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The reliability of a high-capacity power transformer is fundamental to the stable operation
of power systems. However, characterization of the transformer aging process is a difficult
task, considering the diverse aging factors in its life cycle. This prevents effective
management of such equipment. In the work, we study the aging phenomenon of
power system transformers, whose representative degeneration variables are extracted
from real transformer operational data. Combining with the average life of the equipment,
the extracted features are used as indicators for the transformer reliability evaluations. We
developed a deep learning–based approach using a convolutional neural network for
effective equipment life prediction. The performance of the transformer life prediction
model is verified using field-test data, which demonstrates the superior accuracy of the
presented approach.
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INTRODUCTION

The model power system quickly evolved with the accelerated marketization incentives. In this
process, the safety and reliability of the power system became important concerns to be addressed.
With the narrower profit margin, the system operators face multiple challenges: ensuring safety,
reducing electricity prices, and increasing efficiency. In recent years, the system operator of China,
State Grid, has found a relatively low age among scrapped samples and a relatively high proportion of
over-aged samples among the transformer equipment. The problems are as follows: First, the
scrapping age of substation equipment is usually 6–10 years, and the average service life of main
equipment is lower than the transformer depreciation period and the pricing depreciation period. To
a certain extent, this will result in a waste of depreciation costs. It is difficult to fully incorporate into
the cost of transmission and distribution prices. Second, the over-aged transformers have accounted
for 10% of the original value of the physical assets of the power grid. Some of the over-aged
transformers can still operate normally. Under strict supervision and examination requirements, the
over-aged transformers cannot be depreciated, which reduces the electricity price level and the
company’s investment capacity.

Reliability is an important indicator for verifying the safe operation of equipment (Song and
Cheng, 2015). It refers to the ability or possibility of equipment to perform specified functions
without failure within a certain period and under certain conditions (Song, 2001). Overall, the
operating life of primary equipment in the power grid is significantly different, and this difference
increases the difficulty of primary equipment reliability assessment and reasonable life estimation.
Particularly in the field of reasonable life prediction of transformers, this difference in phenomena is
rarely studied in current research.
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Transformers are the current representative of large-power
equipment, which include multiple failure forms such as
discharge, overheating, or both (Castro and Miranda, 2005;
Jongen et al., 2007; Zheng et al., 2012; Fox et al., 2019). The
reasonable life estimation of the transformer also belongs to the
category of fault prediction. The main method is to predict the
possible future failures through the historical data obtained by
monitoring and to ascertain the remaining life. At present,
transformer life prediction models can be divided into
physical failure mechanism models and data-driven models
(Abu-Elanien and Salama, 2012; Zhou, 2013; Ignacio et al.,
2018; Zhang et al., 2018). The physical failure mechanismmodel
is based on the transformer failure mechanism and
mathematically characterizes the material failure process.
Chen and Liu (2020) proposed a transformer life prediction
model based on the hidden Markov model. Shi et al. (2020)
established the Arrhenius equation based on the degradation
mechanism of variable activation energy and then predicted the
remaining life of the transformer. Based on the data-driven life
model, the operating parameters that can characterize the
degree of transformer degradation are obtained mainly based
on the monitoring technology, and the operating trend of the
parameters is directly predicted (Hu et al., 2022). Common
operating parameters include vibration signal, noise signal, and
insulating oil content (Bacha et al., 2012; Ma et al., 2013; Tian
et al., 2013; Guo et al., 2017; Yan et al., 2020). This method does
not involve a specific failure mechanism, so it has a wider scope
including the long-short-term memory network–based life
prediction model (Dai et al., 2021), the life prediction model
based on the SVM algorithm with RBF as the kernel function,
etc. (Wang, 2021).

However, both the physical failure mechanism model and the
data-driven model are based on the specific operating conditions
of the transformer, that is, monitoring the parameter distribution
of the equipment in the time series and space series and
predicting the life through the model (Ishak, 2010; Husnayain
et al., 2016; Qian et al., 2018). However, the model established
based on the aforementioned method has some limitations
because the parameters are derived from a single device, so
the application object is also limited to a specific type of
device. State Grid’s transformers have the characteristics of a
large number of equipments, wide distribution, and complex
sources. It is difficult to use traditional methods to evaluate the
life of all equipment.

