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In an attempt to achieve net zero, the operation and planning of the energy

system face techno-economic challenges brought by integrating large-scale

distributed energy resources (DERs) with low carbon footprints. Previous work

has analyzed the technical challenges including hosting capacity (HC) for

DERs. In light of the deregulation of the power industry and the transition

to power system with renewables at its center, this article takes the lead to

maximizing renewable integration in power grids from a market viewpoint.

It solves a significant problem brought forth by the fall in electricity prices,

resulting from increasing renewable penetration that jeopardizes investment

cost recovery and prevents sustainable grid integration of renewables. To

this end, a novel bi-level optimization model is formulated, where the

upper-level problem aims to maximize the HC of renewables ensuring the

recovery of investment, and the lower-level problem describes the market

clearing process considering network constraints. The optimal solution of

devised bi-level problem can be found after reformulating it to a single-

level mixed-integer linear problem (MILP) using the strong duality theorem

and a special ordered set-type 1 (SOS1) founded linearization approach. Case

studies confirm the significance of the devised model and quantitatively

analyze the impact of different network capacities, renewable subsidies, and

energy storage, respectively, on the market-based HC obeying its profitability

constraint.

KEYWORDS

renewable energy sources, bi-level optimization, electricity market, energy storage, generation

investment planning

1 Introduction

It is an international scientific consensus that, in an attempt to prevent greenhouse
effect and climate deterioration, net human-caused emissions of carbon dioxide should be
necessarily reduced by approximately 45 percent from 2010 levels by 2030, achieving net-
zero before 2050 (Bouckaert, 2021). The energy industry is the source of around three-
quarters of greenhouse gas emissions today, so integrating renewable energy sources
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(RES) including wind and solar energy in the present power grid
is an inevitable trend. In order to achieve net-zero greenhouse
gas emissions target by the year 2060 (Qiu et al., 2021), China
calls for realizing the transition to a new type of power system
with renewables at its center, and it will account for nearly 80
percentages of its electric power generation by 2060. It also
facilitates the utilization of energy storage (ES) technologies
to cope with the intermittency of RES because it can provide
flexibility to achieve system balance and restrict demand peaks,
promoting the cost-effectiveness of power system with low
carbon levels (Tan et al., 2021). In this context, the total installed
capacity by the Chinese for power storing is expected to surpass
30 GW in 2025, about 10 times its present level. To promote
the penetration of RES, an increasing level of distributed energy
resources (DERs) is integrated in the distribution network, and
the scale of new installed capacity of distributed photovoltaics in
China far exceeds that of centralized ones (Fang et al., 2020).

Under these circumstances, significant technical challenges
to the operation and planning of power systems emerge,
owing to considerable DERs and ES penetration in distribution
network (Husin et al., 2021). One aspect of relevant research lies
in investigation of the acceptable level of DERs penetration
under given circumstances, which is defined as hosting
capacity (HC) for DERs (Al-Saadi et al., 2017). Besides, the
technical impacts of DERs contribution on the distribution
grid have been comprehensively studied including bus
over-voltage (Divshali and Söder, 2019), power harmonic
distortion (Santos et al., 2015), thermal overload, increased
short-circuit current, and protection devices (Seuss et al., 2015)
while maximizing DERs penetration (Mulenga et al., 2020)
(Cicilio et al., 2021). However, a fundamental difference between
these previous studies and this article is that the former did
not take the price signal into consideration from a market
perspective. Another drawback of aforementioned previous
works on generation investment planning is that they are
implemented for every time period separately, so ES cannot
be considered for the reason that it is intrinsically related to
time coupling influence brought by its charging and discharging
cycles.

For the reason that ES is able to mitigate variability
and uncertainty brought by RES, another aspect of research
concentrates on evaluating the influence and capacity of
ES in generation investment planning problems. Traditional
works usually choose the minimal system cost as objective
function and plan the capacity of ES and RES generation
separately (Lakshminarayana et al., 2016) or simultaneously
(Shi et al., 2022). In addition, many research have analyzed
that how ES (Awad et al., 2014) (Virasjoki et al., 2016), electric
vehicle (EV) (Philipp and Thomas, 2018), or other flexible
resources (Ye et al., 2018) directly influence spot electricity
prices. It can be found that they are able to smooth spot prices,
leading to a notable electricity price increase during periods

with off-peak demand and abundant RES, and a price decrease
at times with peak demand and scarce RES, which facilitate
the penetration of RES (Zhao et al., 2022). However, previous
published work examined the impact of ES in generation
investment planning using centralized models with the goal
of minimizing costs retained from the period of regulated
environment. To the best of our knowledge, no research
had examined how ES influences the planning decisions of
RES through price signals changed with different operating
parameters of ES. Furthermore, to facilitate building a power
system dominated by renewables in China, the main objective
of this article is to maximize renewable generation capacity
and quantitatively analyze the upper boundary from a market
perspective.

