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Insufficient power system operation data sets hinder the extensive application of various
artificial intelligence algorithms. The solution of the Thevenin equivalent parameters
especially depends on the power flow data of the grid. This article proposes a
Kirchhoff circuit law-based power flow sample generation method, which can
overcome the operation state observation difficulty and power flow calculation
complexity of the power system. To a large extent, the quality of the sample
determines the effect of the machine learning algorithm. This method is different in
mechanism from traditional power flow calculations, which is applied to generate the
state-based power flow sample data sets by using Kirchhoff circuit laws instead of the
iterative calculation of power flow starting from the initial value. In this way, the efficiency of
power system sample generation required by machine learning algorithms is enhanced
significantly. Besides, this article finds the power characteristic parameter suitable for
Thevenin’s equivalent parameter machine learning, that is, the load power differential ratio.
A clusteringmethod suitable for the Bi-LSTM (bidirectional long short-termmemory) model
for processing power state samples, which can improve learning performance, was
studied. The case studies demonstrate the sample generation efficiency of this method
and verify the learning effect of the Bi-LSTM algorithm.

Keywords: Thevenin equivalent (TE), LTSM, power flow sample data set, electric data collection system, NGC,
Kirchhoff

1 INTRODUCTION

The Thevenin equivalent parameter is a major index for power system stability analysis. It plays an
important role in network equivalent calculations, fault analysis, safety analysis, and voltage stability
evaluation. As a complex nonlinear system, the state of the power system is affected by several factors
such as the grid topology, parameter changes, power supply mode, load characteristics, and power
fluctuations. Therefore, the Thevenin equivalent parameters of the power system feature strong
nonlinear and time-varying characteristics, and it is challenging to identify the Thevenin equivalent
parameters accurately and quickly.

The rapid development of AI (artificial intelligence) technology provides an excellent opportunity
for building a new power flow mapping relationship model based on the labeled power flow sample
sets and a new perspective for solving the problems mentioned above. An individual convergence
result obtained by iterative calculations by applying Newton’s method, the PQ decomposition
method, or other conventional algorithms can only illustrate the power flow state under specific
operating conditions or modes. Time-based samples make it inevitable to solve a series of problems
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caused by the iterative calculation of power flow. Such a sample
generation method makes the process of learning material
accumulation too expensive.

In recent years, the power flow sample generation’s
mainstream scheme has been “typical operation scenarios and
data deviation drive and power flow program calculation.” Based
on typical load and power generation patterns, a large number of
candidate data sets are generated by applying power deviations
with different magnitudes or different power adjustment
strategies (Zhou et al., 2021b; Tang et al., 2019; Zhou et al.,
2019; Zhou et al., 2021a). Li et al. (2021) adopts the conventional
power flow program, and Wang et al. (2019) adopts the optimal
power flow program as the primary calculation tool in the sample
production process. For high power data set quality, the
convergence of the conventional power flow or the optimal
power flow calculation requires consideration, and the non-
convergent data subsets need to be eliminated (Tian et al.,
2019; Han et al., 2020; Wang et al., 2021; Zhang et al., 2021;
Zhong et al., 2021). The statistics in Wang et al. (2020)
demonstrate that in a 36-node system, when the load increase
in the typical scenario exceeds 170%, power flow data are
generally non-convergent in most cases. When it exceeds
270%, the convergence ratio is less than 10%. When the scale
of the power grid is large, less than 50% can converge within 10
iterations. These studies illustrate that the existing scheme is
affected by the scale of the power grid, the magnitude of data
deviation, and the convergence rate of the power flow program.
Moreover, the vast cost and low efficiency are still significant
challenges for the high quality and capacity of the sample set.

With the widespread application of Phasor Measurement
Units (PMUs) in power systems, the Thevenin equivalent
parameter identification method based on local measurements
has drawn extensive attention (Vu et al., 1999; Abdelkader and
Morrow, 2012). Fluctuations on the system side may cause
parameter drift (Liu and Chu, 2014; Abdelkader and Morrow,
2015; Su and Liu, 2016). In response to this problem, some
scholars have tried to calculate the equivalent parameters by using
wide-area measurements at a single moment. In Wang et al.
(2011), the equivalent parameter analytical formula of the
coupled single-port model based on the network node voltage
equation and single-time wide-area measurements are derived.
Since the derivation process is simplified to a certain extent, the
identification accuracy still needs improvement. Zheng et al.
(2013) obtained the equations containing Thevenin equivalent
parameters based on a single moment wide-area measurement
and calculated the equivalent parameters iteratively to avoid the
influence of the fluctuations on the grid side. However, the
amount of calculation is large, and the simplification is
complicated. Research (Suthar and Balasubramanian, 2007;
Gomez et al., 2011) applies different intelligent algorithms to
analyze voltage stability features, but it lacks direct exploration of
Thevenin equivalent parameters.