Based on a convolutional neural network, this article proposes
a transformer life prediction method considering the difference in
transformer life. First, according to the factory information and
scrap age information of scrapped transformers provided by a
company, four types of data of rated capacity, voltage level,
manufacturer, and workplace are screened out. The
characteristics of its life distribution are analyzed, respectively,
and data of average life, life concentration, and the proportion of
high-life equipment and low-life equipment were obtained. The
aforementioned total of 16 data were taken as input, and the
transformer age was taken as output. The convolutional neural
network was trained to obtain the life prediction model.
Compared with the traditional life prediction model, the
advantages of the model proposed in this article are 1)
considering the influence of the life difference phenomenon
on the reliability of the transformer, the prediction accuracy is
improved; 2) since the input is the equipment delivery and
operation information and does not involve the specific
operation conditions, the life prediction can be carried out
before operation, and the operation and maintenance strategy
can be formulated as soon as possible according to the prediction
results.

LIFE DIFFERENCE PHENOMENON

Statistical statistics are carried out on the decommissioned,
scrapped, and to-be-scrapped transformers of a power supply
company, and a statistical graph is drawn, as shown in Figure 1. It
can be found that the life distribution of the transformer is close
to the normal distribution. Most of the equipment life is in the
middle interval, and there are few high-life equipment and low-
life equipment. However, this phenomenon increases the
difficulty of equipment operation and maintenance. For
possible low-life equipment, it should be the focus of attention

FIGURE 1 | Life distribution.

TABLE 1 | Corresponding parameters of equipment with rated capacity.

Rated capacity α β E xh xl

1 36.15 4.324 32.91 40% 40%
1.6 18.73 1.995 16.60 0 17%
1.8 29.64 4.504 27.05 0 0
2 22.56 2.218 19.98 0 0
2.5 25.94 2.516 23.02 15% 0
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and is necessary to increase the frequency of maintenance, timely
maintenance, and improve equipment reliability. For possible
long-life equipment, appropriate attention can be reduced to save
costs, analyzing the life distribution chart; dividing the equipment
into older equipment, normal equipment, and younger
equipment according to the distribution law of equipment life;
and counting their proportions in the total equipment
respectively; and summarizing the distribution law of
equipment life. The equipment is divided into 5-year intervals.
With the increase in service life, the service life in this interval
increases first and then decreases; The pieces of equipment with a
service life of 11–15 years are more than twice that of 6–10 years,
and the increase is significantly greater than that in other ranges.
The pieces of equipment with a service life of 36–40 years are less
than 1/2 of that of 31–35 years, and the decrease is significantly
greater than that in other intervals. Therefore, equipment with a
service life of 10 years or less (main transformer and
disconnector) is defined as low-life equipment, equipment
with a service life of 36 years or more is defined as high-life
equipment, and other equipment is defined as normal equipment.

When the equipment is put into operation, it is necessary to
evaluate the reliability of the equipment to facilitate the
formulation of the operation and maintenance strategy. Due to
the lack of operational data as the basis for evaluation, the
equipment can only be roughly evaluated through historical
data, such as manufacturer and operation city before the
equipment is put into operation. Due to different production
processes, equipment produced by different manufacturers will

also have different characteristics in reliability. Similarly, different
operating cities will have different working environments, which
will further affect the reliability of the equipment. The extraction
of reliable data from this kind of text information is key to the
reliable evaluation of equipment before operation.

EXTRACTION OF TRANSFORMER AGING
FACTORS

In the transformer operation and maintenance data, the
average life is the most intuitive embodiment of equipment
reliability, and it is also important data that can be used for
life prediction. However, the data on average life cannot reflect
the impact of life differentiation. Therefore, it is necessary to
extract the aging factors that can reflect the phenomenon of life
differentiation from the transformer life distribution data to
improve the accuracy of reasonable life prediction.

