be found from the input characteristics for the PIs with
different confidence levels. Therefore, the whole probabilistic
prediction framework is promising and attractive due to its
interpretability and explainability.

4 CASE STUDIES

4.1 Experiment Data Description
In this study, the proposed approach has been comprehensively
tested and benchmarked on wind speed datasets from a Belgian
transmission company called Elia. The Belgian coordinate system,
located in 50°51′ north latitude and 4°21′ east longitude, has
abundant wind energy resources and its wind power installation
capacity is large (Wang et al., 2020b). Due to the high complexity of
chaotic climate systems, weather conditions are quite different in the
four seasons, which will bring a high level of uncertainties in wind
speed. Therefore, four different prediction models in the same
framework and seasonal datasets are considered in this
experimental test. To ensure the effectiveness of generation and
reserve dispatches, we adopt a short-term forecast. In addition,
models are constructed separately for different seasons. The entire
wind speed datasets are divided into four groups and each group
covers one season of data, respectively. In each dataset, data are
divided into training, verification, and test sets, with percentages of
78%, 11%, and 11%, respectively. Besides, in order to ensure the
accuracy and sharpness of the prediction, the parameter M of
B-xNNs is selected as 150. In other words, 150 bootstrap
replicates are used to generate PIs in the case study.

4.2 Experimental Results and Analysis of
B-xNNs
To fully validate the effectiveness of the proposed algorithm, the
results are compared with the backpropagation neural network
(BPNN) and the long short-term memory (LSTM). The detailed
testing results, including the regression evaluation indices MAE,
MAPE, and RMSE, are given in Table 1. The minimum and
maximum MAE index values of the proposed method are
0.4512 and 0.5831, respectively, with an average of 0.5027. The
MAE indices of LSTM and BPNN varied from 0.6236 to
0.7852 and from 0.6859 to 0.7652, with average values of
0.7013 and 0.7232, respectively. Compared to LSTM and BPNN,
the MAPE has been evenly improved by 36.72% and 41.87%,
respectively, and RMSE by 32.04% and 33.14%, respectively. The
regression indexes of the proposed prediction framework are
significantly better than the prediction results of the BPNN and
LSTM algorithms. The above numerical simulation results show that
the proposed prediction framework shows good prediction
performance in all four seasons, so it has strong forecasting
robustness.

Moreover, to graphically demonstrate the privilege of the
proposed approach, the prediction results of different methods
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are presented in Figures 4–7, respectively. The curves in different
colors represent the prediction results using different algorithms.
It can be seen that the results from the proposed approach and the
real values almost overlap in all four seasons, indicating that the
estimated values are closest to the real data. The prediction results
of BPNN and LSTM algorithms have relatively large forecasting
errors. Therefore, the comparative results demonstrate that the
proposed hybrid algorithm exhibits the best point forecast
performances in all four seasons and thus shows the best
prediction capability over the benchmarks. In addition, the
results also show that the LSTM outperforms the BPNN 1-h
ahead forecasts, which is consistent with the results presented in
Wang et al. (2020b). This result is due to the high nonlinearity,
complexity, and non-smoothness exhibited in short-time wind
speed series. These dynamics cannot be extracted effectively by
shallow NN models, such as BPNN.

4.3 Experimental Results and Analysis of the
Proposed Probabilistic Method
This section evaluates the effectiveness of the proposed
probabilistic approach. According to Section 2.3, we have

drawn probability density distribution and corresponding
cumulative probability distributions with prediction error
results, as shown in Figures 8–11. It can be seen that
seasonal segmenting and fitting are feasible to describe the
probability distribution of prediction errors in different
seasons. In Figures 10, 11, the upper and lower quintiles
within different confidence levels 95%, 90%, and 80% are
shown with α/2 = 2.25%, α/2 = 5%, and α/2 = 10%,
respectively. Therefore, the upper and lower bounds of
prediction errors at the confidence level of 100(1-α)% are
obtained on the solid basis of the CDF. The fluctuation
effect of the wind power prediction interval within spring
and autumn is shown in Figures 12 and 13, manifesting that
the width of the prediction interval decreases whereas the
interval coverage and confidence level decrease. Figures 12
and 13 show that the wind speed data are perfectly enclosed by
the PIs generated by the proposed method, indicating that the
probabilistic performance criteria for the samples are
satisfactory. Besides, although the non-stationary
characteristics of wind speed series are displayed in Figures
12 and 13, the PIs still have high coverage, suggesting that the
proposed prediction framework can construct high-quality PIs
for wind speed datasets at a wide range of confidence levels.
Considering that some generated PIs may have abnormal
values beyond the possible generation range of the wind
farms, the resultant predictive densities have been censored
to concentrate on the probability of abnormal conditions mass
on the bounds.

