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Power line inspections in a microgrid can be modeled as the uncertain capacitated arc
routing problem, which is a classic combinatorial optimization problem. As an evolutionary
computation method, genetic programming is used as a hyper-heuristic method to
automatically evolve routing policies that can make real-time decisions in an uncertain
environment. Most existing research on genetic programming hyper-heuristic for the
uncertain capacitated arc routing problem only focuses on optimizing the total cost
of solutions. As a result, the actual routes directed by the routing policies evolved by
genetic programming hyper-heuristic are usually not stable, i.e., the routes have large
fluctuations in different uncertain environments. However, for marketing or considering
the drivers’ and customers’ perspectives, the routes should not be changed too often or
too much. Addressing this problem, this study first proposes a method to estimate the
similarity between two routes and then extends it for evaluating the stability of the routes
in uncertain environments. A novel genetic programming hyper-heuristic, which considers
two objectives, i.e., the solution quality (total cost) and the stability of routes, was
designed. Experimental studies demonstrate that the proposed genetic programming
is hyper-heuristic with stability in consideration and can obtain more stable solutions than
the traditional algorithm, without deteriorating the total cost. The approach provided in
this study can be easily extended to solving other combinatorial optimization problems in
the microgrid.

Keywords: power line inspections, uncertain capacitated arc routing problem, route stability, genetic programming
hyper-heuristic, evolutionary computation

1 INTRODUCTION

With fossil fuel resources being rapidly depleting, conventional power plants becoming less
efficient, and the environment becoming more polluted, a new grid architecture has emerged,
dubbed the microgrid (Han et al., 2022b). In general, a microgrid is a hybrid electric system
that combines distributed energy resources, local loads, and energy storage devices in order
to supply power to specific regions or remote locations (Choudhury, 2020; Ma et al., 2021b).
In addition to improving their energy stability and operations, microgrids can provide low-
cost, clean energy to certain geographic regions. However, serious challenges are faced while
implementing microgrids, such as architecture optimization, energy management, and fault
inspection (Zhu et al., 2019; Cui et al., 2020; Tian et al., 2020). Although various approaches (e.g.,
the game theoretic approach) have been proposed to solve these challenges in microgrids,
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some shortcomings, for example, low robustness and high
computational cost, restrict their extensive use in applications
(Cui et al., 2019; Han et al., 2022a; Zhu et al., 2022). In recent
years, some researchers have formulated these problems as
the traditional combinatorial optimization problems and
utilized heuristic or meta-heuristic (e.g., genetic algorithms
and particle swarm optimization) approaches to solve them
(Wang et al., 2019b; Ma et al., 2021a; Luo et al., 2021), since
these approaches can provide approximate solutions with low
computational cost. For example, Gao et al. (2017) transferred
the load-shedding problem to the knapsack problem and
proposed a Physarum-based ant colony optimization (PM-ACO)
algorithm to solve it. Liu et al. (2019) modeled the problem of
power line inspection using cooperated ground vehicle and
drone as a two-layer-point arc routing problem and designed
two constructive heuristics to solve it. Therefore, addressing
such typical NP-complete problems can provide valuable
solutions for many problems in the real world (Gao et al., 2021;
Wang et al., 2021; Li et al., 2022), which has great practical and
theoretical significance for solving existing challenges in the
microgrid.

The capacitated arc routing problem (CARP) (Golden
and Wong, 1981; Corberán et al., 2021) widely exists in smart
transportation. It aims to find minimum-cost vehicle routes to
serve arcs of a graph following some constraints, such as the total
demands served by a vehicle cannot be larger than its capacity.
During the past 60 years, this problem has attracted the attention
of many researchers due to its great economic impact and the
complexity of its mathematics (Corberán et al., 2021). Especially
in recent years, drones equipped with cameras and sensors have
been used to inspect power lines in a more efficient and cost-
effective manner than traditional human inspection on site. The
planning of network inspection operations naturally leads to
CARP (Corberán et al., 2021).

Traditionally, CARP focuses on static environments, where all
the details of the problems, such as the demands of tasks and
the traversal costs of streets, can be precisely known beforehand
(MacLachlan and Mei, 2021; Zhang et al., 2021). However, real-
life often contradicts this assumption (Mei and Zhang, 2018;
Zhu et al., 2018; Liu et al., 2020). In many cases, uncertainty
widely exists. For example, in street sprinkling, the real-time
temperature will influence the amount of water that should be
sprinkled on the street, which is impossible to be known exactly
beforehand.The traversing costs (such as the time taken traveling
through the street) are also affected by the traffic conditions, and
a street may also be temporarily inaccessible because of traffic
accidents. In order to model reality more accurately, various
uncertain CARP (UCARP) models (e.g., stochastic demands of
tasks or stochastic traversal costs of edges) have been proposed
(Mei et al., 2010; Liu et al., 2021) and become the hot research
topic in most recent years.