Recognizing the shortcomings of the regulated price
mechanism, China and many other countries have launched an
unprecedented deregulation reform on its electricity market. In
deregulation environment, electricity prices will be determined
totally by supply and demand curve to reflect the real-time
conditions (Liu et al., 2019). However, variable RES with
negligible marginal prices (e.g., solar and wind power), change
the supply curve because of the merit order influence and
cause a reduction on electricity prices in many countries (e.g.,
Germany and Italy) (Brancucci Martinez-Anido et al., 2016),
even to the extent that negative electricity prices occurred. Other
types of electricity generation (e.g., nuclear power) with low
marginal costs, impose less unpredictable and uncertain effect
on the merit order than that of wind and solar power. To be
specific, Kolb et al. (2020) analyzed previous German demand
and supply curves in day-ahead market and reconstructed
electricity prices with and without RES feed-in. Results found
that RES forces electricity prices down by 2.89 ct/kWh in 2014
to 8.89 ct/kWh in 2017. So the penetration of RES largely affects
the spot electricity prices, hence bringing significant changes in
generation investment planning in power industry.

Nowadays, RES and other generation investment planning
are driven by profit-motivated generation companies rather than
by a central regulated utility in a more and more competitive
electricity market (Bao et al., 2021). As a result of the large-scale
penetration of RES, several fundamental problems associated
with electricitymarket arise: Considering that the operation costs
of RES are negligible and electricity prices are anticipated to fall
and fluctuate, can potential RES investors recover investment
fees and guarantee non-negative profitability? In addition, how
to quantitatively analyze the upper boundary of integrated RES
optimal capacity while adhering to operation limitations in
power system and how will network constraints, subsides, and
ES in power systems affect it?

This article employs an innovative multi-period bi-level
optimization problem, modeling the decision-making process
of RES generation investment to answer the aforementioned
questions. The upper-level problem aims to find maximal
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renewable generation capacity defined as HC, maintaining its
profit positive or equal to zero, while the lower-level problem
represents endogenous market clearing process, minimizing
the negative social welfare. Furthermore, to investigate and
quantify about the impact of network and ES, a direct current
optimal power flow (DCOPF) and time-coupling operational
characteristics of ES are considered, in combination with
locational marginal prices (LMP) to reflect the electricity
prices and the influence of congestion. The solution to
this problem involves reformulating it to a Mathematical
Program with Equilibrium Constraints (MPEC) and applying
a special ordered sets-type 1 (SOS1) based approach, as well as
Karush–Kuhn–Tucker (KKT) optimality conditions to linearize
the latter into a mixed-integer linear problem (MILP). Case
studies are founded on a 6-node test system, and they illustrate
first how network capacity and RES subsidy influence the siting
and sizing decisions of RES. Moreover, an analysis is conducted
on the HC of RES for different representative days in terms of
different energy capacities of ES.

The organizations of the remaining part of this article
are listed as following. Section 2 outlines devised bi-level
optimization problem, expressing the optimal planning of RES
investment capacity (subsection 2.1), corresponding MPEC
(subsection 2.2) and MILP (subsection 2.3). Case studies
and quantitative analysis are presented in Section 3. Finally,
Section 4 draws the conclusions of this article.

2 Devised modeling framework

2.1 Bi-level optimization formulation

To conduct a quantitative analysis of the upper bounds
of integrated RES optimal capacity obeying the allowable
system operational performance boundaries, a complex multi-
period bi-level optimization model, comprising of two coupled
optimization problems, is used in this chapter. Specifically,
the upper-level (UL) problem represents the decision-making
problem of maximal generation capacity of RES and siting and
sizing results, ensuring that the profit from selling wind or solar
energy in a day-ahead spot electricity market can recover its
investment, so RES investments are profitable. The lower-level
(LL) problem represents the market clearing problem solved
by the market operator that determines the dispatch of each
participant that minimizes the negative social welfare.

Figure 1 demonstrates the framework for this bi-level
optimization problem, whose formulation is given in (1)–(10).
A yearly operation horizon is divided into discrete and
representative hours in this suggested optimization approach.
In addition, investment and profit are measured annually. These
two optimization problems are interconnected that the UL’s
solution to determine renewable energy capacity at different
nodes affects the market clearing prices and generation dispatch

FIGURE 1
Framework of the devised multi-period bi-level optimization
model.

in LL problem, and the latter also serves as feedback to revenues
from selling RES in the electricity market in the UL problem.

