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Accurate state estimation is essential for the safe and reliable operation of lithium-ion
batteries. However, the accuracy of the battery state estimation depends on the accuracy
of the battery parameters. Because the state of charge (SOC) cannot be directly
measured, estimation methods based on the Kalman filter are widely used. However, it
is difficult to estimate SOC online and get high accuracy results. This article proposes a
method for parameter identification and SOC estimation for lithium-ion batteries. Because
the lithium-ion battery has slow-varying parameters (such as internal resistance, and
polarization resistance), and the SOC has fast-varying characteristics, so a multi-scale
multi-innovation unscented Kalman filter and extended Kalman filter (MIUKF-EKF) are used
to perform online measurement of battery parameters and SOC estimation in this method.
The battery parameters are estimated with a macro-scale, and the SOC is estimated with a
micro-scale. This method can improve the estimation accuracy of the SOC in real-time.
Results of experiments indicate that the algorithm has higher accuracy in online parameter
identification and SOC estimation than in the dual extended Kalman filter (DEKF) algorithm.
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1 INTRODUCTION

With the increasing demand for energy in the human society, the increasing environmental problem
was introduced by the large consumption of fossil energy. New energy power generation sources such
as wind power and photoelectricity attract more and more attention (Xu et al., 2021). However, due
to the randomness and intermittence of new energy, it is difficult to be absorbed by the grid and
results in huge waste. Energy storage power stations can solve the grid absorbance problem of wind
power and photoelectricity. Energy storage using batteries is the most mature and reliable energy
storage technology at this stage. However, the biggest obstacle of the battery application in grid
energy storage is the safety of the battery. When the battery or battery pack is used under overcharge,
short circuit, and other insecure conditions, the life of the battery will be reduced, and even unsafe
behaviors such as combustion and explosion will occur (Binelo et al., 2019). Accurate SOC
estimation can increase the battery’s cruising range and prolong its service life. Therefore, the
SOC estimation technique plays an important role in the battery performance and prolongs the
service life.

Scholars have conducted a lot of research on SOC estimation algorithms. There are mainly three
kinds of SOC estimation algorithms:
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1) Direct estimation methods, including the conventional
ampere hour method (APM) (Leng et al., 2014) and open
circuit voltage (OCV) method (Xing et al., 2014). The direct
estimation methods are simple in theory and easy to
implement, but the APM relies heavily on accurate initial
SOC values. If the current measure has an error, the error of
the APM method will gradually increase over time, and this
method does not have the ability to correct it. The OCV
methods require a long rest time to obtain an accurate OCV.
An OCV-SOC curve to online estimate the SOC of a battery in
real-time was established by a look-up table (Xiong et al.,
2018).

2) Data-driven estimation methods, including the neural
network method (He et al., 2014; Hannan et al., 2018),
fuzzy logic method (Singh et al., 2006; Zheng et al., 2019),
and support vector machine (SVM) (Patil et al., 2015; Sheng
and Xiao, 2015). A deep feedforward neural network (DNN)
for SOC estimation was proposed (Chemali et al., 2018). A
novel joint support vector machine known as the cubature
Kalman filter (SVM-CKF) method is proposed (Song et al.,
2021). The SVM is used to train the output data of the CKF
algorithm to obtain the model. At the same time, the output
data of the model are used to compensate the original SOC for
accurate SOC estimation. These methods utilize a large
amount of experimental data to find the hidden nonlinear
relationship between external characteristic parameters and
SOC changes.

3) Model-based estimation methods. This kind of estimation
methods are based on battery characteristic models and
equivalent circuit models. After the battery model is
established, model-based SOC estimation methods can be
divided into the adaptive filter-based method and observer
method. The adaptive filter-based methods include the
extended Kalman filter (EKF) method (Yan et al., 2017;
Guo et al., 2018) and the unscented Kalman filter (UKF)
method (Qin et al., 2019; Yu et al., 2019). Observer methods
have the sliding mode observer method (Sandoval-Chileno
et al., 2020; Sakile and Sinha, 2022) and the Luenberger
observer method (Ceraolo et al., 2020). An enhanced
closed loop estimator is proposed based on EKF,
considering the complete model of OCV with hysteresis
(Perez et al., 2015). Xu et al. (2014) described the influence
of different frequencies on electrochemical impedance
spectroscopy (EIS) and estimated the SOC using the
fractional Kalman filter (FKF) based on the electrochemical
model. Combining the UKF algorithm with the particle filter
(PF) algorithm, a comprehensive estimation method of UKF-
PF was proposed to estimate the SOC of the battery (Nguyen
et al., 2020). Compared with the single UKF algorithm, the
experiment showed that the estimation accuracy and
reliability were all improved.