Many researchers have proposed different kinds of approaches
to solving theUCARP,which can be categorized into three groups
(Ouelhadj and Petrovic, 2009; Nguyen et al., 2016): robust pro-
active, completely reactive, and predictive-reactive. The robust
pro-active approaches aim to produce a robust route for all
possible environments and use recourse strategies to repair the

route slightly when possible failures occur. And the predictive-
reactive approaches not only generate a robust route but also use
a re-optimization way to adapt the route when it is inefficient.
It can be seen that the preplanned robust route restricts the
flexibility of these two kinds of approaches (Liu et al., 2022).
Hence, we focus on the completely reactive approaches in this
study. In the completely reactive approaches, a rule or policy that
is used to generate a route in real-time according to practical
situations is evolved. Dynamic environments can be handled
very efficiently due to the flexibility of rules (Wang et al., 2022a).
Genetic programming (GP) is a kind of completely reactive
approach, which has been demonstrated to be a powerful hyper-
heuristic (also known as GPHH in short) capable of developing
routing policies for UCARP automatically. Routing policies
indicate to the vehicle the next task it should complete when
it is idle. The decision is made online based on the current
environment information and vehicle status. Hence, GPHH is
good at handling dynamic and uncertain environments.

However, GPHHhas the disadvantage that the actual traveling
routes would be changed frequently in dynamic environments.
There are many practical situations where this is not appropriate.
First, it causes difficulty in planning and measuring the efficiency
of routes in advance. Second, it has a negative effect on the
psychology of drivers. For example, if the routes are changed
frequently, it could lead to confusion among the drivers. As a
result, there would be more errors and higher costs.

Hence, a certain degree of stability or robustness within
the solution space is desirable in many real-world routing
scenarios (Sörensen, 2006). For this issue, we first require a
method to estimate the similarity between two given routes.
Then, we need to measure the stability of routing policy in
uncertain environments. Taking the stability of routes generated
by GPHH into consideration, this study has the following
research objectives:

• To develop a method to estimate the similarity between two
routes and extend it for evaluating the stability of routes in
uncertain environments.
• Todevelop aGPHH to evolve routing policies that can generate

higher stability of routes as well as have a good quality of total
travel cost.
• To verify the performance of the newly proposed GPHH

(GPHH-αSta) in experiments from two aspects, i.e., stability
and total cost.
• To analyze the routes obtained by GPHH-αSta and the

traditional GPHH.

This study is organized in the following way: in Section 2, the
background of the definition of UCARP and existing approaches
for UCARP are presented. In Section 3, a way to measure
the similarity between routes is developed first. Then, a new
GPHH algorithm (GPHH-αSta) is designed to evolve routing
policies for UCARP that can generate solutions with small
travel costs and high stability simultaneously. In Section 4, the
values of the parameter α are investigated, and the results of
the compared algorithms on the typical data set are shown and
analyzed. Finally, in Section 5, the conclusion and futurework are
discussed.
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2 BACKGROUND

Firstly, we will introduce the UCARP definition, then we will
review the state-of-the-art approaches that are being used to solve
it.

2.1 Uncertain Capacitated Arc Routing
Problem
A CARP (Mei et al., 2010; Liu et al., 2020) is defined on a
connected graph G=(V, E), where V denotes the vertex set and
E denotes the edge set. The task is distributed alongside the edge,
whose demand is denoted by d(e). Not all edges have demands,
hence, when d(e)>0, the edge e is a task, otherwise, it represents
a street without a task to serve. When a vehicle travels through
the street, depending on whether it serves the tasks, it has two
costs: serving cost sc(e) and traversal cost dc(e). In the beginning,
all vehicles are located at the depot, which is usually represented
by v0 in graph G. The vehicle has a capacity constraint, denoted
by Q. The goal is to minimize the total cost of service of all tasks
while adhering to the following restrictions:

1. Each route must start from v0 and end at v0.
2. An exact one-time service is provided in either direction for

each task.
3. For each vehicle, the total demands on a single trip cannot

exceed its capacity Q.

An example is given in Figure 1. In Figure 1,
there are six vertices and nine edges in the graph,
i.e., V = {v0,v1,v2,v3,v4,v5} and E = (v0, v2), (v0,
v4), (v0, v5), (v1, v2), (v1, v3), (v1, v5), (v2, v3),
(v2, v4), (v2, v5). The vertex v0 represents the depot, and all
the edges are required to be served. Suppose that the vehicle
number is 3, whose capacities are all 22, i.e., Q = 22.

In CARP, the three features associated with each edge, i.e.,
demand, serving cost, and traversal cost, are static and can be
exactly known in advance. However, in UCARP, the demands
and traversal costs are always seen as two uncertain variables.
The actual demand of a task can only be known after the vehicle

FIGURE 1 | (A) CARP instance example, (B) possible route failure, and (C)
possible solution.

TABLE 1 | The demands and costs of the instance in Figure 1.