2.1.1 Upper-level problem
Thedevisedmulti-period bi-level optimization problem aims

to find the HC of RES and ensure that RES investors can recover
their investment. More importantly, the impacts of increased
generation capacity on electricity prices are inconsistent at
different nodes, places with higher electricity prices are more
attractive to integrate RES than those with lower prices. In
accordance with the purpose of the suggested model, it is crucial
to determine favorable regions suitable for large-scale integration
of renewables and optimize the HC of renewables in other areas.
So the objective function of UL problem is listed as constraint (1)
as follows.

max∑
n
Gn, (1)

where n ∈M denote the index and set of nodes andGn represents
the HC of RES generation at node n.

The UL problem should adhere to non-negative profitability
constraint listed:

∑
n,d,t

wd (λn,d,t + γ) rn,d,t −∑
n
PGn ≥ 0, (2)

where t ∈ T represent the index and set of steps, wd denotes
weighting factor of step t, λn,d,t represents the LMP at node
n, day d, and step t, γ is the subsidy for selling renewable
energy, rn,d,t represents the dispatch of RES generation at
node n, day d, and step t, P is the annual capital costs of
RES.

2.1.2 Lower-level problem
Under the assumption that electricity market is an energy-

only and pool-based market in the following devised model, the
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LL problem describes endogenously the market clearing process
at every representative day and guarantees minimal negative
social welfare (Constraint (3)), employing DCOPF model and
deriving the LMP for each node n, day d, and step t so that the
effect of network and ES can be analyzed quantitatively.

min
DLL
∑
i,d,t
(aigi,d,t + big

2
i,d,t) − ∑

n,d,t
bn,d,tdn,d,t, (3)

whereDLL represents the LLproblem’s decision variable set, d ∈ D
are index and set of representative days, i ∈ I represent the index
and set of thermal generation units, ai and bi denote the linear
and quadratic coefficients of the thermal generation unit i’ cost
functions, gi,d,t is the actual production of thermal generation
unit i produced at step t, bn,d,t is the marginal benefit of demand
at node n, day d, and step t, dn,d,t is the power input at node n,
day d, and step t.

DLL = {gi∉IMR,d,t, rn,d,t,θn,d,t, s
dis
j,d,t, s

ch
j,d,t,Ej,d,t} , (4)

where θn,d,t is the voltage angle at node n, day d, and hour t.
The five aspect constraints (5)–(16) that the LL problem need

to obey are listed as follows:
1) Demand-supply balance constraints: Constraint 5)

describes that demand and supply need to be always balanced,
the dual variables of which make up the LMPs.

dn,d,t − ∑
i∉IMR

gi,d,t − ∑
i∈IMR

gi − rn,d,t + ∑
m∈Mn

θn,d,t − θm,d,t
xn,m

−∑
j∈Jn

(sdisj,d,t + s
ch
j,d,t) = 0 : λn,d,t, ∀n,∀d,∀t, (5)

where IMR ∈ I is the subset of must-run generation units, xn,m is
the reactance of line (n,m),m ∈Mn are the index and set of nodes
connected to node n through a line, j ∈ Jn are the index and set
of ES units connected to node n, schj,d,t and sdisj,d,t are charging and
discharging power of ES unit j at day d and step t.

2) Generation power limits: The operating constraints
include thermal generators 6) and renewable generators 7).

g
i
≤ gi,d,t ≤ gi : ζ

−
i,d,t,ζ
+
i,d,t, ∀i ∉ I

MR,∀d,∀t, (6)

0 ≤ rn,d,t ≤ δn,d,tGn : ϕ−n,d,t,ϕ
+
n,d,t,∀n,∀d,∀t, (7)

where gi and g
i
are maximum and minimum output boundaries

of thermal generation units, respectively, δn,d,t is the output of
renewables at node n, day d, and step t after the normalizing
process. However, following normalization, its output statistics
are generally various across the network to account for
regional and temporal diversity about renewables availability.
Additionally, renewable energy is assumed to have negligible
operating costs, and its output can be curtailed if necessary.

3) Demand power limits:

0 ≤ dn,d,t ≤ dn,d,t, : χ
−
n,d,t,χ
+
n,d,t∀n,∀d,∀t, (8)

where dn,d,t denotes maximum demand at node n, day d, and
step t.

4) DCOPF-based network constraints: Constraints
(9)–(10) represent power flow and nodal voltage angle limits.
Node 1 is designated as the reference node by constraint (11).

