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The control research on cascading failures is critical to ensure the reliability of power
supply. A path-driven multi-stage corrective control model for the whole process of
cascading failures is established to eliminate the risk of cascading failure. For the
cascading failure process caused by overloading, the selection criterion for subsequent
outage is defined according to the mechanism of propagation of cascading failures. The
path-driven constraints and power relaxation constraints are extracted based on the
selection criterion for a subsequent outage. A model coupled with non-scheduled multi-
stage decision-making is designed by considering the flexibility of control action
implementation to optimize the sum of control cost and load-shedding risk for
elimination of cascading failures. The verification results show that the proposed
method can reduce the probability of outages of tripped branches and successfully
eliminate cascading failure.
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1 INTRODUCTION

Due to human factors and external environmental factors such as natural disasters, large-scale blackouts
remain difficult to avoid formodern power systems, as evinced by themany large-scale blackouts that have
occurred around the world in recent years (Hines et al., 2009; Xue and Xiao, 2013). Most blackouts are
found to be caused by cascading failures (Wong et al., 2007; Zeng et al., 2015; Nagpal et al., 2018).
Specifically, local disturbances such as generator and transmission line outages can result in a series of
successive outages through network connections, resulting in great economic losses and negative social
influence. Therefore, it has important significance to quickly and accurately predict the cascading failure
process and establish a targeted framework of defense for the predicted cascading failure.

According to the different modeling ideas, there are mainly two types of control approaches for
cascading failure. The first type of control method is from the perspective of macroscopic system
theory (Lin et al., 2018; Kornbluth et al., 2021). The control methods based on macroscopic system
theory focusing on load optimization (Tu et al., 2013) and network structure reinforcement (Liu
et al., 2019) are taken as preventative actions to release system operating stress and avoid blackouts.
Those methods are applied to provide a reference for power system planning and design; however, it
is difficult to realize cascading failure control in practical operation of the power system. Therefore,
the research on cascading failure control in power systems is mainly based on reductionism, which
consists of initial disturbances and control considering cascading effects.

Security constrained optimal power flow (Capitanescu et al., 2011) is a deterministic model for
initial disturbances, including prevention (Azzolin et al., 2018) and correction (Bi et al., 2018),
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according to the timing of the implementation of control actions.
The deterministic method lacks risk awareness, and overly
conservative control schemes can increase control costs. Risk
is a comprehensive measure of probability and results in
uncertain events, including risk identification, risk assessment,
and risk control. Among them, the risk identification and
assessment of cascading failures have been widely discussed,
and considerable results have been achieved. In addition,
mathematical programming, reinforcement learning methods,
and deep learning approaches (Li et al., 2022) are used to
solve the above model. However, the risk control of cascading
failures is still confined to the preventive control of cascading
failures or the corrective control of a given cascading failure stage,
especially for the initial outage. Zhai et al. (2019) compared two
corrective control models of cascading failures: non-recurring
corrective control and that of two consecutive cascading failure
stages. The simulation results show that the two consecutive
stages perform better than non-recurring corrective control.
However, corrective actions are taken only at two consecutive
stages, which reduces the flexibility around control timing.
Subsequently, Gan et al. (2020) proposed a multi-stage
corrective control model to study the predicted cascading
failure. The mechanism of propagation of the cascading failure
process caused by overload is not considered in the control
model, that is, the influence of a control action on the branch
outage probability and the constraints between outage probability
of the tripped branches and in-service branches. Although the
resulting control schemes can reduce the outage probability of a
tripped branch, the outage probability of an in-service branch
may increase significantly, even exceeding the outage probability
of the tripped branch. Therefore, it is important to explore how to
correct a given cascading failure process under the constraints of
the cascading failure propagation mechanism. In this report, an
optimal control considering the constraints of the cascading
failure mechanism of propagation, the so-called path-driven
multi-stage corrective control (path-driven MSCC), is
presented to protect power systems against cascading failure.

This report is organized as follows. Section 2 presents an
analysis of the interaction between the MSCC and the cascading
effect. Extraction of path-driven constraints and power relaxation
constraints is based on the mechanism of propagation of
cascading failures in Section 3. And Section 4 discusses the
effects of the above two constraints on the control scheme
obtained by the path-driven MSCC. Section 5 concludes the
report.