Edge d sc dc dξ dcξ

(v0, v2) 8 4 4 9.74 5.98
(v0, v4) 3 3 3 3.18 2.21
(v0, v5) 5 1 1 5.19 ∞
(v1, v2) 9 2 2 8.06 2.36
(v1, v3) 8 6 6 9.33 7.54
(v1, v5) 9 7 7 7.62 8.18
(v2, v3) 4 1 1 3.57 1.41
(v2, v4) 6 9 9 4.67 7.53
(v2, v5) 6 5 5 6.67 2.88

has completed the service of the task. The actual traversal cost of
an edge can only be realized after the edge is traversed. To get
a sample of a UCARP instance, the two variables are sampled
random values for the corresponding UCARP instance. That is,
a sample Iξ of the UCARP instance I is constructed by sampling
each random demand dξ(e) and each random traversal cost dcξ(e)
under the environment (e.g., random seed) ξ. For example, in
Table 1, the first three columns show the demand (d), serving
cost (sc), and traversal cost (dc) of each edge of the graph, as
shown in Figure 1, and the last two columns show the sampled
demands (dξ) and traversal costs (dcξ). Due to the uncertainties
of demands and traversal costs, route failure and edge failure
are two unavoidable failures that may occur during the serving
process.

When the actual demand of the task is larger than the vehicle’s
remaining capacity, a route failure occurs. We use the example
in Figure 1B to demonstrate this failure. For example, a vehicle
has served the tasks (v0,v2) and (v2,v3) consequently, and its
remaining capacity becomes 8.69 (i.e., 22 − 9.74 − 3.57 = 8.69).
Then, the vehicle is allocated to serve the task (v3,v1), whose
expected demand is 8, and 8 is less than the remaining capacity
of 8.69. However, when the vehicle is conducting the service, it
finds out that the actual demand of the task (v3,v1) is larger than
8. And when it is full, there are still unserved tasks in the street.
The actual demand of the task (v3,v1) is 9.33. In this case, we can
say that a route failure has occurred. Since the route failure always
happens during the serving process, the failed vehicle can only
choose to abandon the remaining parts of the task and return to
the depot to refill.Then, who takes charge of the remaining tasks?
The current recourse strategy can be divided into three categories.
The first one is called the independent recourse strategy, which is
widely used in the literature [18,27]. According to this recourse
strategy, the remaining service of the failed task is finished by the
same vehicle after it replenishes the capacity. In Figure 1B, the
vehicle first abandons the remaining unserved tasks, goes back to
v0 via v1 following the shortest path, and then comes back to the
interrupted place via v3 to continue the service. The second one
is called the pairing recourse strategy (Ak and Erera, 2007). This
recourse strategy identifies the vehicles as Type I and Type II, and
pairs themup towork. If the failure happens on the Type I vehicle,
the unfinished tasks are attached to the end of the Type II vehicle’s
route. Otherwise, if failure happens on the Type II vehicle, the
unserved tasks are finished by themselves using the independent
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way. The third one is called the global recourse strategy [21,26],
which aims to constructmore collaborative forms of recourses. In
this recourse strategy, the failure tasks can be reallocated to any
potential vehicles that can reduce the expected costs caused by
failure. Detailed strategies can be seen in [21,26].

When the edge ahead of a route suddenly becomes unfeasible,
an edge failure occurs. For example, in Table 1, the actual
traversal cost of the edge (v0,v5) is∞, whichmeans that the street
is inaccessible. If a vehicle locates at v0 andwants to travel through
v0 to v5, or it locates at v5 and wants to travel through v5 to
v0, an edge failure occurs in this case. The recourse strategy to
edge failure is relatively easy to cope with. The most common
strategy is to find the shortest path from the current position to
the destination under the current situation. If the edge is a task,
the vehicle will abandon this task and go to the next task based
on its routing plan.

A solution S to a UCARP instance sample can be presented
by a combination of two components (X,Y), where X and Y
represent the set of routes and the set of vectors with real values,
respectively. For each route in X, X(k) = (x(k)1 ,…,x

(k)
Lk
) is a vertices

sequence that begins and ends at the depot (i.e., x(k)1 =x(k)Lk =v0),
where Lk represents the number of vertices within the kth route.
For each vector in Y, Y (k) = (y(k)1 ,…,y

(k)
Lk−1
), which means that the

fraction of service of each edge is in X(k). The value of y(k)i is in [0,
1]. Specifically, y(k)i = 1 represents that the task (x(k)i ,x

(k)
i+1) is served

completely, y(k)i = 0 represents that the vehicle traveled through
the edge (x(k)i ,x

(k)
i+1) without serving it. For other values of y(k)i , it

means that the edge (x(k)i ,x
(k)
i+1) is served partially at the current

route. For example, Figure 1C shows a possible solution to the
instance in Figure 1Awith the data in Table 1. It can be seen that
four routes are required to serve all the tasks. And a route failure
occurs in X(3). The independent recourse strategy is used, which
generates the fourth route (i.e., X(4) and Y(4)).

A solution’s total cost can be calculated as follows:

C (Sξ) =
m

∑
k=1

Lk−1

∑
i=1
(sc (Sξ [x

(k)
i ] ,Sξ [x

(k)
i+1]) × Sξ [y

(k)
i ]+

dcξ (Sξ [x
(k)
i ] ,Sξ [x

(k)
i+1]) × (1− Sξ [y

(k)
i ]))

(1)

InEq. 1, Sξ[x
(k)
i ] and Sξ[y

(k)
i ] represent the x

(k)
i and y(k)i elements

in the solution Sξ on the environment ξ.