−Pn,m ≤
θn,d,t − θm,d,t

xn,m
≤ Pn,m : ε−n,m,d,t,ε

+
n,m,d,t,

∀n,∀m ∈Mn,∀d,∀t
, (9)

−π ≤ θn,d,t ≤ π:κ−n,d,t,κ
+
n,d,t, ∀n,∀d,∀t, (10)

θ1,d,t = 0:φt,∀d,∀t, (11)

where Pn,m denotes the maximum power flow limit of line (n,m).
5) Inter-temporal constraints representing ES operation:

Inter-temporal constraints 12) and 13) are applied to imply
energy balance of ES and the assumption of energy neutrality
in day-ahead market, respectively. Finally, constraints (14)–16)
are applied to limit energy and power within minimum and
maximum bounds.

Ej,d,t = Ej,d,t−1 + τηchs
ch
j,d,t −

τsdisj,d,t

ηdis
: νj,d,t,∀j,∀d,∀t, (12)

E0 = Ej,d,t : βj,d,∀j,∀d, t = K
T, (13)

E ≤ Ej,d,t ≤ E : σ−j,d,t,σ
+
j,d,t,∀j,∀d,∀t, (14)

0 ≤ schj,d,t ≤ s : ρ
−
j,d,t,ρ
+
j,d,t,∀j,∀d,∀t, (15)

0 ≤ sdisj,d,t ≤ s : ι
−
j,d,t, ι
+
j,d,t,∀j,∀d,∀t, (16)

where Ej,d,t is the energy level of ES unit j at day d at the end of
step t, τ and KT are the temporal resolution and length of market
horizon, ηch and ηdis are the charging and discharging efficiency
of ES, E0 denotes initial energy level of ES, E and E are minimum
and maximum energy limit of ES, s represents power capacity
of ES.

2.2 MPEC formulation

Due to the continuous and convex characteristics of the LL
problem, the multi-period bi-level optimization problem stated
in Section 2.1 is converted into a single-level MPEC in the way
of substituting the LL problem with corresponding KKT optimal
conditions:

max
D
∑
n
Gn (17)
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Among constraint (17), D is the decision variable set of the
MPEC formulated in (18):

D = {Gn,DLL,λn,d,t,ζ−i,t,ζ
+
i,t,ϕ
−
n,d,t,ϕ
+
n,d,t,χ
−
n,d,t,χ
+
n,d,t,

ε−n,m,d,t,ε
+
n,m,d,t,κ

−
n,d,t,κ
+
n,d,t,φt,νj,d,t,βj,d,σ

−
j,d,t,

σ+j,d,tρ
−
j,d,t,ρ
+
j,d,t, ι
−
j,d,t, ι
+
j,d,t}

. (18)

The first-order KKT optimal conditions related to the LL
problem (3)–(16) are derived as follows.

(2), (5), (11), (12), (13)

ai + 2bigi,d,t − λ(n:i∈In),t − ζ
−
i,d,t + ζ

+
i,d,t = 0, ∀i ∉ I

MR,∀d,∀t, (19)

−λn,d,t −ϕ−n,d,t +ϕ
+
n,d,t = 0, ∀n,∀d,∀t, (20)

λn,d,t − bn,d,t − χ
−
n,d,t + χ

+
n,d,t = 0, ∀n,∀d,∀t, (21)

∑
m∈Mn

λn,d,t − λm,d,t
xn,m

+ ∑
m∈Mn

ε+n,m,d,t − ε
+
m,n,d,t

xn,m

− ∑
m∈Mn

ε−n,m,d,t − ε
−
m,n,d,t

xn,m
+ κ+n,d,t − κ

−
n,d,t + (φt)n=1 = 0,

∀n,∀d,∀t, (22)

λn,d,t − τηchs
ch
j,d,t − ρ

−
j,d,t + ρ

+
j,d,t = 0, ∀j,∀d,∀t, (23)

−λn,d,t +
τsdisj,d,t

ηdis
− ι−j,d,t + ι

+
j,d,t = 0, ∀j,∀d,∀t, (24)

−σ−j,d,t − σ
+
j,d,t + νj,d,t − νj,d,t+1 = 0,∀j,∀d,∀t < K

T, (25)

−σ−j,d,t − σ
+
j,d,t + νj,d,t − βj,d = 0,∀j,∀d,∀t = K

T, (26)

0 ≤ ζ−i,d,t⊥gi,d,t ≥ 0, ∀i,∀d,∀t, (27)

0 ≤ ζ+i,d,t⊥(gi − gi,d,t) ≥ 0, ∀i,∀d,∀t, (28)