This article focuses on building a high-quality labeled power
flow sample set based on the power flow mapping relationship of
the power system and designing the process of using intelligent
algorithms to solve the Thevenin equivalent parameters to solve
the above issues. There are main contributions of this research: 1)

we solve the power sample production problem from the
perspective of Kirchhoff’s law. The power grid state is
reproduced by a given input source while preserving the
circuit characteristics of the power topology, physical
structure, and load. We replace time-based power samples
with state-based power samples to break the limitations of
iterative power flow calculations in the power network analysis
process. 2) We set the load power differential ratio as the feature
input and use the LSTM (long short-term memory) method to
mine the Thevenin equivalent parameters.

2 PROBLEM STATEMENT AND
SUPPORTING MATHEMATICAL METHODS

Modern power systems have large-scale grid structures, complex
renewable energy resources, and diverse operating states. In the
face of data-driven learning algorithms, there is a lack of labeled
sample sets with appropriate capacity, reasonable distribution,
and high quality to train AI algorithms.

The limitation of actual power grid operation modes and the
amount of installed measurement equipment limit the online
sample collection scheme performance. Moreover, the data set
offline calculation scheme is severely restricted by the
conventional power flow iterative calculation process. These
do not lead to meeting the most basic requirements of the
data training algorithm. In particular, it cannot meet the
Thevenin equivalent parameter learning algorithm that
requires multi-node power flow information.

This article proposes a method for generating labeled sample
sets for power flow mapping relationships to satisfy sample
requirements for machine learning algorithms. As shown in
Figure 1, it is the overall design idea of making a power
sample set.

The first step is to downscale the data dimension of the
ultra-large-scale power network sample set, which is a
prerequisite for ensuring the application of AI algorithms
based on data training in the power system. The second step is
to use the physical laws of the power system to realize the non-
iterative calculation of offline power sample generation and
solve the core problems of power sample generation efficiency
and quality. The key to realizing data dimensionality
reduction (the data scale increases exponentially with the
node scale) lies in fully utilizing the structural
characteristics of the power network topology. The
electrical connections of grid nodes are generally sparse,
and the grid structure has obvious layering and partition
interconnection characteristics. Power sample data sets can
have the advantages of regionalized distributed processing by
marking different sub-regions’ characteristic labels and
interconnection parameters. The second step is to use the
physical laws of the power system to realize the non-iterative
calculation of offline power sample generation. It helps solve
the core problems of power sample generation efficiency and
quality. In the third step, this article proposes a standardized
evaluation system for the quality of the power sample set.
Moreover, the self-examination of the power data sample set
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is carried out by labeling the target power information
features. In the data training process of the Thevenin
equivalent parameters, the load power differential ratio is
the label parameter.

The solution of the Thevenin equivalent parameters needs the
multi-time and overall situation of network power flow
information. Such properties require learning methods to
process multi-time and the capability of mining implicit
mathematical relationships. The LSTM method enhances
model-building capabilities through several layers of nonlinear
transformations. Using vast training sample sets, theoretically,
deep models can approximate high-dimensional functions. The
powerful abstract feature capability of LSTM helps uncover the
hidden information embedded in the data. The mechanism of
machine learning also fundamentally avoids the problem of drift
parameters caused by the time difference of the actual PMU
measurement equipment.

Through the above process, the LSTM data training
mechanism of the Thevenin equivalent parameters of the
power network can avoid the complex problems of a series of

nonlinear systems caused by iterative calculations and inherent
deficiencies of measurement methods.

2.1 A Kirchhoff Law-Based Power Flow
Sample Generation Method Serving the
Long Short-Term Memory Learning Method
When dealing with problems with high sample dimensions of
large-scale power networks, an appropriate partitioning scheme is
required to achieve reasonable control of the sample size.

The typical power network organizational structure is shown
in Figure 2, with partition and stratification as the main
organizational structure. This article adopts the label
propagation algorithm as the power network partitioning
method, and the hierarchical algorithm is mainly based on the
hierarchical organization of the network voltage level. He et al.
(2018) find that the dissemination capability of branch power
flow value can help evaluate the tightness of the nodes at both
ends of the branch. It provides the criterion for the partition of the
power grid.