2.2 Related Work
The existing approaches for solving routing problems
in uncertain environments can be divided into three
categories according to the time when decisions are being
made (Ouelhadj and Petrovic, 2009; Nguyen et al., 2016): 1)
robust pro-active, 2) completely reactive, and 3) predictive-
reactive.

Concerning the first category of approaches, the robust pro-
active approaches focus on developing predictive solutions that
can meet the needs of performance based on the prediction of
the environment in the first step. In the second step, i.e., when
applying the solutions to the actual environments, failures (e.g.,
route failure or edge failure) may occur, and carefully designed
recourse strategies are used to repair the routes slightly. The

optimization algorithms used for developing solutions are the
tabu search (Mei et al., 2010), the estimation of the distribution
algorithm (Wang et al., 2016), and the memetic algorithm
(Fleury et al., 2004; Wang et al., 2013; Wang et al., 2022b).

In the new environment, proactive approaches can provide a
solution with a high level of stability and predictability. From
the perspective of drivers, this is very important because it
is beneficial for them to be familiar with the routes quickly.
However, it also brings some negative effects, i.e., the routes
are inflexible and cannot be adapted to real-time conditions.
When environments change greatly (e.g., the demands
increase to a high degree), the actual routes must be adjusted
accordingly.

In terms of the second category, the completely reactive
approaches make decisions dynamically and locally in real-
time. Its main idea is to design a routing policy, which can
be used to generate routes step by step based on the real-
time information in the environments. Since the routing
policy is hard to design manually, GPHH (Koza, 1992)
has been one of the hottest evolutionary computational
methods that is good at evolving the routing policy
automatically.

Weise et al. (2012) first proposed a GPHH to solve the static
CARP. Experimental results show that most of the results on
benchmark CARP instances are the same as the currently known
lower bounds. Moreover, they have found that the evolved rules
can still generate good results if the scenario has slight changes,
such as a few tasks randomly disappearing. Since then, many
researchers have extended the ability of GPHH for solving
UCARP (Liu et al., 2017). For example, Mei and Zhang (2018)
have designed a new meta-algorithm that can handle multiple
vehicles for solving UCARP. MacLachlan et al. (2020) further
proposed a GPHH with a collaborative multi-vehicle framework
to UCARP. While Wang et al. (2019a), Wang et al. (2020), and
Wang et al. (2022a) focused on improving the interpretability
of rules evolved by GPHH to UCARP, their methods
can evolve smaller and simpler rules. Ardeh et al. (2019),
Ardeh et al. (2021a), and Ardeh et al. (2021b) devoted their
study to detecting the reusability of rules by transfer
learning.

The completely reactive approaches have the advantage
of being able to easily generate routes online, which makes
them very flexible and ideal for the uncertain environment
(Nguyen et al., 2013). Moreover, the designing of rules is
independent of the size of the problem (Weise et al., 2012), which
can be very effective for solving large-scale problems. By contrast,
their disadvantage is that no baseline solution (i.e., a set of routes)
is generated, causing routes to be less stable and to be more
difficult to plan and measure ahead of time (Nguyen et al., 2016).
The stability of routes is an important aspect that should be paid
attention to from a practical standpoint. For example, in express
delivery, if the delivery route of a courier is relatively stable,
then they can arrive at a community at a fixed time of the day.
From the perspective of the courier, they are familiar with the
driving environment and can be very relaxed at work. From the
perspective of customers, they can consistently be visited by the
same drivers and can expect to send or receive packages at a fixed
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time. Nevertheless, to the best of our knowledge, no completely
reactive approaches for UCARP exist to optimize the total cost
and stability simultaneously.

For the third category, the predictive-reactive can be seen
as a hybridization of both pro-active and reactive approaches.
They also generate a predictive solution using the robust
proactive approaches first and then design a reoptimization
strategy that reacts to changing conditions in real-time. A
typical work can be seen in Liu et al. (2020), whose main
idea was to use a new representation (i.e., the combination
of a baseline task sequence and a recourse policy) to give
the solutions. The baseline is generated by the estimation
of the distribution algorithm, and the policy evolved by
GPHH.

When using the predictive-reactive approaches, it is
advantageous to take into account not only the quality
of the predictive baseline solution (efficiency) but also the
level of change to be introduced to the baseline solution
to adapt to the new environment (stability) (Liu et al., 2020;
MacLachlan et al., 2020).

3 GENETIC PROGRAMMING
HYPER-HEURISTIC WITH STABILITY

Given a sampled UCARP instance Iξ and a routing policy h(⋅),
the meta-algorithm (Liu et al., 2017) can be used to generate a
feasible solution. The traditional GPHH uses the average total
cost of the solutions as the fitness function and tends to evolve a
good routing policy with little total cost. In order to get a routing
policy with not only little total cost but also high stability, we can
revise the fitness function by considering these two factors. To
this end, we first need a way to measure the similarity between
two solutions, then extend it for evaluating the similarity between
all solutions, which can be utilized to measure the stability of a

routing policy. The overview of the proposed method can be seen
in Figure 2.