The life differentiation characteristics of equipment can be
described by three parameters: life concentration, the proportion
of high-life equipment, and low-life equipment. Life
concentration indicates the concentration degree of
transformer life distribution. The more the proportion of main
transformers is close to the average life, the higher the life
concentration. The proportion of high life and low life is the
proportion of transformers with a life of more than 35 years and
less than 10 years in the total number, which can be obtained
directly through statistics.

Because the Weibull distribution can be used to describe the
characteristics of equipment life distribution, life concentration
and average life can be expressed by the relevant characteristics of
the Weibull distribution (Zhou et al., 2013). The Weibull
distribution was proposed by Swedish physicist W. Weibull in
1939. It is mainly used to describe the probability distribution of
material fatigue strength. The Weibull distribution is widely used
in reliability engineering, especially in the distribution form of
cumulative wear failure of electromechanical products. Due to the

TABLE 2 | Corresponding parameters of equipment at each voltage level.

Voltage level α β E xh xl

6kV 31.68 2.516 28.11 29% 12%
10kV 20.75 2.116 18.38 3% 24%
35kV 23.46 2.598 20.84 6% 19%
110kV 26.15 3.428 23.50 4% 14%
220kV 35.18 3.245 31.53 33% 0

TABLE 3 | Corresponding parameters of equipment of each manufacturer.

α β E xh xl

A company 13.94 5.457 12.86 0 33%
B company 25.45 1.807 22.63 25% 0
C company 28.73 4.241 26.13 7% 7%
D company 27.83 4.59 25.43 0 0
E company 27.13 2.668 24.12 17% 0

TABLE 4 | Corresponding parameters of equipment of all affiliated companies.

α β E xh xl

A power supply company 18.84 1.817 16.75 3% 31%
B power supply company 19.02 1.799 16.91 5% 21%
C power supply company 25.38 2.099 22.48 0 17%
D power supply company 19.84 1.921 17.60 6% 29%
E power supply company 15.71 1.518 14.16 0 31%

FIGURE 2 | Convolutional neural network.
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ease of inferring the distribution parameters using the probability
value, it is widely used in the data processing of various life tests.
The probability density of the Weibull distribution is shown in
Eq. (1).

f(t) � β

α
(t
α
)β−1

e
−(t

α)
β

, (1)

where α is the scale parameter and β is the shape parameter.
According to the properties of the Weibull distribution, the
shape parameter β is related to the concentration of life
distribution. The larger the β, the more concentrated the life
distribution. The smaller the β, the more dispersed the life
distribution. The average life of the equipment can be expressed
by mathematical expectations. Therefore, the average life of the
equipment can be calculated according to the parameters of the
Weibull distribution and the service life expectation, as shown
in Eq. (2).

E � α · Γ(1 + 1
β
). (2)

The fitting method of the Weibull distribution characteristic
parameters is as follows:

1) The service lives of n different equipment with the same
feature were arranged from short to long, which are
N1, N2, . . . , Nn, respectively;

2) Eq. (3)was used to calculate the unbiased estimation of fatigue
cumulative distribution F;

F � i−0.3
n+0.4. (3)

3) Eq. (4) was fitted to obtain an unbiased estimation of α, β.

ln(1 − F) � −(N
α
)β

. (4)

Now, the reliability information such as the rated capacitance,
voltage grade, manufacturer and affiliated company of the main
transformer, and the corresponding proportional parameters are
counted, respectively; scale parameter, α; shape parameter, β; the
average life (mathematical expectation), E; proportion of high-life
equipment, xh; and proportion of low-life equipment, xi are
shown in Tables 1–4:

Next, according to the aforementioned data and combined
with the life distribution of equipment, a reasonable life
prediction model of transformers based on a convolutional
neural network is established.

FIGURE 3 | Life prediction model.

TABLE 5 | Life prediction model parameters.