In the model-based estimation methods, the accuracy of
battery model parameters determines the estimation
performance, so the parameter identification of batteries has
been paid more and more attention. There are two kinds of
methods for battery model parameter identification: offline

identification (Lin et al., 2020) and online identification (Xu
et al., 2014; Wei et al., 2017). A common feature of the
aforementioned SOC estimation methods is that the model
parameters are identified with offline data. In practical
applications, the battery model parameters will change, which
means that these parameters need to be updated in real-time to
ensure the accuracy of the battery model. Therefore, online
identification methods are proposed based on the collection of
battery working real-time data. To capture real-time parameter
changes, a recursive least square (RLS) method was proposed
with multiple adaptive forgetting factors (Duong et al., 2015). The
study improved the accuracy of estimation of SOC through the
online update of parameters. A forgetting factor recursive least
square (FFRLS) algorithm is used to identify and update the
battery model parameters online to address the parameter
mismatch issue caused by battery ageing and temperature
fluctuation (Xin et al., 2021). An online parameter
identification method using DEKF to estimate the battery SOC
and capacity concurrently was proposed with a one-time scale
(Plett, 2004a; Plett, 2004b; Plett, 2004c; Plett, 2006). However, the
battery model parameters change slowly while the SOC changes
quickly. Due to data saturation and computational complexity,
using a uniform time scale is easy to cause large errors. Therefore,
a one-time scale is not the best option to identify the parameters
and estimate SOC. To address these issues, an online co-
estimation method of battery model parameters and SOC is
proposed based on the dual Kalman filter algorithm with a
multi-time scale (Rui et al., 2014). This EKF algorithm only
uses the error data at the current time in each SOC estimation
process. If the process has an error, it is easy to cause poor
estimation accuracy.

This article proposed a multi-scale multi-innovation
unscented Kalman filter and an extended Kalman filter
(MIUKF-EKF) to perform online measurement of battery
parameters and SOC estimation. The EKF is used to
identify battery parameters with a macro time scale, and
then, the MIUKF is used to estimate the SOC with a micro
time scale. Afterward, the SOC and the identified parameters
are used to update the system state. The effectiveness of the
proposed algorithm has been verified through experiments
under the dynamic test. The results showed that the proposed
MIUKF-EKF algorithm has higher accuracy than the DEKF
algorithm in SOC estimation.

FIGURE 1 | Second-order RC battery model.
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2 BATTERY SYSTEM DESCRIPTION

2.1 Battery Model
The type of battery model and the accuracy of parameter
identification of the battery model can affect the performance
of battery SOC estimation. There are various battery equivalent
circuit models (ECMs). The widely employed ECMs include the
Rint model, the Thevenin model, the partnership for a new
generation of vehicle (PNGV) model, and the general
nonlinear (GNL) model. In this study, we used the second-
order Thevenin model to describe the battery dynamics
relationships, as shown in Figure 1.

Themodel parameters in Figure 1 are described as follows. In the
circuit, UOC represents the OCV, and there is a nonlinear
relationship with SOC. Ut represents the terminal voltage. I
represents the load current, and positive current means discharge
state. R0 is the ohmic internal resistance. R1 and C1 are the
electrochemical polarization resistance and capacitance. R2 and
C2 are the concentration differences of polarization resistance
and capacitance. U1 and U2 are the electrochemical polarization
voltage and the concentration difference polarization voltage. The
RC network is used to simulate the dynamic characteristics of the
generation and elimination in the polarization phenomenon. This
study replaces the battery OCV with f(SOC). The mathematical
expression of the established model is as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

_U1 � I

C1
− U1

R1C1
,

_U2 � I

C2
− U2

R2C2
,

Ut � Uoc − U1 − U2 − IR0 � f(SOC) − U1 − U2 − IR0.

(1)

SOC is defined as the ratio of the remaining capacity to the
rated capacity, which can be expressed as follows:

SOC � SOC0 − 1
QN

∫ ηIdt, (2)

where SOC0 indicates the initial SOC value, QN is the rated
capacity, and η represents the Coulombic efficiency, which is
equal to 1 in this article.