3.1 The Similarity Between Two Routes
According to the previous description, we wanted to measure
the stability of routes generated by a routing policy in uncertain
environments. For this purpose, a way to measure the similarity
between two routes is firstly required.

Combined with the characteristics of the arc routing problem,
if a vehicle always serves the same next task y after it has served
task x in uncertain environments, then these two tasks x and y
are seen as stable in the process of being served. Otherwise, the
service order of these two tasks x and y is unstable and changes
in different environments. For two sequences that contain all the
tasks, the larger the number of these kinds of tasks (i.e., two
consecutive tasks are the same), the more similarities between
these two sequences. Based on this idea, firstly, we propose that
routes are represented by a permutation of tasks that are being
served by all the vehicles inUCARP. In this sequence, the tasks are
identified by their IDs, and 0 is used as the route delimiter. Two
consecutive tasks mean that they are served by one another, and
the shortest paths between the consecutive tasks are eliminated.
We use an example of a UCARP instance in Figure 3 to show the
route representation.

Figure 3A illustrates an instance with nine edges (each edge
is a task). The vertex v0 is the depot. Associated with each
task are a pair of IDs, the one outside a parenthesis indicating
the current direction and one inside a parenthesis indicating
the opposite direction. Directing by the same routing policy,
when the environments are changed (e.g., the demands of tasks
being increased or decreased), two different feasible solutions
are generated, as shown in Figure 3B. For comparing the
similarity between the two solutions, they are transferred to
the representation of two permutations of tasks, respectively, as
shown in Figure 3C. For example, in the first route of solution

FIGURE 2 | Overview of the proposed method. Given a sampled UCARP instance and routing policy, the meta-algorithm (Liu et al., 2017) can be used to generate
a feasible solution. The proposed method revises the fitness function by considering the total cost and the stability simultaneously. To this end, we first propose a
way to measure the similarity between two solutions, then extend it for evaluating the similarity between all solutions, which can be utilized to measure the stability of
a routing policy.
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FIGURE 3 | (A) UCARP instance example, (B) two possible solutions for the
UCARP instance in (A), and (C) the corresponding two permutations of tasks
based on the solutions A and B in (B).

A, (v0,v5) (its ID is 5) and (v5,v1) (its ID is 15) are tasks,
they are served consequently. Hence, the first two elements of
permutation A are 5 and 15.

Then, the similarity between the twopermutations (denoted as
s(A,B)) is measured by the percentage of the number of common
consecutive tasks based on Eq. 2.

s (A,B) =
CNum (A∩B)

Num (B)
(2)

where CNum(A∩B)means the number of common consecutive
tasks, andNum(B)means the total number of consecutive tasks in
permutation B. For example, by comparing the two permutations
A and B in Figure 3C, there are four consecutive tasks which are
the same, i.e., (5, 15), (3,10), (1,7), and (7, 18), and Num(B) is 6,
i.e., (5, 15), (15, 14), (3, 10), (1, 7), (7, 18), and (18, 11). Hence,
the similarity between B and A is 4/6, i.e., 66.67%.

Above all, the similarity between the two solutions ismeasured
by the order of tasks being served in the sequence. In two routes
generated in two different environments, the higher the same
order of tasks being served, the higher the similarity between the
two routes.

3.2 The Stability of Routes Generated by
the Routing Policy
In order to measure the stability of routes generated by a
routing policy in uncertain environments, we need to evaluate
the similarity between all routes in all the possible uncertain
environments. Addressing this problem, we propose that firstly,
the similarities between any two routes are calculated based on
Eq. 2 in Section 3.1, then the average value is counted as the
stability.

We use a matrix in Figure 4 to describe further. Suppose Ξ(I)
is the collection of all possible samples of a UCARP instance I,
the size of Ξ(I) is n, and Pξ represents the permutation of tasks
transferred from solution Rξ in the sampled instance ξ (ξ ∈ Ξ(I)).
Each element in the matrix means the similarity between the

FIGURE 4 | The matrix to show how to calculate the stability of routes.
s(Pi,Pj) means the similarity between permutations Pi and Pj, which is
calculated based on Eq. 2.

two permutations in the corresponding column and row, and
elements in the lower triangular are needed, as shown inFigure 4.
The stability is calculated based on the following equation:

sta(Pξ) =
n (n− 1)

2

n

∑
j=2

j−1

∑
i=1

s(Pi,Pj) (3)

3.3 GPHH with the Stability in
Consideration: GPHH-Sta
A routing policy in the GPHH is represented as a Lisp tree, which
is used to select the next task to be served by vehicles according to
their priorities on the list of unsettled tasks. The routing policy is
composed of two sets, one is the state features in the environments
(which we call terminals in GPHH), and the other are functions,
such as +, −, ×, and /.