FIGURE 1 | Framework of networked microgrids with the individually local managers.

FIGURE 2 | Schematic diagrams of the typical power network structure. (A) Original grid. (B) Zonal grid structure. (C) Hierarchical grid structure.
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For a single sub-network in a specific power topology,
measuring devices or setting rules can supply the boundary
information of this single sub-network. This method
constructs the conditions for the non-iterative calculation of
the power grid. Effective power input replaces the PV nodes
and balance nodes. The load power characteristics of node
information represent the PQ nodes in the power network.
The information of some boundary contact nodes can be set
and labeled, as shown in Table 1. Circuit calculation through
Kirchoff’s current law, Kirchoff’s voltage law, and Ohm’s law
works in the converted circuit. Since the physical laws of the
power network are satisfied, the samples are effective, and a series
of convergence problems of the power samples generated by
iterative calculation is solved. The voltage and current data in the
linear space convert to the power information in the nonlinear
space by using the mapping method.

The integration of multi-sub-network sample subsets is an
important part of realizing the controllable scale of power sample
sets through power sample dimensionality reduction. The data
structure of the power sample set is shown in Formula 1:

Ni � {Ai, pi, gi, li, ci} (1)
whereNi is the initial sample data set for the grid of status i, Ai is
the grid topology matrix in status i, pi is the network parameter,
gi is the data set of physical quantities on the power generation
side, li is the data set of physical quantities on the power load side,
and ci is the contact node physical quantity data set.

Figure 3 describes the IEEE-39 power system partition
structure. We take this system as a sample to introduce the
splicing process of the multi-sub-network. First, we replace the
controlled voltage source with the PV node of the sub-region 1

sample, and we adjust the output of the voltage source. We obtain
the batch sub-region 1 sample set and the information and
current labels of the corresponding boundary nodes 27, 3, and
9 in each sample through linear circuit calculation. Then, the
power information of boundary node 17 of sub-region 2 is
determined through the connection brunch line information
and is used as a fixed input bound to the corresponding sub-
region 1 sample.

The next step is to perform sample splicing; we replace the
controlled voltage source with the PV node of the sub-region 2
samples and obtain a batch sample set that matches the
corresponding sub-region 1 through linear circuit calculations.
We implement number management to the data set of sub-
regions 1 and 2 and label the corresponding current
information of boundary nodes 15 and 18. Since the power
data and current labels of boundary nodes 18, 15, 3, and 9 are
informed, it can calculate the physical information and current
labels of boundary nodes 14, 4, and 8 in sub-region 3 through the
contact line information.

Finally, we set the boundary nodes of sub-region 3 as input
parameters. We replace the controlled voltage source with the PV
nodes and the balance nodes. We expand and renumber the latest
grid flow data set to the corresponding integrated data set of sub-
regions 1 and 2. The generated sample data set will not repeat, and
convergence problems caused by power flow calculations get
resolved.

2.2 Long Short-Term Memory
2.1.1 Implementation of Long Short-Term Memory
The deep neural network (DNN) is one of the improved neural
network models, which overcomes the problem of gradient
disappearance of the artificial neural network (ANN) (Li et al.,
2019). It uses multiple processing layers to learn the features of
data to achieve the “non-linear transformation of multiple
layers.” DNN can help to find the implicit functional
relationship between input and output. Therefore, DNN can
reflect the nonlinear structure of the Thevenin equivalent
impedance in the grid system. In addition, several kinds of
uncertain node power parameters have different effects on the
Thevenin equivalent impedance, which is difficult to be captured
by the shallow neural network. Compared with ANN, DNN is
more suitable for building the solution model of Thevenin
equivalent impedance.

The sequence data at different time points are generally taken
into consideration for the solution to the Thevenin equivalent
impedance. The recurrent neural network (RNN) can process
sequential data, but it has the limitation of long-term dependence.

TABLE 1 | Conversion scheme of the power network for linear operation.