According to the second-order Thevenin model, the state
space equation of the system can be obtained by taking the
SOC and the two capacitor voltages as the state variables. The
state equation is obtained as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

_U1 � I

C1
− U1

R1C1
,

_U2 � I

C2
− U2

R2C2
,

SOC � SOC0 − 1
QN

∫ ηItdt.

(3)

Taking load current as the input and terminal voltage as
observation variable, the observation equation is as follows:

Ut � f(SOC) − U1 − U2 − IR0. (4)

2.2 Multi-Time Scale Discretizing Model
To facilitate the algorithm design based on the battery model, it is
necessary to discrete the battery model for establishing the transfer
relationship between each state at this time and the next time. Since the
battery model parameters change slowly while SOC changes rapidly,
we adopt the multi-time scale method to describe SOC changes with
themicro-time scale and parameter changes with themacro time scale.
The discrete nonlinear system can be expressed as follows:

Xk,l+1 � F(Xk,l, θk, uk,l) + wk,l, θk+1 � θk + bk,
Yk,l � G(Xk,l, θk, uk,l) + vk,l (5)

where Xk,l+1 represents the system state vector at the time tk,l, and
tk,l � tk,0 + l × T, tk,0 � tk−1,L(l � 1, 2, 3, 4, ..., L); k and l represent
the time index for the micro time scale and macro time scale; T is
the sampling time between the two adjacent measurement points;
L is the time scale separation level. k and l represent the time
index for the micro-time scale and macro-time scale; uk,l is the
system input vector at time tk,l; Yk,l represents the system
measurement vector at time tk,l; wk,l and vk,l represent the
process noise vector for state and the measurement noise
vector, and their covariance vectors are Qk,l and Rk,l; θk is the
parameter vector; bk is the process noise vector for the model
parameter, and the covariance vector is Qθ

k.
The model parameters are slowly time-varying. We assume that

the battery is a time-invariant system, and the load current is constant
at each sampling interval. Then, we get the analytic solution:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1((k + 1)T) � exp( − T

R1C1
)U1(kT) + ∫T

0

exp( − t

R1C1
)dt · I(kT)

C1
,

U2((k + 1)T) � exp( − T

R2C2
)U2(kT) + ∫T

0

exp( − t

R2C2
)dt · I(kT)

C2
.

(6)
Eq. 2 can be discretized as follows:

SOCk,l � SOCk,l−1 − ηT

QN
Ik,l−1. (7)

We can get the electrochemical polarization voltage U1, the
concentration difference polarization voltage U2 and SOC with
the system in Eq. 8 with the multi-time scale.

⎡⎢⎢⎢⎢⎢⎣ U1
k,l

U2
k,l

SOCk,l

⎤⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

exp( − T

C1R1
) 0 0

0 exp( − T

C2R2
) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣ U1

k,l−1
U2

k,l−1
SOCk,l−1

⎤⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 − exp( − T

C1R1
))R1

(1 − exp( − T

C2R2
))R2

−ηT
QN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ik,l−1.

(8)

Frontiers in Energy Research | www.frontiersin.org August 2022 | Volume 10 | Article 9332403

Ji et al. MIUKF-EKF

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


The discretization state transition and measurement with the
multi-time scale can be obtained.

Xk,l+1 � F(Xk,l, θ, uk,lk)

�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

exp( − T

C1R1
) 0 0

0 exp( − T

C2R2
) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Xk,l

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 − exp( − T

C1R1
))R1

(1 − exp( − T

C2R2
))R2

−ηT
QN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
uk,l, (9)

Yk,l � G(Xk,l, θk, uk,l) � f(SOCk,l) − U1
k,l − U2

k,l − R0uk,l, (10)
where Xk,l � [U1

k,l U2
k,l SOCk,l ]T, uk,l � Ik,l, and Yk,l � Ut

k,l,
Ut

k,l represent the system state vector at the time tk,l.

3 BATTERY MODEL PARAMETERS AND
SOC ESTIMATION ALGORITHM

In practical applications, battery model parameters are not
constant values. If SOC is estimated by constant battery
parameters, the accuracy of SOC will be affected. The joint
estimation of battery state and parameters can effectively solve
the problem of time-varying battery model parameters.
Considering that the battery parameters changes are slower
than the system state, it is not an optimal method to use the
same calculated time scale for battery parameter and state
estimation. Therefore, the multi-time scale method, which uses
the macro-scale to calculate the battery parameters and micro-
scale to calculate the battery state, will lower the computation
time. The multi-time scale SOC estimation method adopts the
multi-innovation unscented Kalman filter (MIUKF)–extended
Kalman filter (EKF) structure, and the battery state estimator
and parameter estimator are designed, respectively. The flowchart
of the MIUKF-EKF algorithm is shown in Figure 2.