The traditional GPHH treats the UCARP as a single objective
optimization problem that aims to minimize the total cost of
routes. Since our purpose is to improve the stability of routes
without decreasing the total cost, two objectives have to be
optimized.One efficientway of solving this problem is to combine
the two factors into one fitness function, which can be defined as
follows:

fit (h (⋅)) = α ×E [Rξ]/E [sc] − sta(Pξ) (4)

where E[Rξ] represents the average total cost of the routes
obtained by using the policy with the training samples, i.e.,
E[Rξ] =

1
|Ξtrain|
∑Iξ∈Ξtrain

C(Sξ ,h(⋅)), inwhichC(Sξ,h(⋅)) represents the
total cost of the solution Sξ under the routing policy h(⋅). E[sc]
represents the total value of the serving costs of the tasks. sta(Pξ)
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is the stability, which is calculated based on Eq. 3. Especially in
Eq. 4, α is the parameter that controls the weight of the total cost.
A high value for α means that the total cost is very important.
In the experiments, we first investigate four α values, i.e., 2, 3, 4,
and 5.

Note that the value of sta(Pξ) is in the range of [0, 1], hence
we let E[Rξ]/E[sc] to make the two objectives (i.e., total cost and
stability) fall on the same scale.

The standard GP process is used to train the proposed GPHH
(denoted as GPHH-αSta), as shown in Algorithm 1. In our meta-
algorithm, the independent recourse strategy is used to deal with
route failure, and a detour is found by finding the shortest path
under the new environment for edge failure. The special process
to measure the stability of solutions and calculate the fitness of
policies is underlined.

Algorithm 1: The training process of GPHH-αSta

4 EXPERIMENTAL STUDY

In order to examine the efficiency of GPHH-αSta in improving
the stability of routes, we test the algorithms on benchmark
UCARP instances ugdb (Liu et al., 2020). The traditional GPHH
with the average total cost (i.e., E[Rξ] in Eq. 4) as the fitness
function is used for comparison, which is denoted as GPHH in
order to distinguish with the proposed algorithms GPHH-αSta.

4.1 Experiment Setup
For the compared GPHH and GPHH-αSta, their population size
is 1024, the maximum number of generations is set to 51, the
tournament selection size is 7, and the maximal tree depth is 8.

The crossover, mutation, and reproduction rates are 0.8, 0.15, and
0.05, respectively. Table 2 shows the 11 terminals used in GPHH
and GPHH-αSta, and the function set is +, −, ×, /, max, min. “/”
is protected, which returns 1 if divided by 0.

The UCARP instance generator proposed in Mei et al. (2010)
can be used to generate the training and test sets based on
the static gdb instances. Five randomly generated instances are
used to train each algorithm as per generation, and the best
routing policy h∗(⋅) in the final generation is tested on another
500 randomly generated instances. The average total cost and
stability of routes over the 500 samples are used to evaluate the
performance of GPHH and GPHH-αSta. For each algorithm, 30
independent runs are performed for each UCARP instance.

4.2 Parameter Analysis (𝛼)
In this section, α = 2, 3, 4, and 5 are investigated on two
representative instances, i.e., ugdb1 and ugdb8. ugdb1 represents
the small instance with 22 tasks at themost, and ugdb8 represents
the large instance with 46 tasks at the most. Figure 5 plots the
box charts of the total cost and stability on the test sets. It shows
a general pattern that by increasing the value of α, the total cost
of GPHH-αSta becomes better, and the stability of GPHH-αSta
becomes worse.

We also use the Wilcoxon rank-sum test with a significance
level of 0.05 to compare GPHH-αSta with the traditional GPHH.
The box charts filled with lines in Figures 5A,C show that the
total costs of GPHH-αSta are significantly worse than those of
GPHH. And in Figures 5B,D, these line box charts show that
the stabilities of GPHH-αSta are significantly better than those
of GPHH. The results illustrate that when α = 2, although the
stabilities of GPHH-2Sta are significantly better than those of
GPHH in both instances, its total cost shows a significantly worse
result than GPHH on ugdb1. This means that when the value of α
is less than 2, GPHH-αSta tends to have high stability but a poor
total cost, and when α = 5, both the total costs and stabilities of
GPHH-5Sta have no significant difference with that of GPHH on
ugdb8, which means that when the value of α is larger than 5, the
weight of the total cost is too high that there is little difference
between GPHH-αSta and the traditional GPHH. Hence, we test
the performance of GPHH-αSta with α = 3 and 4 in the following
experiments.

TABLE 2 | The terminal set.

Notation Description

CFH Cost From Here (the current node) to the head node of the candidate task
CR Cost to Refill (from the current node to the depot)
CTD Cost from the tail node of the candidate task To the Depot
CTT1 Cost from the tail node of the candidate task To the head node of its closest remaining unserved Task
DEM DEMand of the candidate task
DEM1 DEMand of the closet unserved task to the candidate task
FRT Fraction of the Remaining Tasks (unserved)
FULL FULLness of the vehicle (current load divide capacity)
RQ Remaining Capacity of the vehicle
SC Serving Cost of the candidata task
ERC a random constant number between 0 and 1
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FIGURE 5 | (A) and (B) show the box charts of the total cost and the stability of the compared GPHHs on the instances ugdb1, respectively. (C) and (D) show the
box charts of the total cost and the stability of the compared GPHHs on the instances ugdb8, respectively.