Network layer Parameters Parameters Parameters Parameters

Input layer 1*4 1p4 1p4 1p4
Convolution layer (Relu) 64-[1p2] 64-[1p2] 64-[1p2] 64-[1p2]
Convolution layer (Relu) 64-[1p2] 64-[1p2] 64-[1p2] 64-[1p2]
Convolution layer (Relu) 128-[1p2] 128-[1p2] 128-[1p2] 128-[1p2]
Flatten layer
Full connection layer (Tanh) 128
Full connection layer (Tanh) 128
Classification layer (Softmax) 8
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AI-BASED APPROACH TO THE LIFE
PREDICTION MODEL

Convolutional Neural Network
In recent years, with the rapid development of the computer

field, deep learning has been applied to all aspects. The
convolutional neural network possesses a considerable ability
for face recognition and image recognition and has great
application prospects in the field of transformer fault
diagnosis. In this article, a reasonable life prediction model of
a transformer is constructed based on a convolutional neural
network. A convolutional neural network generally includes an

input layer, convolution layer, pooling layer, full connection layer,
and output layer (Zhou et al., 2017). Taking one-dimensional
data as an example, its general structure is shown in Figure 2.

The input layer is the input data of some characteristic
quantities, including rated capacity, voltage level,
manufacturer, and workplace. These are transformed into
digital features using the Weibull distribution as input, such as
x1, x2, x3, as shown in Figure 2.

The convolution layer is equivalent to a feature-extraction
process. The important features are extracted through the
convolution kernel during the movement of the input layer, as
shown in Figure 2. Taking the 1*3 convolution kernel as an
example, the calculation process is as follows:

cn � xn × ω1 + x n+1 × ω2 + x n+2 × ω3 + bn, (5)
where x is input, ω is the weight, and b is the offset. The calculated
results can use Relu, Tanh, and other activation functions as the
output of each neuron in the convolution layer, that is,
Cn � f(cn). The expression of the activation function is as
follows:

Reluf(x) � max(0, x), (6)
Tanhf(x) � ex − e−x

ex + e−x
. (7)

The pooling layer mainly reduces the amount of calculation in
the neural network, as shown in Figure 2. Taking the 1*2
maximum pooling layer as an example, the calculation process
is as follows:

pn � max(Cn, C n+1). (8)
The full connection layer is the neural network, as shown in

Figure 2. Its calculation steps are as follows:

FIGURE 4 | Training process.

FIGURE 5 | Prediction results.
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dn � ∑1
m

pm × ωmn + bn. (9)

Similarly, the calculated results can use Relu, Tanh, and other
activation functions as the output of each neuron in the whole
connection layer, that is, Dn � f(dn).

The calculation process of the output layer is the same as that
of the full connection layer. As shown in Eq. 9, the Softmax
function is used in the activation function, and the expression is
as follows:

Softmaxf(x) � exi

∑n
i�0
exi

. (10)

Life Prediction Model
The life prediction model is shown in Figure 3. First, the four

characteristic quantities of voltage grade, rated capacity,
manufacturer, and workplace are obtained using the Weibull
distribution, and a total of 16 characteristics are used as the input
layer of the model. The data output from the convolution layer is
fused through the data, integrated into one-dimensional data, and
sent to the fully connected neural network. The life prediction is

divided into eight intervals. 1–5 years is the first interval, and the
probability of the result falling into this interval is P1. 6–10 years
is the second interval, and the probability of the result falling into
this interval is P2, and so on. The last interval is 35–40 years, and
the probability of the result falling into this interval is P8. The
activation layer of the convolutional neural network adopts the
Relu function, the fully connected neural network adopts the
Tanh function, and the output layer adopts the Softmax function
(see Table 5 for specific parameters).

ACCURACY VERIFICATION OF LIFE
PREDICTION MODEL
Verification of AI-Based Approach to the
Life Prediction Model

K-fold cross-validation is adopted for the data set. That is, the
data set is divided into k copies, of which k-1 is used as training
data and the remaining one is used as test data. There are 501
groups of transformer data in total. A total of 100 groups were
considered test data and the rest as training data. The training
process is shown in Figure 4.

The prediction results of the last 100 test data are shown in
Figure 5. Through TSNE visualization, the classification results of
100 data types are displayed, as shown in Figure 6.

FIGURE 6 | TSNE visualization results.

FIGURE 7 | Confusion matrix.

TABLE 6 | Comparison of different life prediction models.

