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As the terminal of electricity consumption, the distribution network is a vital field to lower the
carbon emission of the power system.With the integration of distributed energy resources,
the flexibility of the distribution network has been promoted significantly where dispatch
actions can be employed to lower carbon emissions without compromising the
accessibility of reliable electricity. This study proposes a security constrained dispatch
policy based on safe reinforcement learning for the distribution network. The researched
problem is set up as a constrained Markov decision process, where continuous-discrete
mixed action space and high-dimensional state space are in place. In addition, security-
related rules are embedded into the problem formulation. To guarantee the generalization
of the reinforcement learning agent, various scenarios are generated in the offline training
stage, including randomness of renewables, scheduled maintenance, and different load
profiles. A case study is performed on a modified version of the IEEE 33-bus system, and
the numerical results verify the effectiveness of the proposed method in decarbonization.

Keywords: decarbonization dispatch, active distribution networks, safe reinforcement learning, renewable
generation, electricity storage

INTRODUCTION

Decarbonization has been a global consensus to tackle climate change (Ou et al., 2021), which has
promoted the prosperity of renewable energy sources (RES) in the past years. Moreover, RES will take
the dominant share in global electricity generation, increasing from 29% in 2020 to over 60% in 2030
and to nearly 90% in 2050 (IEA, 2021). As in a distribution network, a massive influx of distributed
RES would help approachNET ZERO (Ahmed et al., 2022). However, the output of renewable energy
has the inherent characteristics of uncertainty and variability, introducing lots of difficulties to
distribution network dispatches, such as real-time power generation and consumption imbalance,
voltage fluctuation, frequency oscillation, and transmission congestion (Bistline, 2021; Abd El-
Kareem et al., 2021; Husin and Zaki, 2021). Therefore, a dispatch strategy for a distribution network
with a high percentage of RES is required to handle uncertainty and variability caused by RES.

To address this issue, various methods have been proposed from two aspects: model-based
optimization and data-driven method, e.g., reinforcement learning and deep learning. For the former
category, the optimization problem can be formulated from the aspect of either electricity market,
where price signals would affect the decision-making process of participants (Allan et al., 2015; Lin
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et al., 2017; Ye et al., 2019), or centralized operation, where
dispatch center would make all dispatch actions according to its
objectives and real-time observations (Wang et al., 2018). In
Caramanis et al. (2016), a centralized optimization problem is
formulated to discover the electricity pricing strategy so that
dispatchable resources can be scheduled efficiently. Peer-to-peer
is another form of market that governs the distributed network,
and the alternating direction method of multipliers (ADMM) is
applied Nguyen (2020) to find the optimal energy management
strategy by peer trading. To further promote the scale of the
researched problem, distributed ADMM is applied to handle the
multiple microgrids situation where DERs. A bi-level trading
strategy is developed to coordinate the microgrids and
distribution network so that power supply and consumption
can be balanced economically (Wang et al., 2019). A study
conducted by Hu et al. (2018) have the similar carbon
emission reduction target to our research; however, the
dispatch is focused on the interaction between the
transmission network and distribution network, where
transmission power, locational marginal emission (LME), and
locational marginal price (LMP) are iterated to decrease the
emission and transmission cost.

However, this type of approach exhibits a significant
drawback: frequent changes in the distribution network cause
the employed system model for optimization become inaccurate,
which deteriorates the effectiveness of the dispatch decisions.
Furthermore, methods belonging to stochastic programming (SP)
would lead to a significant computational burden due to the
increasing scale of the power grid. Alternatively, robust
optimization (RO) approaches may be over-conservative
driven by their nature in hedging against the worst-case
realization of the uncertainties. In Zhou et al. (2019), a
decentralized dispatch framework is proposed to handle the
power fluctuation caused by renewables, where robustness is
realized by a column-and-constraint generation algorithm. In
a study conducted by Zhang et al. (2018), to overcome the
conservativeness of robust optimization, extreme cases are
fetched from historical data instead of generating a large
simulated dataset. The selection method of extreme cases is
theoretically proven to be robust under all potential situations.