4.3 Results and Discussions
Table 3 shows the test performances (i.e., total cost and stability of
solutions) of the compared algorithms, and the Wilcoxon rank-
sum test with a significance level of 0.05 is also conducted. The
(+) ((−)) represents that the proposed algorithms (i.e., GPHH-
3Sta orGPHH-4Sta) perform significantly better (worse) than the
traditional GPHH. (=) represents that the two algorithms have no
significant difference.

From the table, it can be found that the stabilities of GPHH-
3Sta are significantly better than those of the traditional GPHH
in 18 out of the 23 instances, and among the 18 instances, the
total costs of GPHH-3Sta have no significant difference from
those of GPHH on 12 instances, i.e., ugdb1, ugdb2, ugdb4, ugdb5,
ugdb8, ugdb10, ugdb11, ugdb12, ugdb14, ugdb17, ugdb18, and
ugdb21. This means that GPHH-3Sta can evolve much more
stable routes without losing the test performance to a great
extent. The performance of GPHH-4Sta shows almost the same
pattern as GPHH-3Sta by comparing with the traditional GPHH.
The only difference appears on the instance ugdb21. That is,
the stability of GPHH-4Sta shows no further significantly better
results than that of the traditional GPHH, which means that the
stability of GPHH-αSta is very sensitive to the value of α on the
instance ugdb21.

To make a further comparison, a pairwise comparison
between the three algorithms is conducted, as shown in Tables 4,
5. Each entry in the table represents the result of comparing
the column algorithm with the row algorithm in W-D-L format.
W (L) refers to the number of instances in which the row
algorithmperformed significantly better (worse) than the column
algorithm. D refers to the number of instances where the two
algorithms do not show any significant difference. It can be seen
that the total cost of GPHH-4Sta is significantly better than that
of GPHH-3Sta on only one instance, i.e., ugdb14 actually, and
the stabilities of GPHH-4Sta have no significant difference with
those of GPHH-3Sta on all of the 23 instances. Hence, both
the value of α = 3 and α = 4 is recommended, which can be
determined based on the practical application, and if we focus
more on the stability, then α = 3 is recommended; otherwise,
we can let α = 4, ensuring that the total cost is not affected
significantly.

4.4 Further Analysis
We randomly choose a rule evolved by the traditional GPHH
and GPHH-3Sta on ugdb1 and ugdb23, respectively, and analyze
the routes generated by each rule on the 500 test instances. The
test instances are the same for rules on ugdb1, and also the same

Frontiers in Energy Research | www.frontiersin.org 8 August 2022 | Volume 10 | Article 933705

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Liu et al. Route Stability in the UCARP

TABLE 3 | The mean and standard deviation for the total cost and stability of the compared GPHHs on the test sets. (+), (−), and (=) mean that GPHH-𝛼Sta is
significantly better than, worse than, and comparable with the traditional GPHH.