Node type Convert to Additional
information provided

PV Voltage source Branch active power
Balance Controlled voltage source Controlled source voltage versus current
PQ Load power characteristics Power information
Specific boundary nodes Partial power information informed nodes Sample set labels

FIGURE 3 | IEEE39 node power system partition structure.
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Hence, compared with DNN, RNN applied to sequential data
processing is more effective. RNN receives a set of time series as
the input characteristic variables each time, and then the output
variables are obtained through the multi-layer hidden layer. RNN
is widely used in the fields of state identification, load prediction,
and stability analysis. As the length of the input sequence
increases, it is difficult for the model to use the earlier data
information in the data set.

LSTM alleviates the problem of gradient disappearance and
enhances model building capability by using storage units
(Woo et al., 2020; Xue et al., 2020). A large number of
training sample sets work in LSTM for model training,
which can dig out the hidden information in the data and
enhance the ability to build the multi-layer nonlinear
transformation model. The process of LSTM is depicted in
Figure 4. Four logic units called input gate, forget gate, update
memory cell, and output gate are added to the LSTM network
to control the output of the memory unit. The forget gate
selects and retains the processing results of the previous
memory unit, whose function is as follows:

ft � σ(Wf · [ht−1, xt] + bf) (2)
where ft is the input of the forget gate, Wf is the weight of the
forget gate, and bf is the bias of the forget gate.

The input gate controls the current input state in the memory
unit, which is expressed as

Cp
t � tanh(WC · [ht−1, xt]) (3)

ot � σ(Wo · [ht−1, xt] + bo) (4)
where ot is the input of the input gate, Wo is the weight of the
input gate, bo is the bias of the input gate, Ct* is the input cell
vector, and WC is the weight of the memory cell.

The output gate controls the output state of the memory unit,
which is expressed as

it � σ(Wi · [ht−1, xt] + bi) (5)
ht � ot · tanh(Ct) (6)

where it is the input of the output gate, bi is the bias of the output
gate, Wi is the weight of the output gate, and ht-1 represents the
output vector.

The update memory cell updates the new information and
calculates the state again, which is expressed as

Ct � Ct−1 · ft + it · Cp
t (7)

where Ct is the memory cell state vector.
With the four logical units, LSTM can store useful data for a

longer time and it is more suitable for capturing the long-term
correlation between features and output values than RNN.

2.1.2 Implementation of BiLSTM
The characteristic of LSTM is that the activation function controls the
states of two adjacent memory units, the input gate and forget gate.
However, this algorithm only carries out training from front to back
according to time series, indicating a relatively low data utilization
rate. It is hard to mine the inherent characteristics of data completely.
Therefore, to determine Thevenin equivalent impedance, it is of great
difficulty to describe the model accurately if only a one-way time
series is considered. Bi-LSTM incorporates the bidirectional concept
into LSTM, increasing the flow of data from the future to the past
(Moharm et al., 2020; Xueqing et al., 2021). The structure of the Bi-
LSTM model is shown in Figure 5.

In the Bi-LSTM structure, each state of the hidden layer ht is
composed of three parts: the output state of the hidden layer at
the previous moment when it is propagating forward along the
time axis, the output state of the hidden layer at the previous
moment when it is propagating backward along the time axis, and
the input variable at the current moment. The combination
process of the state in each hidden layer can be represented as

ht � LSTM(xt, ht−1)
hk � LSTM(xt, hk−1)
ht � btht + bkhk + ct

(8)

where LSTM is the operation process of the conventional
function, ht is the state of the forward hidden layer, hi is the
state of the backward hidden layer, bt is the weight of the hidden
layer of the forward unit, bk is the output weight of the hidden

FIGURE 4 | Process of the LSTM model.

FIGURE 5 | Structure of the Bi-LSTM model.
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layer of the backward unit, and ct is the bias of the hidden layer at
the current time.

The model parameters are trained in Bi-LSTM through
forward and backward paths so that the state of past and
future hidden layers can make feedback. Besides, the internal
relationship between output features and input features from
different states can be further mined by Bi-LSTM, which means
that a large margin can improve model accuracy and feature data
utilization rate.

3 SOLUTION METHOD

This article considers the screening mechanism for the LSTM
algorithm on the generated sample set to help optimize machine
learning. At the same time, the implicit information of the
Thevenin equivalent calculation is explored as the input of
LSTM to enhance the efficiency of the learning algorithm.