Finally, large-scale model-based optimization is characterized
by significant non-linearity which leads to solution inaccuracy,
and the long period of calculation leaves the time window to
execute the control action too short to catch up with real-time
situations.

With the development of artificial intelligence, reinforcement
learning (RL) algorithms have shown great advantages in real-
time policy. RL agent optimizes its policy in the extensive
interaction between environments, where policy is updated to
maximize the reward. By setting up a comprehensive dataset in
the environment, the RL agent would learn to handle all possible
scenarios, which ensures policy adjusts to the uncertainties of RES
and the real-time status of the distribution network (Al-Saffar and
Musilek, 2021; Cao et al., 2021; Li et al., 2021; Zhang et al., 2021).
In Cao et al. (2021), proximal policy optimization (PPO) is
applied to a distribution network to absorb the power flow
fluctuation caused by renewables, where storage devices can be

controlled discretely. Alternatively, a deep deterministic policy
gradient (DDPG) deals with continuous action space. In the work
of Zhang et al. (2021), voltage drift problems caused by the
randomness of renewable are solved by DDPG, where static var
compensators are controlled continuously to keep the voltage at
each bus within the permitted range.

Despite the significant application potential, the examined
problem features a mixed discrete (e.g., topology switching) and
continuous (e.g., electricity storage) action space, whereas
previous RL methods can only handle either discrete or
continuous action spaces. Furthermore, the examined problem
dictates that the dispatch actions need to respect the distribution
network constraints, e.g., actions on the EV charging could lead to
low voltage at the access point. Thus, constraint satisfaction must
be accounted for during policy learning. Based on these
considerations, interior-point policy optimization (IPO) (Liu
et al., 2020), a safe RL algorithm, is applied to the distribution
network.

To absorb the uncertainty and variability, various types of
dispatchable resources are utilized to optimize the operation
status of the distribution network, including distributed
generator, grid topology, responsive load, and electricity
storage (Bizuayehu et al., 2016; Ju et al., 2016; Ghasemi and
Enayatzare, 2018; Arfeen et al., 2019; Mohammadjafari et al.,
2020). With an appropriate control strategy, local residual
power can be consumed, stored, or transmitted, while power
shortage can be compensated by electricity storage, distributed
generator, flexible load, or transmission network. To achieve the
long-term target of NET ZERO, a study conducted by Pehl et al.
(2017) has analyzed the life-cycle carbon emission of power
system components. From the economic cost perspective, a
study conducted by Brouwer et al. (2016) proposed several
scenarios for reducing carbon emissions by up to 96% with
the integration of intermittent renewables. Consequently, a
combination of various dispatchable resources enables the
distribution network to operate in more reliable and
environmental-friendly manner.

The contribution of this study is listed as follows:

1) The decarbonization dispatch problem is formulated as a
Constrained Markov Decision Process (CMDP), which
provides the foundation for the RL method

2) Minimize the carbon emission in a distribution network
without violating power system security rules, providing
guidance for future power system operation

3) The proposed algorithm dispatches different types of
resources and the continuous-discrete mixed actions can
handle different scenarios smoothly

The rest of the study is organized as follows. Introduction
formulates the distribution network dispatch problem in detail
and introduces related features of various dispatchable
resources. It presents the dispatch method based on safe RL
and clarifies the mechanism of related algorithms. It
demonstrates the numerical test results of the proposed
method on the IEEE 33-bus system. Eventually, the presented
work is summarized in Introduction.
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PROBLEM FORMULATION

With the proliferated renewables becoming important power
sources in the distribution network, it would be necessary to
perform dispatch actions on DERs to overcome the variable
power supply from renewables (Huang et al., 2019). Different
from existing research that quantifies the dispatch effect
according to economic cost, carbon emission is emphasized in
this study with the premise of reliable electricity supply. By
consuming the electricity generated by a wind farm or solar
plant, carbon emission is minimized. Dispatch resources contain
network topology, controllable load, distributed generators, and
electricity storage. The optimization target is to find a policy that
minimizes the carbon emission at the prerequisites of meeting all
constraints.