Life prediction model Accuracy (%)

Decision tree 65.4
Random forest 71.2
Support vector machine 62.6
Neural network 75.00
Convolutional neural network 84.83

FIGURE 8 | Model training process without considering life difference.
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It can be seen from Figure 5 that most of the prediction results
are consistent. Each color in Figure 6 represents a prediction
interval. It can be seen that the graphs of each interval are well
distinguished. It shows that the life prediction model has high
accuracy, and the life prediction confusion matrix of each
classification is shown in Figure 7.

The accuracy is low due to the small number of training and
tests in the eighth division. The prediction accuracy of other life
intervals is high, which is more than 80%.

Comparison With Other Models
To verify the superiority of the model in transformer life

prediction, the model is compared with the following other
models.

1) Prediction results of different models

To verify the ability of the convolutional neural network in life
prediction, decision tree, random forests, support vector
machine, neural network, and deep confidence network were
used to simulate the same data. The simulation results are shown
in Table 6.

It can be seen from Table 6 that a convolutional neural
network has higher prediction accuracy in transformer life
prediction. Compared with the current common prediction
algorithms, the accuracy is improved by more than 10%.

2) Influence of life differentiation on life prediction results

To verify the impact of life differentiation on life prediction
results, only the average life in the data of rated capacity, voltage
level, manufacturer, and the working city was considered. Four
data of k1, k5, k9, and k11 were used as the input of the convolutional
neural network. The training results are shown in Figure 8.

According to the results, the prediction accuracy of the
transformer life prediction model without considering the
phenomenon of life differentiation can only reach 40.37%.
Compared with the model proposed in this article, the
accuracy was reduced by 52.41%. This is because more

characteristic information was extracted from the transformer
life distribution data, which improved the identification of the
training data and thus improved the final accuracy.

CONCLUSION

Based on the statistics of the scrapped data of transformers
provided by power supply companies, this article analyzes the
impact of life differentiation on the reliability evaluation of
transformers. According to this phenomenon, the information
containing life-differentiation information is extracted from the
data and used as the input of the life prediction model based on a
convolutional neural network. Compared with other prediction
algorithms, the superiority of the convolutional neural network in
life prediction is verified. In comparison with the life prediction
model without considering the phenomenon of life
differentiation, it is verified that the life prediction model
considering the phenomenon of life differentiation has higher
prediction accuracy.

In the future, the transformer life prediction method based on
an AI approach will become the mainstream in the industry.
However, it still needs to overcome the dependence on the data
sample size. The data source of this article was limited, and more
aging factors were not considered, which need to be further
improved.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

LL—paper writing and submission; LH—data acquisition;
ML—model building; ZL—data validation; and
XW—proofreading.

REFERENCES

Abu-Elanien, A. E. B., and Salama, M. M. A. (2012). A Monte Carlo Approach for
Calculating the Thermal Lifetime of Transformer Insulation. Int. J. Electr.
Power and Energy Syst. 43 (1), 481–487. doi:10.1016/j.ijepes.2012.06.054

Bacha, K., Souahlia, S., and Gossa, M. (2012). Power Transformer Fault Diagnosis
Based on Dissolved Gas Analysis by Support Vector Machine. Electr. Power
Syst. Res. 83 (1), 73–79. doi:10.1016/j.epsr.2011.09.012

Castro, A. R. G., and Miranda, V. (2005). Knowledge Discovery in Neural
Networks with Application to Transformer Failure Diagnosis. IEEE Trans.
Power Syst. 20 (2), 717–724. doi:10.1109/tpwrs.2005.846074

Chen, C., and Liu, Y. (2020). Remaining Useful Life Analysis of Transformer Based
on Hidden Markov Model. J. Shenyang Univ. Technol. 42 (4), 5. doi:10.7688/j.
issn.1000-1646.2020.04.10

Dai, M., Tang, H., and Xu, K. (2021). A Prediction Method of Residual Life of
Railway Transformer Based on Long-Term and Short-TermMemory Network.
Sci. Technol. Innovation (28), 17–19. doi:10.3969/j.issn.1673-1328.2021.28.007

Fox, J. C., Hadidi, R., Laflair, N., Leonard, J., and Hodges, J. (2019). Heat
Generation and Failure in Padmount Transformers Due to Zero Sequence
Saturation. IEEE Trans. Ind. Appl. 55 (5), 4500–4506. doi:10.1109/tia.2019.
2928252