0 ≤ ϕ−n,d,t⊥rn,d,t ≥ 0, ∀n,∀d,∀t, (29)

0 ≤ ϕ+n,d,t⊥(βn,d,tGn − rn,d,t) ≥ 0, ∀n,∀d,∀t, (30)

0 ≤ ε−n,m,d,t⊥(Pn,m +
θn,d,t − θm,d,t

xn,m
) ≥ 0,

∀n,∀m ∈Mn,∀d,∀t,
(31)

0 ≤ ε+n,m,d,t⊥(Pn,m +
θn,d,t − θm,d,t

xn,m
) ≥ 0,

∀n,∀m ∈Mn,∀d,∀t,
(32)

0 ≤ κ−n,t⊥(π+ θn,t) ≥ 0, ∀n,∀t, (33)

0 ≤ κ+n,t⊥(π− θn,t) ≥ 0, ∀n,∀t, (34)

0 ≤ σ−j,d,t⊥(Ej,d,t −E) ≥ 0, ∀j,∀d,∀t, (35)

0 ≤ σ+j,d,t⊥(E−Ej,d,t) ≥ 0, ∀j,∀d,∀t, (36)

0 ≤ ρ−j,d,t⊥(s− s
ch
j,d,t) ≥ 0, ∀j,∀d,∀t, (37)

0 ≤ ρ+j,d,t⊥s
ch
j,d,t ≥ 0, ∀j,∀d,∀t, (38)

0 ≤ ι−j,d,t⊥(s− s
dis
j,d,t) ≥ 0, ∀j,∀d,∀t, (39)

0 ≤ ι+j,d,t⊥s
dis
j,d,t ≥ 0, ∀j,∀d,∀t, (40)

TheMPEC formulation retains not only the inequality constraint
(2) in the UL problem but also primal equality constraints
(5), (11), (12), and (13) in the LL problem. Moreover,
equality constraints (19)–(26) are the stationary conditions
derived from differentiating the Lagrangian function about
the primal variables in set identified in (4). Related to
the inequality constraints (6)–(10) and (14)–(16) in the LL
problem, complementary slackness conditions are formulated
in (27)–(40). The obtained KKT conditions (19)–(40) are first-
order necessary optimality conditions.

2.3 MILP formulation

There are two types of non-linearities presented in the
aforementioned MPEC model. The first type involves a bi-linear
factor ∑n,d,tλn,d,trn,d,t in the MPEC formulation. The product of
the market clearing prices and renewable generation schedule
variables is used to imply revenues of RES in electricity market.
By adopting the linearization approach suggested in Ruiz and
Conejo, (2009), which makes full use of all obtained KKT
conditions (19)–(40), the bi-linear factor ∑n,d,tλn,d,trn,d,t can be
reformulated as the following linear expression (41):

∑
n,d,t

λn,d,trn,d,t

=∑
d,t
bn,d,t ∗ dn,d,t −∑

d,t
dn,d,tχ
+
n,d,t

− ∑
i∉IMR,d,t
((ai + 2bigi,t)gi,t + ζ

+
i,tgi) − ∑

i∈IMR,d,t
giλn,d,t

− ∑
n,(m∈Mn),t

(ε+n,m,t + ε
−
n,m,t)

xn,m
Pn,m −∑

n,t
(κ+n,t + κ

−
n,t)π

+ ∑
j∈Jn,n,t
(σ+j,d,tE− σ

−
j,d,tE) + ∑

j∈Jn,d
(βj,d − νj,d,1)E0. (41)
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The next kind includes the bi-linear terms in the KKT
complementary slackness conditions (27)–(40). One useful
method to copewith this kind of non-linearity terms is the Big-M
method using disjunctive constraints (Ye et al., 2016). However,
choosing a sufficiently large number for a given parameter, for
example, M, is extremely difficult. If M is too small, it may be
unable to discover an accurate solution for imposing additional
upper bounds on decision variables, while large M may result
in ill-conditioned matrices where branch-and-cut solvers may
fail to function (Ye et al., 2018). In addition, the disjunctive
constraint method exhibits limited computational capabilities
for large-scale problems. In this context, we use an alternative
effective method based on special ordered set type 1 variable
(SOS1) (Akbari-Dibavar et al., 2020) to perform the required
linearization on the complementarity conditions. The linearized
equations use SOS1 variables so+i,d,t, so

−
i,d,t for positive andnegative

parts, respectively, and a consistent variable Si,d,t. For example,
constraint 27) can be replaced by its mixed-integer equivalence
(42)–44) as follows. To be brief, the following description
of the linearized constraints omits not only non-negativity
limitations on primal and dual variables, but also the primal
limitations.