In this study, the decarbonization-driven dispatch of the
distribution network is formulated as CMDP, which can be
expressed with a tuple (S, A, P, R,γ, C), where S is the set of state
variables in the distribution network; A represents the set of
dispatch actions; P is the transition probability function
between states; R is the reward function during state
transition; γ is a discounted factor for the reward at different
time steps; C is constraints that related to the security of
distribution network.

State Space
In this problem, the measurement of components in the
distribution network constitutes the state space: power from
the external power grid Pex, power of generators, wind/solar
farm Pg, power of electricity storage Ps, State of Charge (SOC) Bs,
load consumption Pl, switch status W. At each time step, these
variables reveal the real-time situation of the distribution
network, which is the foundation for dispatch. Let St be the
state vector at time step t.

St � (Pex
1: NE

,Pg
1: NG

,Ps
1: NS

,Bs
1: NS

,Pl
1: NL

,W1:Nw),
where NE,NG,NS,NL,NW represent the total number of
external grid interfaces, generators, storage units, loads, and
switches in the distribution network. Among these state
variables, W1: Nw is the only discrete type with a possible value
of 0/1, which corresponds to the disconnection/connection status
of switches. In addition, the large influx of renewables has made
the Pg

1: NG
different from that of traditional distribution networks

in the aspects of randomness and dimensionality.

Action Space
Previous dispatch strategy has predominately focused on the
transmission network, where large power plants can be used
to improve the power flow distribution. Meanwhile, as the affiliate
of the transmission network, the distribution network can also
benefit from those dispatch actions. However, DERs have
changed the situation where even if the high-voltage-level
power grid operates smoothly, the distribution network could
suffer from volatility. Consequently, dispatch actions in the
distribution network are necessary to handle the chaos caused
by renewables.

In this study, four types of actions are employed, namely
generator redispatch ag, storage unit control as, load shedding al,
and switch control aT, which is the only discrete action. The
continuous-discrete mixed action space enables the dispatch
effect with multiple granularities. Let At be the action vector
at time step t.

At � (ag1: Ng
, as1: Ns

, al1: Nl
, aw1: Nw

),
where Ng,Ns,Nl,Nw represent the number of dispatchable
resources: generator, storage unit, load, and switch.

Physics constraints on these actions are defined as follows:∣∣∣∣agi ∣∣∣∣≤Gramp
i ,

Smin
i ≤ asi ≤ S

max
i ,

0≤ agi ≤DRmax
i ,

where Gramp
i stands for the ramp limit for the generator i, Smin

i ,
and Smax

i are the discharging and charging limit for the storage
unit i, DRmax

i are the maximum power of the controllable load.

Environment
The CMDP problem is established using Python, in which the
model of the distribution network is built with Pandapower, and
dispatch actions are simulated in Grid2Op. In the environment,
power flow calculation can be performed at each time step and
dispatch actions are reflected in the real-time model. In the
training process of IPO, the dispatch agent interacts with the
Grid2Op object, realizing the action of space exploration and
fetching the results.

Reward
Since the objective is to minimize carbon emission, the reward is
set as the negative number of total carbon emissions.

R � −⎛⎝∑NE

i�1 ρ
ex
i P

ex
i +∑NG

i�1 ρ
g
i P

g
i +∑NL

i�1 ρ
l
iP

l
i
⎞⎠,

where ρexi , ρgi , ρ
l
i is the carbon emission coefficient for the external

grid, generators, and load. In practice, the electricity storage unit
also has carbon emissions due to the loss of charging/discharging,
which is neglected in this study due to its relatively minor impact.
Among ρgi , carbon emission coefficient varies due to the type of
generators. For example, distributed generators that consume
fossil fuels produce lots of carbon dioxide, while wind turbines
and solar panels have no greenhouse gas emissions. The reward
has a theoretical upper bound 0, which means no carbon
emission, which cannot be reached in this study due to the
dependency on distribution generators and the external grid.
Generally, the reward can be maximized by full usage or storage
of electricity generated by renewables. The target of the dispatch
policy π is to strive for the discounted return as high as possible.