The MIUKF-EKF algorithm uses two filters that run
simultaneously. The MIUKF estimates battery SOC with a
micro-time scale, and the EKF estimates battery parameters
with a macro-time scale. At each macro calculation time step
k, the EKF executes a time update step, a state prediction step, and
ameasurement upstate step. At eachmicro calculation time step l,
the MIUKF executes the time update state step and the
measurement update step. Comparing the micro time scale l
with the time scale separation level L, when l � L, the EKF enters
the next cycle in the time step k + 1. j is the length of the multi-
innovation. The equations for the state and parameter estimation
are shown in Table 1.Here, θ̂0, Pθ0, x0,0, and Px0,0 are the
initialization values of the algorithm. x̂0,0, θ̂0 are the initial
values of the battery state and parameters. Px0,0and Pθ0

represent the initial system state and parameter covariance
vectors for the state filter and the parameter filter, respectively.
After the aforementioned five steps, the estimations of the battery
parameter and SOC are completed. The estimations will then be
the initial estimator state of the proposed algorithm for the next
estimation.

In the time update equations for the MIUKF, X̂
i
k−1,l,Y

i
k−1,l are

the sigma point set constructed by the unscented transformation
(UT) method. A finite number of Sigma points is obtained by the
method of the symmetric sampling strategy so that the
probability distribution characteristics of these sampling points
are approximate to the probability density distribution of known
variables. When the state variables are three-dimensional
columns, they can construct seven Sigma points totally. Wi is
the weighting coefficient of the sigma point set. Sigma points and
weighting coefficients can be obtained from the following
equations:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X̂

0

k−1,l � X̂k−1,l,

X̂
i

k−1,l � X̂k−1,l + ( �����������(n + κ)P−
x,k−1,l

√ )
i
, i � 1, ..., n,

X̂
i

k−1,l � X̂k−1,l − ( �����������(n + κ)P−
x,k−1,l

√ )
i−n
, i � n + 1, ..., 2n,

(11)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

W(m)
0 � κ

n + κ
,

W(c)
0 � κ

n + κ
+ (1 − α2 + β),

W(m)
i � W(c)

i � κ

2(n + κ), i � 1, 2, ..., 2n,

(12)

where n is the dimension of the state variable, κ is the scale
parameter, which can adjust the distance between Sigma point
and the mean value, α is the state control of sampling point
distribution and usually set to 1e−4 ≤ α≤ 1 , and β is the state
distributed parameter. β � 2 is the optimal value in Gaussian
distribution.

MIUKF uses multi-innovation to modify the state
variables and improves the estimation accuracy of UKF by
reusing the old information. In the measurement update
equations for the MIUKF, ek is the error innovation at
time k, where ek � Yk − G(Xk, θk, uk) . The UKF algorithm
only uses the error data at the current time in each SOC
estimation process. If the error of the observation value is
large or the values of the process covariance and the
observation covariance are inconsistent with the noise

FIGURE 2 | Flowchart of the MIUKF-EKF algorithm.
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model of the system, it is easy to cause the slow convergence
speed of the algorithm and poor estimation accuracy. In order
to make full use of the information of historical data, the
single innovation in the current moment is expanded to a
multi-innovation vector containing the current and previous
instantaneous innovations.

In the measurement update equations for the EKF, Cθ
k is not

only the function of the system state X but also the function of
the system parameter θ. So it needs to use the total derivative
for calculation. The following equation can be obtained as
follows:

Cθ
k �

dG(X̂k,0, θ, uk)
dθ

∣∣∣∣∣∣∣∣∣∣θ�θ̂−k
� zG(X̂k,0, θ̂

−
k , uk)

zθ̂
−
k

+ zG(X̂k,0, θ̂
−
k , uk)

zX̂k,0

×
dX̂k,0

dθ̂
−
k

, (13)

dX̂k,0

dθ̂
−
k

� dF(X̂k−1,L−1, θ̂
−
k , uk−1,L−1)

dθ̂
−
k

� ⎛⎝zF(X̂k−1,L−1, θ̂
−
k , uk−1,L−1)

zθ̂
−
k

+ zF(X̂k−1,L−1, θ̂
−
k , uk−1,L−1)

zX̂k−1,L−1

dX̂k−1,L−1
dθ̂

−
k

⎞⎠, (14)

dX̂k−1,L−1
dθ̂

−
k

� d

dθ̂
−
k

(X̂−
k−1,L−1 + Kk−1,L−1(Yk−1,L−1)

− G(X̂−
k−1,L−1, θ̂

−
k ,uk−1,L−1)). (15)

The implementation structure of the multi-scale MIUKF-EKF
algorithm is shown in Figure 3.