3.1 Sample Set Screening Based on the
Neighborhood Grid Clustering Clustering
Mechanism
The NGC (Neighborhood Grid Clustering) clustering algorithm
helps ensure that the power flow samples meet the requirements
of the LSTM algorithm to calculate the Thevenin equivalent
parameters. The single sample calculated by Kirchhoff’s law
mentioned in this article is a set of data based on the state
instead of the time dimension. The Thevenin equivalent
parameter data calculation is generally based on multi-time
power flow information. The power flow changes of the power
system at adjacent times are limited. When the power flow
information at adjacent moments is stored as power samples,

it is expressed as two power samples with small state changes.
Therefore, when processing samples, it is necessary to adopt a
clustering algorithm that can filter sample data with large data
intervals. In this way, the clustering method adopted in this article
ensures that the current vectors of adjacent power samples at the
specified nodes tend to be close. By the abovementioned method,
the state-based power flow data sets are feasible to solve this
problem.

The NGC method using the factors of density and distance in
network space implements the clustering function. This method
utilizes the idea of grid division (Suo et al., 2018), maps the
original data to the grid subspace, and realizes the clustering of
data of any shape by using the neighborhood search within the range.
The advantage of this classification method is that it can achieve
autonomous clustering without pre-specifying the number of clusters
and can automatically classify according to parameters. This feature
has an excellent performance in the large-scale power network
sample data. Figure 6 shows the main clustering process.

Usually, the original data based on traditional clustering
algorithms will inevitably have noise. Noise recognition ability is a
criterion to measure the clustering algorithm. For a specified grid
node, we useNGC to cluster the current vector. If the clustering result
identifies noise, itmeans that the load at this point varies greatly. Such
state-based samples are detrimental to the learning effect for the
objective algorithm that solves for Thevenin-equivalent parameters.
Combined with the NGC algorithm, Equation 9 represents the
current noise threshold pIt in a given grid interval.

ρIt � exp( − (dist(tI, c)
Z

)2) (9)

where tI is current noise data, c represents grid center, dist(·, ·)
represents the distance function, and Z is the overall grid interval.

FIGURE 6 | Flowchart of the current vector NGC clustering process.
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In addition, the important parameters that need to be set in the
actual programming process of the NGC algorithm are K, the
number of grids, and c, the boundary scale factor.

After identifying the current noise data, the noise sample
group it belongs to is eliminated. With the help of the NGC
method, each group of samples included in the study has a
controllable load fluctuation at a specific node. The sample set
based on the state quantity can guarantee the effect of Thevenin’s
equivalent parameter data learning algorithm.

3.2 Feature Selection for Long Short-Term
Memory to Study Thevenin Equivalent
Parameters
The Thevenin equivalent can equalize the nonlinear time-varying
power system to the form of the series impedance of the voltage
source, reduce the system’s complexity, and improve the
efficiency of power grid security and stability analysis
(Ohtsuka et al., 1989; Luo et al., 2009). As shown in
Figure 7A, subsystem A represents the system side, and
subsystem B represents the load side. According to the
Thevenin equivalent theorem, when no system operating
variation occurs in subsystem A, it could be represented by a

single voltage source in series with impedance connected to
subsystem B, as shown in Figure 7B.

Functions 10, 11 show the analytical formula of Thevenin
equivalent parameters on the system side, observing from the
node to the system side. kdif ,i is the load power differential ratio of
node i. It is the concrete parameter of the cotangent of the
argument of the load power fluctuation vector. The time-
varying characteristics of the load at the equivalent node are
characterized. It reflects the way the load grows over time. The
independent variables in this formula are essentially composed of
power flow data at a single moment and load power differential
ratio.

∣∣∣∣Zth,i

∣∣∣∣ � U2
i

								
f2
U,i + f2

δ,i

√
																																												( − Ui + fU,iQi + fδ,iPi)2 + (kdif ,iUi − fU,iPi + fδ,iQi)2√

(10)∣∣∣∣Eth,i

∣∣∣∣ � Ui

																													(2fU,iQi − Ui)2 + (kdif ,iUi − fδ,iPi)2√
																																												( − Ui + fU,iQi + fδ,iPi)2 + (kdif ,iUi − fU,iPi + fδ,iQi)2√

(11)
fU,i � dUi/dQi � kdif ,i · zUi/zPi + zUi/zQi (12)

FIGURE 7 | Schematic diagram of the Thevenin equivalent for power systems. (A) Power system model before the Thevenin equivalent. (B) Power system model
after the Thevenin equivalent.

TABLE 2 | Efficiencies of the 100,000-sample generation process on the IEEE39 power system.