J(π) � Eτ~π
⎡⎣∑T

t�0γ
tRt

⎤⎦,
where γ is the discount factor that sums up the time series, τ is the
state-action trajectory of T time steps.
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Safety Constraints
The power system is essential to modern society so safe and
reliable electricity access is critical. It is necessary to consider
safety constraints in the dispatch. In this study, constraints related
to the storage unit, switches and voltage are considered. For the
storage unit, minimum electricity storage is required to provide
an emergency reserve. For switches, topology modification must
not form an isolated grid. For each bus at the distribution
network, the voltage must within a reasonable range. All three
constraints are defined as follows:

0.2≤Bs
1: NS

≤ 0.8,

G ≡ 1,

0.95≤V1: NB ≤ 1.05,

where G is the number connected graph,V is the voltage at buses,
andNB is the total number of buses. To quantify the violation of
safety constraints, the cost function is defined as

ct � ΔBs
1: NS

+ ΔV1: NB,

which represents the SOC and voltage deviation from the safety
range. The isolated grid constraint is individually guaranteed by
checking the status of switches, which cannot be compromised in
any scenario. Consequently, safety constraints can be written in a
similar format as a reward.

JC(π) � Eτ~π
⎡⎣∑T

t�0γ
tct⎤⎦,

JC(π)≤ ε,
where ε is the tolerance for safety constraints.

PROPOSED METHOD

For general reinforcement learning problems, constraints are
embedded in the environment that all action exploration is

reasonable. For example, in the “inverted pendulum”, no
matter what action is taken, the system is safe and intact.
However, for learning tasks like power system dispatch,
inappropriate action might cause severe damage to people or
property. Consequently, artificial rules concerning safety are
formulated to address this issue. These rules cannot be
explicitly executed in action space because whether the rules
are breached needs to be judged based on both action and current
state. It would be a heavy computational burden to do this
judgment for the whole action space before decision. This type
of problem is characterized as a safety-related reinforcement
learning problem, where safe RL performs well than
traditional RL. Algorithms like DDPG cannot solve the CMDP
problem directly where safety constraints have to be transformed
into a penalty term in reward.

Based on the idea of the interior-point method, the barrier
function is used in IPO to quantify the constraint violations. Since
the logarithm function has a feature that the value of function
approaching negative infinite as variable approaching zero, it is a
perfect function to punish the constraint violations. The
advantages of IPO are: 1) optimization process of IPO is first-
order so that the training efficiency is better than other RL
algorithms. 2) multiple safety constraints can be considered in
the objective function by simply adding more barrier functions.
The IPO can be formulated as

max LCLIP(θ) � Et[min( πθ(at|st)
πθold(at|st)

At , clip( πθ(at|st)
πθold(at|st)

, 1, 1

− ϵ, 1 + ϵ)At)],
s.t.JC(π)≤ ε,

where At is the advantage function. Suppose ĴC(π) � JCπ − ε,
then ĴC(π) is a non-positive number if the safety constraints are
not violated to the extent of ε. A perfect barrier function is
defined as

FIGURE 1 | Framework of the proposed method.
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I(ĴC(π)) �
⎧⎪⎨⎪⎩ 0, ĴC(π)≤ 0,

−∞, ĴC(π)> 0.

To find a differentiable function that fits this characteristic, the
logarithm function can be applied to ĴC(π).

ϕ(ĴC(π)) �
log( − ĴC(π))

k
,

in which k is a positive hyperparameter. The optimization
problem of IPO can be written in a non-constraint format.

max LCLIP(θ) + ϕ(ĴC(π)).
The whole process of the proposed method can be seen in

Figure 1 where offline training and online application consist of
the whole framework. In the training stage, the agent interacts
with the distribution model in the Grid2op environment to

strengthen its dispatch policy π. Once the training process
converges to an acceptable level, the agent can be deployed for
an online application. In the online stage, real-time data and
historical data are collected and sent to the policy network. After
the calculation in the policy neural networks, neurons of the
output layer give the suggested action. Ideally, training data
enable the agent to be capable of solving various problems,
while it might fail in extreme cases. Similar to supervised
learning algorithms, it is also necessary to promote the
generalization of RL agents.