2 INTERACTION BETWEEN CASCADING
FAILURE PROCESS AND MSCC

For cascading failures caused by overload, when a branch is
randomly selected as the initial disturbance, the outage
probability of in-service branches can be calculated by (1),
given by Zima and Andersson (2005). The selection criterion
for a subsequent outage (Wei et al., 2018) is adopted, i.e., choosing
the branch with largest pi,k among all branches as the tripped
branch at the (k+1)th stage:

pi,k �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, Fi,k ≤Frated
i

1

Fmax
i − Frated

i

(Fi,k − Frated
i ), Frated

i <Fi,k ≤Fmax
i

1, Fi,k >Fmax
i .

(1)

In actual operation, the change of active power injections, demand
response, and topology optimization can be used to correct power
flow on the branches. The outage probability of in-service branches
and their maximum values are also changed, as given by (1). Thus,
the control action can affect the outage probability of tripped
branches and even change the branches that tripped during the
cascading failure process. Similarly, the network topology determined
by tripped branches also affects the distribution of nodal power
injections on the branches. The interaction between the cascading
failure process and theMSCC continues until there are no overloaded
lines in the power system.

3 PATH-DRIVEN MSCC MODEL

In this section, the path-driven MSCC for the whole cascading
failure process is proposed, in which path-driven constraints and
power relaxation constraints are taken into consideration at each
cascading stage.

3.1 Objective Function
The goal of MSCC is to minimize the load-shedding risk caused
by cascading failures with the lowest control cost, and the
objective function f is calculated as follows:

minf � ∑vcon
k�1

⎛⎝∏k
m�1

πm
⎞⎠⎛⎝∑

g

αgPGDg,k +∑
n

βnLDn,k
⎞⎠, (2)

where vcon denotes the total number of cascading stages with
corrective control actions; because the proposed multi-stage
control is designed to eliminate cascading failures, vcon is an
unknown variable and less than the total number of cascading
stages l without corrective control. πk is the maximum of an
overloaded branch probability at the (k-1)th cascading stage,
i.e., πk � max(pi,k−1). Therefore, the multiplication of πk over
stages is the probability of cascading failure. PGDg,k and LDn,k are
the power generation adjustment at unit g and load shedding at
node n at the kth cascading stage. αg and βn are the cost
coefficients of PGDg,k and LDn,k, respectively.

3.2 Path-Driven Constraints
In this report, the research object is the predicted cascading
failure process, so the same subsequent outage selection criteria
should be used in both the cascading failure prediction and the
cascading failure control processes; therefore, the outage
probability of the tripped branch must satisfy path-driven
constraints in the MSCC model of cascading failure, given by

pi,k ≥pe,k ∀e ∈ Ek, (3)
where Ek is the set of in-service branches. The physical meaning
of Eq. 3 is that the outage probability of predicted outage branch i
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at the kth stage is greater than that of other in-service branches in
power systems. Eq. 3 ensures that corrective control actions can
only affect the probability of an outage on a tripped branch
without changing the tripped branch subject to the subsequent
outage selection criteria described above.

3.3 Power Relaxation Constraints
To balance cost and load-shedding risk in corrective control, the
corresponding power relaxation coefficients γ1 and γ2 are set for
predicted tripped branches and other in-service branches. As the
control relaxation coefficient decreases, the upper capacity of the
power flow allowed on branches is gradually reduced in the
corrective control model. At each cascading stage, the power
relaxation constraints are expressed as

{ ∣∣∣∣Fi,k

∣∣∣∣≤ γ1Frated
i k � 1, 2,/, vcon − 1∣∣∣∣Fi,k

∣∣∣∣≤Frated
i k � vcon,

(4)

{ ∣∣∣∣Fe,k

∣∣∣∣≤ γ2Frated
e k � 1, 2,/, vcon − 1∣∣∣∣Fe,k

∣∣∣∣≤Frated
e k � vcon,

(5)

where Fi,k and Fe,k are the active power flows on predicted tripped
branches and other in-service branches, respectively. Eqs 4–5
represent power flow on branches being allowed to exceed its
threshold in the former (vcon-1) stages; meanwhile, there may be
differences in the degree of power relaxation for predicted tripped
branches and other in-service lines.