Instance (|V|, |E|) Vehicle no. GPHH GPHH-3Sta GPHH-4Sta

Total Cost Stability Total Cost Stability Total Cost Stability

ugdb1 (12,22) 5 352.69 (7.13) 86.19% (0.07) 354.66 (5.48)(=) 92.88% (0.02)(+) 354.78 (6.60)(=) 92.50% (0.04)(+)
ugdb2 (12,26) 6 369.69 (6.42) 87.41% (0.07) 372.25 (6.19)(=) 90.26% (0.02)(+) 370.19 (5.96)(=) 90.13% (0.02)(+)
ugdb3 (12,22) 5 307.67 (1.19) 89.35% (0.02) 308.33 (0.91)(−) 91.09% (0.01)(+) 308.42 (0.60)(−) 90.66% (0.01)(+)
ugdb4 (11,19) 4 321.45 (2.58) 81.08% (0.02) 323.11 (3.07)(=) 82.87% (0.01)(+) 322.04 (2.53)(=) 82.45% (0.02)(+)
ugdb5 (13,26) 6 424.95 (6.60) 85.21% (0.06) 423.51 (5.02)(=) 89.95% (0.03)(+) 423.71 (3.73)(=) 89.96% (0.03)(+)
ugdb6 (12,22) 5 349.34 (10.38) 89.78% (0.05) 355.22 (8.03)(−) 90.35% (0.03)(=) 352.43 (9.61)(=) 91.14% (0.03)(=)
ugdb7 (12,22) 5 351.88 (5.38) 89.17% (0.05) 351.82 (6.57)(=) 91.21% (0.01)(=) 352.51 (5.82)(=) 91.10% (0.01)(=)
ugdb8 (27,46) 10 447.07 (5.95) 71.56% (0.06) 447.36 (6.82)(=) 76.36% (0.04)(+) 447.15 (6.20)(=) 75.90% (0.04)(+)
ugdb9 (27,51) 10 382.58 (8.60) 68.69% (0.05) 390.23 (10.33)(-) 74.87% (0.03)(+) 389.31 (9.31)(-) 74.66% (0.03)(+)
ugdb10 (12,25) 4 295.15 (3.87) 94.25% (0.04) 297.06 (4.18)(=) 97.19% (0.03)(+) 296.72 (4.09)(=) 96.95% (0.02)(+)
ugdb11 (22,45) 5 431.63 (5.71) 95.29% (0.03) 434.23 (3.15)(=) 97.51% (0.01)(+) 433.51 (3.83)(=) 97.76% (0.01)(+)
ugdb12 (13,23) 7 613.09 (9.78) 79.06% (0.06) 617.70 (19.67)(=) 86.48% (0.05)(+) 615.98 (14.87)(=) 85.00% (0.06)(+)
ugdb13 (10,28) 6 574.94 (4.70) 80.38% (0.07) 584.07 (7.66)(−) 89.91% (0.04)(+) 583.18 (7.32)(−) 87.54% (0.05)(+)
ugdb14 (7,21) 5 107.75 (1.55) 88.68% (0.05) 108.25 (2.17)(=) 93.78% (0.04)(+) 107.19 (1.52)(=) 93.22% (0.04)(+)
ugdb15 (7,21) 4 58.12 (0.04) 99.40% (0.00) 58.10 (0.05)(=) 99.33% (0.00)(=) 58.11 (0.04)(=) 99.40% (0.00)(=)
ugdb16 (8,28) 5 136.16 (1.30) 89.82% (0.03) 136.38 (1.03)(=) 90.42% (0.02)(=) 136.50 (0.56)(=) 90.49% (0.03)(=)
ugdb17 (8,28) 5 91.06 (0.04) 97.58% (0.02) 91.07 (0.04)(=) 99.49% (0.00)(+) 91.07(0.04) (=) 99.50% (0.00)(+)
ugdb18 (9,36) 5 167.51 (1.84) 95.74% (0.02) 167.64 (1.87)(=) 97.88% (0.01)(+) 167.73 (1.31)(=) 97.00% (0.02)(+)
ugdb19 (8,11) 3 61.40 (1.08) 92.79% (0.04) 61.76 (1.49)(=) 93.15% (0.03)(=) 61.90 (1.43)(=) 89.97% (0.13)(=)
ugdb20 (11,22) 4 127.11 (1.24) 92.07% (0.04) 128.41 (1.52)(−) 96.94% (0.02)(+) 127.90 (1.23)(−) 95.82% (0.03)(+)
ugdb21 (11,33) 6 163.65 (2.16) 92.90% (0.07) 164.29 (2.99)(=) 97.02% (0.01)(+) 164.68 (2.82)(=) 95.96% (0.03)(=)
ugdb22 (11,44) 8 209.12 (0.90) 87.68% (0.05) 210.85 (1.64)(−) 94.51% (0.02)(+) 210.95 (1.18)(−) 93.98% (0.02)(+)
ugdb23 (11,55) 10 251.46 (1.69) 75.77% (0.09) 254.04 (2.13)(−) 87.79% (0.03)(+) 253.09 (2.30)(−) 87.02% (0.03)(+)

TABLE 4 | The WDL table for the pairwise comparisons between GPHH
algorithms in terms of the total cost.

Algorithm GPHH GPHH-3Sta GPHH-4Sta

GPHH — 7-16-0 6-17-0
GPHH-3Sta 0-16-7 — 0-22-1
GPHH-4Sta 0-17-6 1-22-0 —

TABLE 5 | The WDL table for the pairwise comparisons between GPHH
algorithms in terms of the stability.

Algorithm GPHH GPHH-3Sta GPHH-4Sta

GPHH — 0-5-18 0-6-17
GPHH-3Sta 18-5-0 — 0-23-0
GPHH-4Sta 17-6-0 0-23-0 —

for rules on ugdb23. Comparable results can be seen in Table 6.
It shows that there is little difference in the average total costs
between the traditional GPHH and GPHH-3Sta. The stability of
GPHH-3Sta is better than that ofGPHH inboth instances. Taking
the 500 routes generated on the test instances in detail, we found
that there are 110 different routes generated by the rule evolved
by the traditional GPHH on ugdb1; however, GPHH-3Sta only
generates 33 different routes on ugdb1. The same pattern shows
on ugdb23. These further discover that along with the changes
in the environments, the routes generated by the rules evolved

TABLE 6 | The comparable results between GPHH and GPHH-3Sta on ugdb1
and ugdb23, respectively.

Term ugdb1 ugdb23

GPHH GPHH-3Sta GPHH GPHH-3Sta

Total cost 352.26 351.28 250.86 252.24
Stability 77.59% 91.49% 71.31% 84.08%
Different Routes No. 110 33 479 266

by GPHH-3Sta have smaller volatility than those of traditional
GPHH.

5 CONCLUSION

This study aimed to improve the stability of routes generated by
the routing policy evolved by GPHH to solve UCARP. At the
same time, the solution quality should not decrease significantly.
To this end, this study first showed that the stability of routes
can be measured by counting the same order of tasks being
served in the serving sequences of the tasks. Then, a novel
GPHH-αSta approach was proposed to optimize the total cost
and stability, simultaneously, with α as the weight of the total
cost versus stability. Based on the compared experiments on
benchmark UCARP instances, we showed that the proposed
GPHH could evolve much more stable routes without losing
the test performance. In the future, we will consider multi-
objective approaches that optimize performance and stability
simultaneously.
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