Si,d,t − (so
+
i,d,t + so

−
i,d,t) = 0 ∀i,∀d,∀t, (42)

Si,d,t =
ζ−i,d,t + gi,d,t

2
∀i,∀d,∀t, (43)

so+i,d,t − so
−
i,d,t =

ζ−i,d,t − gi,d,t
2

∀i,∀d,∀t. (44)

3 Case studies

3.1 Analysis on the value of network
capacity

3.1.1 Test system and implementation
In this section, a 6-node test system is used to confirm

significance of the devised model and quantitatively analyze
on the effects of RES integration with varying capacities of
connection line (2.4) and (3.5). The results of case studies
can answer a crucial question: will network reinforcement
enable larger renewable energy volumes to be integrated? In
addition, case studies will reveal the maximum capacity for
RES integration, and the optimal siting and sizing decisions for
the planning of RES capacity. The analyzed 6-node network is
shown in Figure 2, along with related parameters in Table 1.
The northern area is equipped with low electricity demand
and abundant solar resources on average, while electricity
demand is higher relatively in the southern area where solar

FIGURE 2
Examined 6-node system.

resources are scarce. It is also worth mentioning that nodes in
the north are characterized by lower variable cost of thermal
generation with respect to nodes in the south, indicating a
naturally occurring direction of power transfer from north
to south. The key lines connecting the north and south
regions are line (2,4) and line (3,5). The renewable generation
capacity at each node is no more than 1800 kW for technical
reasons.

The devised optimization model was implemented in Python
3.9, and the globally optimum solution to the aforementioned
MILP issuewas successfully obtained using theGurobi optimizer
on a desktop computer equipped with an Intel(R) Core(TM) i5-
10400@2.90 GHz processor and 24 GB of RAM. It takes nomore
than 1 s to solve this MILP on average.

3.1.2 Validation of the devised model
This section begins with a case where the objective function

of UL problem and non-negative profitability constraint are
removed, by solving the conventional centralizedmarket clearing
processwith different network capacities. Its aim lies in validating
significance of considering the profitability of investing RES. For
illustration, not only operating but also investment expenses are
estimated hourly and we investigate 50 cases for various values
of the total network capacity of line (2.4) and (3.5) ranging
from 0 to 3,000 kW with a step of 60 kW, in which we keep all
other lines uncongested and unchanged, as shown in Figure 3.
For each of the cases, we seek to calculate the total optimal
solar generation capacity and profit from day-ahead electricity
market. It is notable that in many cases the solar generation
profit illustrated in black point is negative in Figure 3.The reason
behind is that large integration of solar energy causes a decline in
the spot prices because of the merit order influence, so revenues
from electricity market decrease and are unable to recover the
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TABLE 1 Parameters of the 6-node system.

Parameter Value

Needed Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

dn (kW) 900 900 900 1,200 1,200 1,200
δn,d,t (CNY/kW) 0.5 0.45 0.35 0.3 0.25 0.2
gi(kW) 2,500 2000
ai (CNY/kW) 10 11
bi(CNY/kW2) 0.005 0.006 0.0065 0.009 0.01 0.02
P(CNY/kW/h) 9

FIGURE 3
Total capacity and profit of solar generation for different values of the total capacity of lines (2.4) and (3.5).

FIGURE 4
Total solar HC and its composition for different values of the total capacity of lines (2.4) and (3.5).

considerable solar investment costs. The negative profitability of
RES may be a disincentive to sustainable development of RES,
so it is significant to take it into consideration and identify the
HC of RES, which can be a reference for policymakers and RES
investors.

3.1.3 Dependence of solar generation HC and
network capacity

Furthermore, 50 unique examples are examined with the
capacity of lines (2.4) and (3.5) varying from 0 to 3,000 kW
with a 60 kW incremental step. Figure 4 shows the quantity
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FIGURE 5
Total dispatch of thermal and solar generators for different values of the total capacity of lines (2.4) and (3.5).

FIGURE 6
LMPs in the opposite area for different values of the total capacity of lines (2.4) and (3.5).

FIGURE 7
Impact of distributed photovoltaic subsidies on solar HC for different values of the total capacity of lines (2.4) and (3.5).
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FIGURE 8
Normalized wind output and demand in five representative days.

TABLE 2 Parameters of generation technology.

Technology Must-run Thermal plant A Thermal plant B Thermal plant C

gi (kW) 100 120 200 360
ai (CNY/kW) 0 23 25 27
bi (CNY/kW2) 0 0.15 0.18 0.22

TABLE 3 Parameters of ES.