Region Calculation time/s Maximum memory usage/MB CPU maximum utilization/%

Sub-region 1 13.63 4,892.1 20.7
Sub-region 2 14.32 5,235.6 22.3
Sub-region 3 13.21 4,963.7 20.9
Newton Raphson 1,249 10,869.5 58.7

TABLE 3 | Sample selection of the NGC clustering algorithm of current vectors.

Group Calculation time/s Convergence rate (%) Clustering algorithm adoption
rate (%)

Number
of adopted samples

Novel method in this article 6.85 100 76 6,278
Newton Raphson 286.7 86 73 5,186

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 9335447

Li et al. Bi-LSTM for Thevenin Equivalent Analysis

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


fδ,i � dδi/dQi � kdif ,i · Ui · zδi/zPi + Ui · zδi/zQi (13)
kdif ,i � dPi/dQi (14)

The model of Thevenin equivalent impedance is affected by
several factors in most cases, and various types of
characteristic parameters are contained in the input
parameters of the network. Therefore, the model of
Thevenin equivalent impedance is nonlinear and
fluctuating, which results in dimensional disaster in
practical training and prediction and reduces the loss of
prediction accuracy. Several features in the actual model
training process strongly correlate with the model. This

step can reduce the number and dimension of feature
parameters and the phenomenon of over-fitting operation.
Moreover, it can improve the model operation efficiency and
generalization ability and improve model accuracy.

The power differential ratio of a node is the cotangent of the
argument of the power fluctuation vector, and its long-term
change reflects the load growth mode, which can reflect the
correlation between the two power samples. This “knowledge”
has a practical physical meaning for the LSTM algorithm.
Therefore, based on the power flow data sets, the power
differential ratio of the node is added as the input parameter
of LSTM.

FIGURE 8 | Comparison of using the NGC clustering processing method.

TABLE 4 | Comparison of using the NGC clustering processing method.

Sample processing method MAE MAPE RMSE Time (s)

Using the clustering method r 9.3512e-04 0.0210 0.0011 314.18105
Not using the clustering method 0.0021 0.0734 0.0031 2,813.32901

FIGURE 9 | Results of Thevenin equivalent voltage compared to the real value.
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4 CASE STUDY AND DISCUSSION

The proposed methods in the present article have been applied to
the IEEE 39-bus (New England) test system, as shown in
Figure 3. The CPU of the computer simulation platform is i7-
8700, and the memory capacity is 16 GB.

4.1 Parameters
In order to evaluate the performance of the Bi-LSTM model
quantitatively, evaluation indicators such as mean absolute error
(EMAE), mean absolute percentage error (EMAPE), and root-
mean-square error (ERMSE) are selected, which are expressed as

EMAE � 1
n
∑n

i�1
∣∣∣∣ŷi − yi

∣∣∣∣ (15)

EMAPE � 1
n
∑n

i�1

∣∣∣∣ŷi − yi

∣∣∣∣
yi

× 100% (16)

ERMSE �
													
1
n
∑n

i�1(ŷi − yi)2√
(17)

where i is the number of samples, n is the total number of
samples, ŷi is the predicted value, and yi is the actual value.

In addition, in order to make the model learn the rules
between features better, input features need to be normalized.
This method can accelerate the training speed and improve the
effectiveness of the model. The normalized processing formula is
defined as follows:

y′ � y − ymin

ymax − ymin
(18)

where y′ is the normalized input feature and ymax and ymin

correspond to the maximum and minimum values of the
eigenvalues to be normalized, respectively.

4.2 ANovel Method of Generating the Digital
Electricity Data Sample
First, we verify the power flow state sample set calculation
method based on Kirchhoff’s law proposed in this article.
Comparing the method in this article with the power flow
calculation method used in the MATPOWER platform, both
complete the goal of generating 100,000 power flow samples for
the IEEE 39-bus system.

FIGURE 10 | Comparison of Thevenin equivalent impedance parameters for different learning methods.

TABLE 5 | Comparison of different learning mechanisms’ performances.