3.4 Power Flow Constraints
At each cascading stage, the proposed model is subject to the
following power flow constraints:

Pn,k � ∑
Fr(i)

Fi,k − ∑
T(i)

Fi,k, (6)

PGmin
g ≤PGg,k ≤PGmin

g , (7)
0≤PGDg,k ≤PGDmax

g , (8)

0≤ LDn,k , 0≤ ∑k
m�1

LDn,m ≤PDmax
n , (9)

where PGg,k, PGmin
g , and PGmax

g are power generated by unit g and
its minimum and maximum capacities, respectively. PGDmax

g and
PDmax

n are the maximum allowable power generation adjustment
of unit g and maximum allowable load shedding of node n,
respectively. Eq. 6 is the power balance equation. Eqs 7–8 limit
power outputs of the generators and their power output
adjustment, respectively. Eq. 9 is the load-shedding limit.

Eqs 2–9 imply that, due to the uncertainty of vcon, the path-
driven MSCC model is a non-scheduled multi-stage decision-
making optimization for the whole process of cascading failure. It
is worth noting that control action implementation is not
confined to one or more given cascading failure stages. So,
there is a choice to take control actions at each cascade stage.

3.5 Solving the Path-Driven MSCC Model
The proposed model is a non-linear programming problem
which is difficult to be solved directly. Therefore, we draw on
the idea of the two-layer decomposition optimization scheme

proposed by Liu et al. (2015), and the genetic algorithm (Shi et al.,
2021) is used to solve it. The upper-level model optimizes the
outage probability of predicted tripped branch for each cascading
stage, and the obtained values are imported into the lower-level
model. Output adjustment of unit and load shedding are
optimized in the lower-level model.

4 EXAMPLE ANALYSIS

4.1 Validation of Path-Driven MSCC Model
The IEEE 39 Bus System is employed to validate the proposed
method and analyze the corresponding results. The IEEE 39 Bus
System consists of 10 units, 39 buses, and 46 branches. In
addition, the system load in normal operation is 6,254.2 MW,
and the total installed capacity is 7367 MW. The transmission
capacity of branch is set to 95% of its original value, and the
transmission capacity of branch 17–18 is modified to 300 MW.
The active adjustment of the unit is 15% of the unit capacity; αg
and βn are set to 1 $/MW and 100 $/MW, respectively (Carreras
et al., 2001). Power relaxation coefficients γ1 and γ2 are both set to
1.4. The tripping of branch 1–2 is selected as the initial
disturbance, and subsequently, the power flow on branch 2–3
with its rated capacity of 475 MW increases from 450.81 to
757.62 MW. The cascading effect continues to propagate until
the grid is decoupled, and the cascading failure process is denoted
as Ia = {1–2, 2–3, 17–18, 15–16, 1, 1, 1, 1}. Figure 1A presents the
connection states of IEEE 39 Bus Systems after suffering the
cascading failure process Ia. In Figure 1, the blue balls are the unit
nodes, while black ones are the load nodes and red branches
characterize overloaded branches. It is worth noting that the IEEE
39 node system not only is decoupled into two islands but also
contains an overloaded branch in each island.

The proposed model is applied to devise the control schemes
for the cascading failure process Ia. With corrective control, the
cascading failure process is truncated from Ia to Ib = {1–2, 2–3,
17–18, 1, 0.48, 0.31}, and the connection states of IEEE 39 Bus
Systems after suffering the cascading failure process Ib are shown
in Figure 1B. As can be seen from Figure 1B, with corrective
control, there are no multiple islands and overloaded branches in
IEEE 39 Bus Systems, indicating that path-driven MSCC can
successfully eliminate cascading failures in three cascading stages.

4.2 Effect of Vcon
Due to the uncertainty of vcon, the proposed path-driven MSCC
model is a non-scheduled multi-stage decision-making
optimization facing the whole cascading failure process. In
other words, the optimal control approach is designed to
correct the cascading effect within the first l cascading stages.
This non-scheduled model is compared with the scheduled model
(i.e., vcon is restricted to a certain value), and the results are
summarized in Table 1.

If vcon is restricted to 1, after implementing the corrective action,
the power flow on branch is less than its threshold and the cascading
process caused by overloaded branches ends. The MSCC will be
transformed to non-recurring corrective control, and path-driven
MSCC is superior to non-recurring corrective control in terms of
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load-shedding risk and objective function. For the scheduled MSCC
model, when vcon = 3, the values of the above two indicators are the
lowest at 11,412.95 and 106.05, respectively. With the scheduled
constraints, theMSCCmodel needs to be solved repeatedly according
to the value of vcon, and the solution time gradually increases as vcon
increases. Then, the optimization results with different vcon values are
compared, and the optimal solution is obtained. The non-scheduled
MSCCmodel proposed in this report can be solved once to obtain the
optimal solution.