Guo, Y., Wang, Z. K., and Liu, L. (2017). Failure Mechanism Analysis and
Preventive Measures of High Voltage Sleeve Head Seal of 500kV Main
Transformer. J. Anhui Electr. Eng. \ Tech. Coll 22 (1), 38–41. doi:10.3969/j.
issn.1672-9706.2017.01.007

Hu, B., Deng, X., and Jia, S. (2022). Transformer Life Estimation and State
Assessment Based on ANFIS. Electr. Meas. Instrum. 59 (01), 61–68. doi:10.
19753/j.issn1001-1390.2022.01.008

Husnayain, F., Latif, M., and Garniwa, I. (2016). Transformer Oil Lifetime
Prediction Using the Arrhenius Law Based on Physical and Electrical
Characteristics. International Conference on Quality in Research. IEEE.
Lombok, Indonesia, 10-13 Aug. 2016.

Ignacio, A., Stephen, M. A., Brian, S., Brandon, L., Games, G. C., and Victoriya,
M. C. (2018). Adaptive Power Transformer Lifetime Predictions through
Machine Learning & Uncertainty Modelling in Nuclear Power Plants. IEEE

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 9300937

He et al. Transformer AI-based Life Prediction”

https://doi.org/10.1016/j.ijepes.2012.06.054
https://doi.org/10.1016/j.epsr.2011.09.012
https://doi.org/10.1109/tpwrs.2005.846074
https://doi.org/10.7688/j.issn.1000-1646.2020.04.10
https://doi.org/10.7688/j.issn.1000-1646.2020.04.10
https://doi.org/10.3969/j.issn.1673-1328.2021.28.007
https://doi.org/10.1109/tia.2019.2928252
https://doi.org/10.1109/tia.2019.2928252
https://doi.org/10.3969/j.issn.1672-9706.2017.01.007
https://doi.org/10.3969/j.issn.1672-9706.2017.01.007
https://doi.org/10.19753/j.issn1001-1390.2022.01.008
https://doi.org/10.19753/j.issn1001-1390.2022.01.008
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Trans. Industrial Electron. 66 (6), 4726–4737. doi:10.1109/TIE.2018.
2860532

Ishak, T. M . (2010). Simulation Study on Influencing Parameters of Thermal
Ageing for Transformer Lifetime Prediction. Cheminform 22 (18), 115–115.
doi:10.1002/chin.199118115

Jongen, R., Morshuis, P., Smit, J., and Janssen, A. (2007). A Statistical Approach to
Processing Power Transformer Failure Data. Cired 19th International
Conference on Electricity DistributionCired 19th International Conference
on Electricity Distribution.

Ma, H., Di, Z., Chen, K., Wang, C., Li, K., and Li, Y. (2013). A New Method of
Winding Deformation Fault Diagnosis of Power Transformer Based on
Vibration . Automation Electr. Power Syst. 37 (08), 89–95. doi:10.7500/
AEPS201209202

Qian, Y. H., Xiao, H. Z., Nie, M. H., Zhao, Y.-H., Luo, Y.-B., and Gong, S.-L. (2018).
Lifetime Prediction and Aging Behaviors of Nitrile Butadiene Rubber under
Operating Environment of Transformer. J. Electr. Eng. Technol. 13 (2),
918–927. doi:10.19487/j.cnki.1001-8425.2017.11.006

Shi, J., Zhao, D., Hao, W., and Wang, X. (2020). Life Evaluation Model for
Transformer Insulating Paper Based on Variable Activation Energy. Insul.
Mater. 53 (09), 52–57. doi:10.16790/j.cnki.1009-9239.im.2020.09.009

Song, Z., and Cheng, L. (2015). Operation Reliability Analysis of Primary
Equipment in UHV DC. Electr. Eng. (06), 110–112+118. doi:10.3969/j.issn.
1673-3800.2015.06.025

Song, Z. (2001). Discussion on Failure and Fault Interpretation. China Termin. 3
(3), 20–23. doi:10.3969/j.issn.1673-8578.2001.03.008