CASE STUDY

Test Case Preparation
To demonstrate the effectiveness and advantage of the
proposed dispatch method, numerical tests are performed
on the modified IEEE 33-bus system, as is shown in
Figure 2. In this test system, dispatchable resources include
six electricity storage units, two distribution generators at Bus
26, four switches, and responsive load at Bus 4, 9, 13, 19, 23,
and 28. Detailed information on the test system can be seen in
Table 1. The operation data are simulated for 364-days with 5-
min intervals, in which 260 days are used as a training set and
84 days are tested. Each day is seen as an episode of 288 steps
for the dispatch agent. All simulations are performed on a
server with an NVIDIA 3090Ti GPU and an Intel i7-10700K
CPU. The Main Python package used in this research is
Pandapower, Grid2op, and Tensorflow.

Evaluation of the Proposed Method
The training process of the IPO agent is shown in Figure 3 both
reward and constraint violation is depicted by the blue curve and
red curve respectively. And the moving average of 50 episodes is
drawn with a darker color. It can be seen that with the training
process continuing, the reward goes up and converge to-245. This
trend illustrates the effectiveness of the dispatch policy in

FIGURE 2 | Modified IEEE 33-bus system.

FIGURE 3 | Training process of dispatch agent based on IPO.
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reducing carbon emissions. In addition, constraint violation
drops dramatically to a small value and converges to the
tolerance level, which reveals the advantage of IPO handling
the safety constraints.

To show the low-carbon feature of the dispatch policy, a test
on the distribution network over an 84-days dataset is performed.
Results are shown in Figure 4, where the red line represents
carbon emission without dispatch actions and the blue line
represents the proposed policy. In the no-action cases, the
power balance is satisfied by setting the external grid as a
slack bus. The carbon emission ranges from 184 to 347 tons
without dispatch actions and 147 to 330 with the proposed
dispatch policy. The total carbon emission over the 84-day
period is 23559 tons and 19886 ton under two scenarios
respectively, which means a 15.6% reduction by the proposed
method.

Typical Scenario Analysis
To show more details of the low-carbon emission
dispatch, typical scenarios are selected from the test set.
First, the high power output by renewables is examined to
see how the dispatch policy consumes redundant electricity.

Second, during low power output by renewables, the policy
has to be checked if the power supply can be stable. Third,
different power flow routes are compared due to the
transmission cost.

1) High renewable power output

Intuitively, during the period of high renewable power
generation, the best strategy is to decrease the output from
distributed generators and charge the storage unit with
residual electricity that cannot be consumed by the load. In
this case, test results verified the correctness of this strategy
which is discovered by the agent in extensive exploration. As
is shown in Figure 5, the output power of the wind farm at Bus six
increases from 1.2 to 2 MW gradually. In the meantime, storage
started charging at time step 4, and the output power of
distributed generator at Bus 26 decreased from 3.4 to
2.15 MW. To maximize the usage of zero-carbon electricity
generated by the wind farm, the agent decreases the output
power of the distributed thermal generator and charges the
storage unit. The agent makes the appropriate decision to
handle the abrupt increase of output power from wind farms
from both aspects: real-time power balance and low carbon
emission.

Take a closer look at the phenomenon that the storage unit did
not start charging until the time step 4. One reasonable
explanation is that the design of the reward did not consider
the carbon emission effect of the storage unit, while the
distribution generator is taken into consideration.
Consequently, the distributed generator has priority over the
storage unit in this case.

2) Low renewable power output

Since renewable generation is heavily dependent on weather
conditions, gentle wind or a large cloud could an obvious decrease
in the power output. During this period, the power produced by
renewables can be fully consumed, while the main issue becomes
meeting the electricity demand. Typical actions are lowering the
responsive load, increasing the output of distributed generators,

TABLE 1 | Information about the test system.