4 SIMULATION AND EXPERIMENTAL
RESULTS

The battery test platform uses a testing system (NEWARE CT-
4008T) to charge and discharge the battery. The testing system
can support eight channels for experiment at the same time, and
the measurement accuracy of the current and voltage can be up
to ±0.05% of full scale. In the experiment, the battery used for this
test is a lithium battery with the specifications listed in Table 2. In
this article, all the experiments are conducted at an ambient
temperature of 25°C, and the date is recorded at an interval of 1 s.

4.1 OCV-SOC Relationship
The OCV of the lithium battery indicates the electrochemical
reaction inside the battery without load, and the voltage of the
battery should reach an equilibrium state. It is assumed that the
open circuit voltage is numerically equal to the terminal voltage of
the battery after the battery to be open circuit for a long time.
Because the OCV of the battery cannot be measured directly, it is
necessary to determine the terminal voltage of the battery under a
specific SOC by the open circuit voltage of the battery. The
functional relationship between OCV and SOC is nonlinear. The
battery is fully charged under nominal conditions to preset the
SOC to 100%. After 4 h depolarization, the OCV corresponding
to 100% SOC is measured. Then, the cell is discharged for an SOC
decrement of 10% with 1.5 A current. After 4 h, the OCV is

TABLE 1 | Algorithm of the multi scale MIUKF-EKF.

Step 1: initialization

θ̂0 � E[θ];Pθ0 � E[(θ − θ̂0)(θ − θ̂0)T ]
x̂0,0 � E[x0,0];Px0,0 � E[(x0,0 − x̂0,0)(x0,0 − x0,0)T ]

Step 2: the EKF macro time step k ∈ {1, 2, ...,∞} , and the time update equations for the EKF are

θ̂
−
k � θ̂k−1 ,P−

θk
� Pθk−1 + Qθ

k−1

Step 3: the MIUKF micro time step l ∈ {1, 2, ..., L}, and the time update equations for the MIUKF are

X̂
i
k−1,l � F(X i

k−1,l−1 , θ
−
k ,uk−1,l−1); X̂−

k−1,l � ∑2n
i�0 W

(m)
i X̂

i
k−1,l−1

Y i
k−1,l � G(X i

k−1,l−1 , θ
−
k ,uk−1,l−1); Y−

k−1,l � ∑2n
i�0 W

(m)
i Y i

k−1,l−1

P−
x,k−1,l � ∑2n

i�0 W
(c)
i (X̂ i

k−1,l−1 − X̂
−
k,l−1)(X̂

i
k−1,l−1 − X̂

−
k,l−1)T + Qk−1,l−1

Step 4: the measurement update equations for the MIUKF are

P−
y,k−1,l � ∑2n

i�0 W
(c)
i (Y i

k−1,l − Y−
k−1,l)(Y i

k−1,l − Y−
k−1,l)T + Rk−1,l

P−
xy,k−1,l � ∑2n

i�0 W
(c)
i (Y i

k−1,l − Y−
k−1,l)(X̂

i
k−1,l − X̂

−
k−1,l); Kk−1,l � P−

xy,k−1,l
P−
y,k−1,l

X̂k−1,l � X̂
−
k−1,l + ∑p

j�1Kk−1,jek−j+1
Pxk−1,l � P−

x,k−1,l − Kk−1,lP−
y,k−1,lK

T
k−1,l

Time scale transform

X̂k,0 � X̂k−1,L ,Pxk,0 � Pxk−1,L ,Yk,0 � Yk−1,L ,uk,0 � uk−1,L

Step 5: the measurement update equations for the EKF are

Kθ
k � P−

θk
(Cθ

k)T [Cθ
kP

−
θk
(Cθ

k)T + Qθ
k]−1

θ̂k � θ̂
−
k + Kθ

k[Yk,0 − G(X̂k,0 , θ̂
−
k ,uk,0)]; Pθk � (I − Kθ

kC
θ
k)P−

θk

where

Cθ
k � dG(X̂k,0 ,θ,uk,0 )

dθ |θ�θ̂−k
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measured. This discharge cycle is repeated 11 times, and the
terminal voltage at the end of each discharge cycle is recorded.
The relationship between OCV and SOC can be obtained, and the
identified results are shown in Figure 4.