Tian, K., You, D. H., Li, Y. L., Pan, K., and Wang, K. (2013). Analysis of a
Transformer Time-Varying Outage Model for Operational Risk Assessment.
Amr 732-733, 993–998. doi:10.4028/www.scientific.net/amr.732-733.993

Wang, H. (2021). Research on Life Loss of Transformer Based on Machine
Learning Algorithms. Electrotech. Appl. 40 (01), 72–78. doi:10.3969/j/issn.
1672-9560.2021.01.014

Yan, H., Zhang, Y., Zhao, J., and Yu, Z. (2020). An Oil-Paper Insulation Life
Prediction Model Based on Dissolved Products Analysis in Oil. Guangxi Electr.
Power 43 (04), 1–6+23. doi:10.16427/j.cnki.issn1671-8380.2020.04.001

Zhang, M., Liu, J., Chen, X., and Liao, L. (2018). Residual Life Assessment
Method of Transformer Oil-Paper Insulation Aging Based on Wiener Modle.
Trans. China Electrotech. Soc. 33 (21), 11. doi:10.19595/j.cnki.1000-6753.tces.
171587

Zheng, Y., Sun, C., and Jian, Li. (2012). Association Rule Analysis on Confidence of
Features for Transformer Faults. High. Volt. Eng. 38 (1), 7. doi:10.3969/j/issn.
1003-6520.2012.01.012

Zhou, D., Chengrong, L. I., and Wang, Z. (2013). Comparison of Parameter
Estimation Methods for Transformer Weibull Lifetime Modelling. High. Volt.
Eng. 39 (5), 1170–1177. doi:10.3969/j.issn.1003-6520.2013.05.022

Zhou, D. (2013). Comparison of Two Popular Methods for Transformer Weibull
Lifetime Modelling. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2 (4).

Zhou, F., Jin, L., and Dong, J. (2017). Review of Convolutional Neural Network.
Chin. J. Comput. 40 (06), 1229–1251. doi:10.11897/SP.J.1016.2017.01229

Conflict of Interest: Authors LH, ML, and ZL were employed by the State Grid
Hubei Electric Power Co., Ltd.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 He, Li, Li, Li and Wang. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 9300938

He et al. Transformer AI-based Life Prediction”

https://doi.org/10.1109/TIE.2018.2860532
https://doi.org/10.1109/TIE.2018.2860532
https://doi.org/10.1002/chin.199118115
https://doi.org/10.7500/AEPS201209202
https://doi.org/10.7500/AEPS201209202
https://doi.org/10.19487/j.cnki.1001-8425.2017.11.006
https://doi.org/10.16790/j.cnki.1009-9239.im.2020.09.009
https://doi.org/10.3969/j.issn.1673-3800.2015.06.025
https://doi.org/10.3969/j.issn.1673-3800.2015.06.025
https://doi.org/10.3969/j.issn.1673-8578.2001.03.008
https://doi.org/10.4028/www.scientific.net/amr.732-733.993
https://doi.org/10.3969/j/issn.1672-9560.2021.01.014
https://doi.org/10.3969/j/issn.1672-9560.2021.01.014
https://doi.org/10.16427/j.cnki.issn1671-8380.2020.04.001
https://doi.org/10.19595/j.cnki.1000-6753.tces.171587
https://doi.org/10.19595/j.cnki.1000-6753.tces.171587
https://doi.org/10.3969/j/issn.1003-6520.2012.01.012
https://doi.org/10.3969/j/issn.1003-6520.2012.01.012
https://doi.org/10.3969/j.issn.1003-6520.2013.05.022
https://doi.org/10.11897/SP.J.1016.2017.01229
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

	A Deep Learning Approach to the Transformer Life Prediction Considering Diverse Aging Factors
	Introduction
	Life Difference Phenomenon
	Extraction of Transformer Aging Factors
	AI-Based Approach to the Life Prediction Model
	Convolutional Neural Network
	Life Prediction Model

	Accuracy Verification of Life Prediction Model
	Verification of AI-Based Approach to the Life Prediction Model
	Comparison With Other Models

	Conclusion
	Data Availability Statement
	Author Contributions
	References