Parameter E E0 s ηdis ηch

Value 0.2E 0.25E 0.5E 0.9 0.9

and composition of the whole solar generation HC of the given
network for different values of the total network capacity of line
(2.4) and (3.5), while Figure 5 demonstrates the thermal and
solar generation dispatch in two opposite areas, respectively, with
the increasing level of certain line capacity.

Stage 1: when the total capacity of lines (2.4) and (3.5) varies
from 0 to 600 kW.

The result that the total amount of HC presents a declining
trend is seemingly counter-intuitive, which is usually expected
to increase as the network expands in common sense. In fact,
transmission expansion obviously impedes solar investment
potential in the southern area, as the northern area is equipped
with lower-cost thermal generation and more plentiful solar
sources, making energy generation more advantageous than it is
in the southern area. Furthermore, it can be noticed that the low
levels of solar energy generation in the southern region are not
being replaced by further investments in solar energy generation

in the southern area totally, but rather by available low-cost
thermal generation in the northern area that can be exported as a
result of network expansions.This obviously decreases the overall
market-based HC of solar energy, as exploitation of existing
generation capacity is preferable to additional solar generation
investments when network capacity is limited relatively. Figure 6
illustrates the average LMPs in the southern and northern
areas, respectively, as the total capacity of line (2.4) and (3.5)
increases. The quite difference in marginal cost of thermal
plants between two areas and congestion in connecting line
which creates an obvious price difference between the north and
south.

Stage 2: when the total capacity of lines (2.4) and (3.5) varies
from 600 to 2040 kW.

However, at the next stage, both solar and thermal power
in the north becomes attractive than those in the south,
contributing to a considerable increase in total solar HC and
implying business opportunity in investment solar generation in
the northern area. The reason accounting for this phenomenon
is a combination of relatively more available solar resources
and cheaper thermal operational cost in the northern area,
while network capacity expansion enables more power to
be transferable from north to south. So the gap between
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average LMPs in the northern or southern area gradually
narrows as the congestion in two area relieves. Finally, not
only the solar power investment and its output but also the
production of the thermal generation in the southern area
keeps considerably falling (Figures 4, 5). It is proved that
expanding the network in this range releases substantial solar
generation potential in the northern region, particularly at
nodes 1 and 2, until they reach their maximum installed
capacity.

Stage 3: When total capacity of lines (2.4) and (3.5) varies from
2040 to 2,460 kW.

At this stage, there has been a significant increase and
decrease, respectively, in solar HC in northern and southern
area, owing to the increased requirement to use nearly free solar
output at node 1 and 2 to meet demand using the lowest cost.
At this context, the network does not impose limitation on the
solar generation export, so solar generation in the south loses
competitiveness completely. As shown in Figure 6, the pricing
gap between north and south are no longer existent as the
congestion disappears.

Stage 4: When total capacity of lines (2.4) and (3.5) varies from
2,460 to 3,000 kW.

Finally, once the network capacity exceeds 2460kW, the
aforementioned exploitation of solar power at node A reduces
the uniform LMP, impeding the business case for solar
generation investment at all nodes. As a result, investors
abandon solar generation investment totally in the southern
region, while their aggressive investment in the northern
region eventually reaches a saturation value, due to the
unappealing LMP caused by further penetration of solar
generation.

According to the analysis mentioned earlier, increased
network capacity does not always facilitate to invest larger
total volumes of renewables in power grids. Increased network
capacity, on the other hand, may impose limitations on the
commercial potential for new RES generating development,
particularly in locations near load centers and with higher power
rates.

3.1.4 Combined impacts of distributed
photovoltaic subsidies and network capacity
on solar HC

In this section, we take potential subsidies into consideration
and investigate that whether it can promote the level of RES
penetration. As shown in Figure 7, we change the level of
distributed photovoltaic subsidies γ upon the LMP for each
kWh of distributed solar energy produced. An index is defined
to quantitatively express the impact of subsidies on HC as Y-
axis, expressing the increased percentage of solar generation HC
resulting from various levels of subsidies.

FIGURE 9
Impact of ES energy capacities on wind HC.

As expected, a higher level of subsidies facilitates larger
amount of renewables integration in a profitable way. However,
the growth rate of the HC shows a different tendency with
increased network capacities. At the beginning, the growth rate
shows an upward trend for the reason that it can facilitate
investment of solar generation in both areas considerably instead
of using existing thermal generation capacity, and the increased
network capacity which makes this effect even greater. But at the
next stage, the potential of solar energy in certain nodes where
solar energy is relatively abundant has been realized generally
under subsidies, so the growth rate slows down even if the
network expands. Finally, economic favorability disappears and
the growth rate keeps stable. It also demonstrates that higher
level of subsidies sees an obvious increase in the solar HC
and it fluctuates more heavily under the influence of network
capacity when subsidies increase. This is critical information
for policymakers since subsidies may not always have same
beneficial influence on boosting renewables due to additional
inefficiencies in network layout.