MATLAB tool is used for 8-order fitting of measurement data.
The expression of the OCV-SOC relationship curve can be
obtained by polynomial fitting:

f(SOC) � aSOC8 + bSOC7 + cSOC6 + dSOC5 + eSOC4

+fSOC3 + gSOC2 + hSOC + i.

The polynomial coefficient results for a–i are shown in
Table 3.

4.2 Battery Test
The battery test can charge or discharge the battery according
to the set working conditions. In order to verify the
effectiveness of the proposed algorithm in a complex
dynamic situation, the dynamic operating condition test is
used. For the dynamic operating condition test, the total time
is 20,000 s. The load current and measurement terminal
voltage are shown in Figure 5.

4.3 Battery Model Parameter Identification
The parameters of the second-order Thevenin model need to
be identified. The estimated values of the battery model
parameters by the MIUKF-EKF algorithm are presented in
Figure 6.

Furthermore, the accuracy of MIUKF-EKF for online
identification of battery parameters is verified by comparing
the measurement terminal voltage with estimated terminal
voltage. The results are shown in Figure 7. It can be obtained
that the maximum absolute error is 0.02 V after removing the
first large error caused by the incorrect initial SOC value. The
mean absolute error was 0.0050 V, and the relative mean
absolute error was 0.05%. It is clearly seen that the
estimated terminal voltage agrees well with the measured
voltage. This illustrates the effectiveness of the battery
parameter identification method by the proposed
MIUKF-EKF.

FIGURE 3 | Implementation structure of the multi-time scale MIUKF-EKF algorithm.

TABLE 2 | Specification of the tested lithium battery.

Parameter Value

Nominal capacity 3 Ah
Nominal voltage 3.7 V
Upper cut-off voltage 4.2 V
Lower cut-off voltage 2.5 V
Maximum discharge current 10 A

FIGURE 4 | Relationship curve of OCV versus SOC.
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4.4 SOC Estimation Results and Analysis
With the accurate model parameters, the SOC estimation results
based on the MIUKF-EKF algorithm are compared with the

DEKF algorithm and UKF-EKF algorithm under the dynamic
operating condition test. In this article, the true SOC is obtained
by the APM method for comparison purposes. The SOC
estimation results using the MIUKF-EKF, UKF-EKF, and
DEKF algorithms are shown in Figure 8.

TABLE 3 | Polynomial coefficient results.

a b c d e f g h i

139.9 −601.7 1071.1 −1007.8 528.1 −147.4 18.46 0.1626 3.423

FIGURE 5 | Current and measurement terminal voltage.

FIGURE 6 | Results of parameter identification using MIUKF-EKF.

FIGURE 7 | Experimental terminal voltage results.

FIGURE 8 | SOC estimates and corresponding errors.
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It can be seen that MIUKF-EKF has a more accurate SOC
estimation than UKF-EKF and DEKF. The SOC estimation error
of MIUKF-EKF is bounded within -0.8% for most of the time, but
DEKF goes outside of this interval. In addition, the three algorithms
are also compared in computational efficiency. To minimize the
influence of randomness, the three methods are carried out five
times, and then, an average is taken for comparison. The simulations
were run in MATLAB R2020b on a PC with an Intel(R) Core(TM)
i5-8250U CPU @ 1.60 GHz processor and 12.0-GB RAM. The
average calculation time of MIUKF-EKF, UKF-EKF, and DEKF
algorithms are 0.472, 0.522, and 0.552 s. It can be observed that the
multi-time scaleMIUKF-EKF algorithm consumes less computation
time. Therefore, we can conclude that the proposed multi-time scale
MIUKF-EKF not only improves the accuracy and performance of
SOC estimation but also alleviates the computing time.

5 CONCLUSION

As the lithium-ion battery has slow-varying parameters and
the SOC is varying fast, a multi-time scale MIUKF-EKF
algorithm to estimate the SOC of the lithium battery is
proposed. The multi-time scale MIUKF-EKF algorithm

estimates the SOC of the lithium battery on the micro-scale
and estimates battery parameters on the macro-scale. The
effectiveness and superiority of the proposed algorithm have
been verified by comparing with the UKF-EKF and DEKF
algorithms through experiments under the dynamic operating
condition test. The results showed that the proposed MIUKF-
EKF algorithm outperforms other methods in terms of SOC
estimation accuracy and improves the computational
efficiency.
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