Bus type Bi-LSTM LSTM RNN

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

Bus1 1.3112e-03 0.0301 0.0014 0.0028 0.0318 0.0022 0.0042 0.0637 0.0044
Bus4 1.2139e-03 0.0289 0.0014 0.0017 0.0298 0.0019 0.0038 0.0539 0.0042
Bus8 1.9002e-03 0.0312 0.0015 0.0031 0.0327 0.0025 0.0043 0.0756 0.0043
Bus12 7.3499e-03 0.0299 0.0016 0.0030 0.0302 0.0022 0.0049 0.0702 0.0046
Bus16 9.4487e-04 0.0270 0.0015 0.0024 0.0272 0.0019 0.0043 0.0701 0.0042
Bus20 8.9989e-04 0.0267 0.0014 0.0025 0.0277 0.0019 0.0046 0.0693 0.0045
Bus23 1.0732e-03 0.0302 0.0015 0.0014 0.0257 0.0017 0.0033 0.0602 0.0041
Bus25 1.0834e-03 0.0308 0.0014 0.0015 0.0261 0.0018 0.0039 0.0691 0.0043
Bus27 9.4876e-04 0.0311 0.0020 0.0018 0.0278 0.0017 0.0042 0.0514 0.0039
Bus29 9.3512e-04 0.0210 0.0011 0.0014 0.0266 0.0016 0.0034 0.0649 0.0041
Average 1.7660e-03 0.0287 0.0015 0.0022 0.0286 0.0019 0.0041 0.0648 0.0043
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As shown in Table 2, the sample generation based on the
multi-sub-network partitioning and splicing mechanism
proposed in this article is about 30 times faster than the
traditional power flow calculation method. The memory
resource occupies about 45%, and the processor resource
occupies about 36%. Table 3 shows that the power sample
generation method proposed in this article can effectively
avoid the convergence problem of power flow calculations and
greatly improve the sample generation efficiency. Since the
growth of the power network scale will increase the sample
dimension exponentially, when dealing with larger-scale power
grids, the advantage of sample generation efficiency in this article
will be more obvious.

4.3 Application of the NGC Clustering
Method of Power Samples in the Long
Short-Term Memory Algorithm
We verify the effectiveness of the NGC clustering screening
method proposed in this article for optimizing the LSTM
algorithm. Using the scheme in this article and the power flow
calculation method used in the MATPOWER platform, 8,000
samples are generated and clustered.

Table 3 shows that the clustering algorithm adopted in this
article can effectively eliminate the situation of excessive load
fluctuation. In order to verify the advantages of the sample
selection method using the clustering algorithm in sample
generation and model training, two groups of data sets are
used to generate Thevenin equivalent impedance under the
same training network. As shown in Figure 8 and Table 4,
results without sample screening methods are slightly less
accurate and the training time increases exponentially.
Therefore, the NGC clustering method can reduce the time
cost of model training and improve the accuracy and precision
of the model.

4.4 Long Short-Term Memory Results
This research generates 19 groups of power flow data sets for
different nodes, and each group has 360 power grid statuses to
calculate Thevenin equivalent impedances. Eighteen groups are
randomly selected as training samples, while the remaining one
group has tested samples.

The curve can reflect the trend of change and the degree of
fitting more directly, so the curve model of Thevenin equivalent
impedance is constructed to reflect the effect of the equivalent
impedance model more directly. In this article, the Thevenin
equivalent impedance model is constructed by the Bi-LSTM
network. In order to balance the training time and prediction

accuracy, the Bi-LSTM model is set as three layers, with the
number of neurons in each layer being 128, 64, and 24. The
corresponding learning rate is 0.1, 0.1, and 0.1. The Thevenin
equivalent impedance analysis model is built through Bi-LSTM,
and it is verified by using the data of the test group Bus 29.
Figure 9 shows the results of the Thevenin equivalent voltage
analysis. The Bi-LSTM method has achieved good consequences
in finding the implicit functional relationship of the Thevenin
equivalent voltage.

In order to further illustrate the advantages of the proposed
model in constructing Thevenin equivalent impedance, the
proposed model is compared with algorithms such as LSTM
and RNN. The curves of each model on the test sets are shown in
Figure 10. The error of each model on the test sets is shown in
Table 5. By comparison, the average RMSE, MAPE, and MAE of
the model selected in this article are 0.0015, 0.0287, and 0.001766,
respectively, which are significantly lower than LSTM and RNN.

5 CONCLUSION

The power sample generation method based on Kirchhoff’s law
proposed in this article has the advantage of a high computational
efficiency and eliminates the iterative calculation of power flow.
The adopted current vector-based NGC clustering method can
improve the learning performance of the LSTM algorithm for
solving Thevenin equivalent parameters. Compared with other
learning algorithms, the adopted Bi-LSTMmodel and load power
differential ratio characteristic parameters have better learning
performance. These contributions make the Thevenin equivalent
parameter solution more convenient and efficient.
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