3.2 Analysis on the impact of ES

3.2.1 Test system and implementation
The purpose of this section is to examine that how

the capacity of ES affects wind-generating HC in a day-
ahead market with hourly resolution. The wind output profile
after normalization and the temporal demand profile for
five typical days in Nanjing are shown in Figure 8. Four of
them represent the four seasons of a whole year, and the
other day represents extreme conditions in the event of high
temperature in certain summer days with statistics obtained
fromLi et al. (2021). In addition, thewind generation investment
cost P is assumed as 13.7 CNY/kW/h. The assumed thermal
generating units consist of four different technologies, each
with its own installed capacity and marginal operating costs,
as shown in Table 2. The assumed values of ES operational
parameters except energy capacity are stated in Table 3. The
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FIGURE 10
Impact of different ES energy capacity scenarios on hourly market clearing prices.

FIGURE 11
Impact of different ES energy capacity scenarios on hourly wind generation dispatch.

devised optimization model was performed in the same
environment as before. Solving this MILP needs about 2 s on
average.

3.2.2 Value of ES
We consider several scenarios about various energy

capacities of ES and keep other parameters as their original
value in Table 3. As a result, Figure 9 presents the impacts of
several ES energy capacities on the wind HC and demonstrates
that an increased capacity of ES can expand the wind HC
consistently. To investigate the explanation for this positive effect

of ES on the integration of renewable generation, Figure 10
presents the hourly market clearing prices in five considered
representative days, it also can demonstrate net demand of
the system including the charging and discharging power of
ES for the different energy capacities of ES. Providing that the
marginal cost of wind generation is inappreciable, ES reduces the
demand peak by discharging in time period when wind sources
is scarce (e.g., hours 8–11 and 18–20 in representative day 1) to
minimize the negative social welfare. By contrast, ES increases
the electricity prices hourly by the way of charging in periods
with abundant wind sources and lower electrical load (e.g., hours
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1–6 in representative day 1). With the increase of ES capacity, the
effect of smoothing electricity prices becomes more and more
obvious. Furthermore, Figure 11 presents impact of different ES
energy capacities scenarios on hourly wind generation dispatch
in five considered representative days. It should be noted that ES
can force up wind production in valley time period with plentiful
wind sources correspondingly (e.g., hours 1–6 in representative
day 1), and the effect of which weakens when the corresponding
demand is lower.

As a result, a combination of increased market prices
and corresponding wind generation dispatch during
periods of abundant wind resources consequently enhance
revenues of wind generation, so the wind generation
penetration can increase in a profitable way, hence enlarging
wind HC.

4 Conclusion

In this article, we investigate the HC of renewable
energy generation from a market perspective innovatively by
formulating an innovative multi-period bi-level optimization
problem. The main purpose of the upper-level problem is to
maximize the HC and keep the profit non-negative, while
the lower-level problem depicts the market clearing process
including charging and discharging cycles of ES. The optimal
result of this bi-level problem can be found by using appropriate
techniques to convert it to aMILP problem. Case studies not only
demonstrate the validity and significance of the devised model
but also quantitatively analyze the impact of different network
capacities, subsidies, and ES on the market-based HC without
violating its profitability constrain.

Three key implications drawn from case studies are valuable
and may be guidance for policy and regulation makers. 1)
Enlarged network capacity does not always facilitate higher
HC of RES. Increased network capacity may even impose
limitations on the commercial potential for further RES
generating investment, particularly in locations near load
centers. 2) Subsidies for RES on top of electricity prices are
conducive to higher HC of RES, but the rate of growth
depends on network capacity. It is meaningful to identify up
to which point subsidies can increase HC most effectively.
3) ES is able to facilitate RES integration and enlarge HC
of RES for its ability to increase energy price and wind
generation dispatch at times characterized by low electricity
demand and abundant RES feed-in, consequently increasing
income from investing RES. When the ES capacity is larger, the
more obvious this effect is. Future work aims at considering

the detailed representation of distribution network constraints
including nonlinear AC power flow equations capturing losses,
voltage limits, and current thermal limits. Furthermore, another
meaningful work lies in considering a joint electricity and
carbonmarketmodel and investigating the relationships between
renewable generation capacity, electricity price, and carbon
price.
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