According to Section 3.2, two indices, ACE and IS, are used
in the literature to measure the probabilistic performance.
Regarding ACE and IS, high-confidence levels of PINC 100(1-
α)% ranging from 90% to 99% are generally considered
because of the high reliability required in power system
optimization and operation (Wang et al., 2022). These two
probabilistic indices and their corresponding PICP are
tabulated in Table 2. In all four seasons, the ACE of the
proposed approach exhibits the lowest deviations to the
nominal confidence levels, especially in the case of higher
confidence levels of 95% and 99%. Quantitatively, the
average of ACE using the proposed approach is 0.5717%;
the average of IS is between −6.62% and −1.08%; and the

TABLE 1 | Deterministic 1 h ahead statistical prediction results of the four
methods.

Season Error LSTM BPNN Proposed

Spring MAE 0.6399 0.6859 0.4845
MAPE 11.25% 12.19% 6.55%
RMSE 0.8053 0.8764 0.6602

Summer MAE 0.6236 0.6923 0.4512
MAPE 11.13% 12.27% 6.23%
RMSE 0.7952 0.8951 0.5412

Autumn MAE 0.7852 0.7652 0.5831
MAPE 12.05% 13.11% 9.12%
RMSE 1.0684 0.9845 0.6145

Winter MAE 0.7563 0.7494 0.4921
MAPE 11.6% 12.59% 7.26%
RMSE 0.9613 0.9341 0.6514

Average MAE 0.7013 0.7232 0.5027
MAPE 11.52% 12.54% 7.29%
RMSE 0.9076 0.9225 0.6168

FIGURE 4 | Prediction results of three different methods in spring.
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average score is −3.73%. The IS bias increases as the PINC
increases because it is a punishment system for a wide range.
These results prove that the reliability errors between the
observed probability and nominal confidence from the
proposed approach are at a minimum and further indicate

that the proposed approach exhibits higher prediction
reliability.

To further demonstrate the effectiveness and feasibility of
the proposed probabilistic prediction approach, three other
PI forecasting methods, namely, persistence method, LSTM + QR,

FIGURE 5 | Prediction results of three different methods in summer.

FIGURE 6 | Prediction results of three different methods in autumn.

FIGURE 7 | Prediction results of three different methods in winter.
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and BP + QR, are employed to compute PIs using the same training
and testing data for benchmarking, and the numerical results are
tabulated inFigures 14 and 15. Statistically, when PINC is 95%, the IS

of the quantiles obtained from the persistence, LSTM, and BPNN
ranges from −5.95% to −4.92%, −5.22% to −4.11%, and −5.68%
to −4.78%, whereas the proposed method ranges from a low
of −4.25% to a high of −3.25%. Particularly, the proposed method
has an IS of −3.25%, which is significantly better than those of the
persistence, LSTM, and BPNN algorithms in all four seasons. In
addition, IS of the proposedmethod has aminimumof −1.28% and a
maximum of −1.18% for the whole year, and the average value is
1.23%. Compared to the three benchmarks, IS performances have
been evenly improved by 33.42%, 34.02%, and 40.10% when PINC is
99%. Therefore, it is clear from these numerical results that the
proposed approach outperforms benchmarking algorithms in terms
of seasons and prediction interval confidence.

ACE and IS are two typical metrics used to evaluate the
effectiveness and are satisfactory for probabilistic prediction.
Based on the above results, it is evident that the proposed
probabilistic approach outperforms the three benchmarks not
only from the viewpoint of reliability and sharpness but also from
the perspective of overall skills.

4.4 Explainability of the Proposed Method
The mapping relationship would become difficult to interpret
in the NNs-based model due to the complexity introduced by
typical unreadable functions, such as sigmoid. However, by
analyzing the internal parameters of the model in the B-xNNs,
the mapping relationship between the input and output of the
wind speed prediction model can be written in a uniform
equation as follows:

f(i) � C(i)
3 (P(i)

3 XT)3 + C(i)
2 (P(i)

2 XT)2 + C(i)
1 (P(i)

1 XT) + μ(i), (29)
where C1, C2, C3, and μ are constants of the ith network and
parameters P1, P2, and P3 vary with the seasons. Because
models have been established accordingly for different
seasons, a network in the autumn prediction model is
selected to explain. Here, the values of C1, C2, C3, and μ
are 0.6894438, 0.13415974, 0.05075899, and 0.54264,
respectively. The values of P1 and P2 of the ith network in
autumn are given in Table 3. The conclusion could be drawn
from Eq. 28 and Table 3 that the prediction result is a
nonlinear cubic function most affected by the linear
function because P1 and C1 have the largest weight among
the parameters in Eq. 28. In addition, the weight of Ci is
increased with the ith power of X. As mentioned above, the
wind power series is adopted in the inputs of the proposed
approach. It can be explained that the closer to the prediction
time, the greater the impact of the input wind speed on the
prediction. More specifically, the wind speed at the last
moment has the greatest influence on the change and
trend of the wind speed in the next moment. It can be
seen from Eq. 28 that the prediction result of wind speed
is actually a cubic function of eight input variables, indicating
the proposed B-xNNs output mapping relationship of the
wind speed prediction model. In addition, Table 3 shows that
the last three-time step wind speed is the most important
factor that has the greatest impact on the prediction results,
and the correlation increases gradually with the advance of

FIGURE 8 | PDF of predicted error within spring.