Distributed generator Maximum output (MW) Ramp limit (MW) ρ (tCO2/MWh)

Bus 26 5 0.2 0.65
Bus 17 3.5 0.15 0.70

Wind farm Maximum output (MW) Solar farm Maximum output (MW)

Bus 6 2 Bus 11 1.5
Bus 32 1.5 Bus 22 1

Storage unit Maximum charge power (kW) Maximum discharge power (kW) SOC(kWh)

5 70 70 700
10 80 80 800
15 80 80 800
20 100 100 1,000
24 80 80 800
31 70 70 700

FIGURE 4 | Comparison of the proposed method and no action policy.

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 9330116

Cui et al. Decarbonization Dispatch Using Safe RL

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


and discharging the electricity storage unit. However, these
actions might violate the safety constraints, so the IPO agent
should make a low carbon emission and safe decision. As shown
in Figure 6, the output power of the wind farm at Bus 6 decreases
from 1.81 to 0.3 MW. To fill the power supply gap, a storage unit
and responsive load are dispatched by the agent. The storage unit
starts discharging at step 3 almost at the maximum output power
of 70kW. Loadshedding at bus four and nine are summed up in
this figure, where approximately 0.75 MW load are disconnected
from the power grid.

FIGURE 6 | Dispatch actions during low renewable power output.

FIGURE 7 | Dispatch actions to reduce transmission cost.

FIGURE 5 | Dispatch actions during high renewable power output.
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3) Transmission cost comparison

In a distributed network, power loss during electricity
transmission is between 2 and 5%. If the power flow does
not in a reasonable pattern, transmission loss would go up.
Moreover, the voltage of certain buses could breach the limit due
to heavily loaded lines or insufficient reactive power. In this
case, switches in the distribution network could come into effect
by reconfiguring the topology of the grid, which improves the
power flow route. In the test system, four switches can be
controlled. However, these switches cannot be controlled
independently due to the safety constraint on the isolated
grid. It can be easily inferred from Figure 2 that switch 2–19
and switch 8–22 cannot be disconnected simultaneously; switch
6–26 and switch 11–29 cannot be disconnected at the same time.
Since this constraint cannot be violated and is difficult to depict
using the mathematical expression, it is not written in the cost
function and can be checked separately in the dispatch with the
mentioned logical judgment. In Figure 7, part of the test system
is a plot to compare the impact of different topologies on carbon
emission. In this case, Bus eight is heavy-loaded. In an original
grid, switch 3–19 is closed while switch 8–22 is open, residual
power generated by the solar farm at Bus 22 has to take a long
way to supply the load at Bus 8, leading to extra power loss. The
agent gives dispatch orders to switches so that Bus eight and Bus
22 can be connected directly, which enables the electricity from
the solar farm to be consumed in a low-carbon manner.
Comparing the transmission loss of the circle and the
straight route, the transmission loss is reduced by 2.51% and
the corresponding carbon emission reduction is 0.12 tons for
an hour.

CONCLUSION

In this study, an innovative dispatch policy is proposed to lower
the carbon emission in distribution networks with proliferated
renewables. As a safe RL algorithm, IPO has taken the safety
constraints of the power grid into consideration, which ensures
the safety of the distribution network when providing clean
electricity to users. The proposed dispatch policy covers both

continuous and discrete actions. For the former category,
distributed generators, controllable load, and electricity storage
units are included. For the latter category, switches are used to
change the topology of the distribution network. To verify the
effectiveness of the presentedmethod, the case study is performed
in a modification system based on the IEEE 33-bus system.
Numerical results have shown that the carbon emission has
decreased by 37.2% during a 365-days dataset. Moreover, all
safety constraints are satisfied due to the implementation of the
IPO. This study has provided guide for future development of
distribution networks that appropriate local dispatch policy
enables DERs to become both economic and eco-friendly.

To further extend the research, a reward can be designed
considering electricity market signals. Economic profit can be an
extra factor to attract users participating in local dispatching,
which enlarges the dispatchable resources.
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