4.3 Effect of Path-Driven Constraint
If the path-driven constraint is not considered in path-drivenMSCC,
i.e., the constraint (Eq. 3) is removed, the model is denoted as Model
2. Table 2 shows the branch outage probability ranking with the
control scheme obtained by Model 2. The data listed in bold are the
predicted tripped branches and their outage probability. Notably, the

initial disturbance is the selected outage, so there is no ranking of
branch outage probability at the first cascading stage.

After control action is implemented at the third cascading stage,
the outage probability of predicted tripped branch 15–16 is 0.01. In
contrast, the branch with maximum outage probability is branch
4–14, and its outage probability is significantly greater than that of
predicted tripped branch 15–16. From the defined criterion for
candidate outage, branch 4–14 is chosen to serve as the tripped
branch at the next cascading stage, so the cascading failure process
will deviate from the original predicted cascading process.

Furthermore, under the corrective control obtained by using
Model 2, the cascading failure process considering the selection
criterion for subsequent outage is Ic = {1–2, 2–3, 17–18, 4–14,
6–11, 1, 0.49, 0.46, 0.21, 1}. It can be seen from Ic that although the
control scheme obtained by Model 2 can reduce the outage
probability of a tripped branch, there are still overloaded

FIGURE 1 | IEEE 39BusSystems. (A)Connection statesof IEEE39BusSystemswithout control. (B)Connection states of IEEE39BusSystemswith path-drivenMSCC.

TABLE 1 | Effect of vcon on the performance of the scheduled MSCC model.

vcon Cascading failure process Load-shedding risk Objective function

1 {1–2,1} 448.54 45,760.86
2 {1–2,2–3,1,0.43} 115.43 12,310.87
3 {1–2,2–3,17–18,1,0.48,0.31} 106.05 11,412.95
4 {1–2,2–3,17–18,15–16,1,0.47,0.26,0.01} 109.47 11,749.17

TABLE 2 | Branch outage probability ranking with the control actions obtained by Model 2.

Ranking k = 1 k = 2 k = 3 k = 4

Branch Outage probability Branch Outage probability Branch Outage probability Branch Outage probability

1 1–2 1 2–3 0.49 17–18 0.46 4–14 0.21
2 1–2 1 6–11 0.14 — — 6–11 0.03
3 1–2 1 — — — — 15–16 0.01

The data listed in bold are the predicted tripped branches and its outage probability.
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branches in the network even after four cascading stages, that is,
Model 2 cannot eliminate cascading failure processes.

4.4 Effects of Power Relaxation Constraints
In this part, the power relaxation coefficient is modified to 1,
denoted as Model 3. Model 3 is solved and compared with the
results of Model 1, as summarized in Table 3.

As can be seen from Table 3, compared with Model 3, Model 1
provides better performance in terms of load shedding, risk of
load shedding, and objective function. This is because the control
scheme obtained by Model 3 needs to shed more load to satisfy
the constraint whereby the power flow on a branch cannot exceed
the pre-set threshold for in-service branches other than on the
branch predicted to trip. As the transmission capacity of branch is
further reduced, it may appear that Model 1 can provide an
effective control scheme, while Model 3 fails to obtain a corrective
control scheme. This is because in extreme operating conditions,
when the control action is implemented to eliminate the power
flow overload of one branch, it may inevitably cause the power
flow overload of other branches. Therefore, the power relaxation
constraints can not only help to obtain an available control
scheme in extreme conditions but also reduce the control cost.

5 CONCLUSION

A path-driven multi-stage corrective control method
considering the uncertainty of vcon is proposed to eliminate

the cascading failure process. According to the mechanism of
propagation of cascading failures, path-driven constraints and
power relaxation constraints are extracted. Adjustments of
nodal power injections including unit output adjustment and
load shedding are considered corrective controls, and the
proposed model is optimized by minimizing the sum of the
expected control cost and load-shedding risk. The results
verified that the path-driven MSCC method can correct the
cascading failure process in an effective and cooperative
manner. The effects of the uncertainty of vcon, path-driven
constraints, and power relaxation constraints on the
applicability and effectiveness of control scheme are
discussed. When path-driven constraints are not
considered, the obtained control scheme may fail due to
change of cascading failure paths. When power relaxation
constraints or the uncertainty of vcon is not considered, the
resulting solutions are too conservative.
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