FIGURE 9 | PDF of predicted error within autumn.

FIGURE 10 | CDF of predicted error within spring.
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FIGURE 11 | CDF of predicted error within autumn.

FIGURE 12 | Interval prediction of different confidence within spring.

FIGURE 13 | Interval prediction of different confidence within autumn.
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the time sequence. This is understandable because the current
wind speed measurement determines the variation trend and
magnitude of wind speed in the next time step. Moreover,
Table 3 shows that the linear function of certain parameters
in Eq. 28 has a greater impact on the prediction results than
its quadratic term, such as the altitude of the current wind
speed, solar irradiance, and relative humidity. However, the
quadratic function of other parameters has a greater impact
than its linear term, such as wind direction and temperature.
The cubic function of other parameters has a slightly greater
impact than its quadratic term, such as pressure and last
three-time step wind power.

According to Eq. 28, the input and output of the B-xNNs
consisting of M bootstrap replicate networks can be expressed by
the following mathematical relations:

�f � 1
M
∑M
i�1
C(i)

3 (P(i)
3 XT)3 + C(i)

2 (P(i)
2 XT)2 + C(i)

1 (P(i)
1 XT) + μ(i).

(30)
Obviously, the B-xNNs proposed in this study can directly

give the input-output mapping relationship of the prediction
model, which can help realize the theoretical analysis between
wind speed prediction and input parameters. The output of the
probability prediction can be expressed by the mathematical
expression: [L(α), U(α)] � [�f − Fα/2, �f + F1−α/2], (31)
where Fα/2 and F1-α/2 are determined by the confidence level α
setting in the CDF of KED. It should be noted that the process
of KDE is data transparent. In other words, the relationship
between the probabilistic wind speed prediction results and
the output of B-xNNs is very intuitive, whereas the
relationship between the wind speed prediction results
from B-xNNs and the input parameters is clear. Therefore,
the interpretability of the probabilistic proposed method is
very easy to understand.

5 CONCLUSION

In this study, a deterministic approach for wind speed
prediction based on B-xNNs is proposed to improve the
prediction capability and explain the inherent relationship
of neural networks. Then, the proposed approach for
deterministic wind speed prediction is extended to a deep
framework that can accurately quantify the randomness and
uncertainties exhibited in wind speed. The prediction results of
the proposed method are extensively compared with two
commonly used algorithms, namely, BPNN and LSTM. The
prediction results obtained from different seasons show that
the proposed probabilistic forecasting method is superior to
the two benchmarking algorithms in terms of prediction
reliability, prediction accuracy, and interval sharpness.
Besides, this study analyzed the interpretability of the
probabilistic forecasting model; its novelty is that it reveals

FIGURE 14 | IS performance with PINC 95%.

FIGURE 15 | IS performance with PINC 99%.

TABLE 3 | Parameters of the ith network in autumn prediction result.

Input P1 P2 P3

x1 −0.05777539 −0.060375647 −0.007816884
x2 0.260609756 −0.02865652 −0.008537662
x3 −0.096866854 0.018809196 0.014110999
x4 −0.017653977 0.023854755 −0.000617135
x5 −0.11286195 0.021774126 −0.013324235
x6 0.104864402 0.012382944 −0.000426376
x7 0.20793625 0.018473796 −0.004339894
x8 0.352030004 −0.133086462 −0.013344538

TABLE 2 | Probabilistic forecasting error in different seasons.

Season PINC (%) PICP (%) ACE (%) IS (%)

Spring 90 90.25 0.25 −6.24
95 95.64 0.66 −4.25
99 98.55 −0.45 −1.08

Summer 90 90.43 0.43 −6.62
95 95.78 0.78 −3.91
99 99.54 0.57 −1.18

Autumn 90 90.63 0.63 −5.95
95 95.70 0.70 −4.12
99 98.69 −0.31 −1.58

Winter 90 90.99 0.99 −5.41
95 95.54 0.54 −3.25
99 99.55 0.55 −1.17
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how the input variables affect the result of the interval wind
speed forecasting model by clear formulation.

In this study, the simulation verification is only carried on one
prediction horizon. However, the forecasting reliability may
decrease as the number of repeated iterations increases.
Therefore, this model may only be applied for short-term
wind speed forecasting. In the future, we will further search
for the method of long-term forecasting by improving the
network structure.
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