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Energy use differences between day and night have been a key point in the efficient use of
utilities. The battery energy storage system (BESS) is an attractive solution to level the grid
load and has been introduced independently into many communities, although with high
costs. Battery sharing presents the possibility of integrating independent energy storage
systems to savemoney and improve energy use. Battery sharing highlights the interactions
between a smart grid, smart buildings, and distributed energy storage to produce better
energy management practices. In this work, we provide an analysis of battery sharing by
establishing a coordinated control model for a distributed battery system. In our case study
design, we selected 39 buildings with different capacities of energy storage systems as a
battery-sharing community to optimize sharing schedules and the load-leveling
performance. The results indicate that battery sharing could achieve a 13.2%
reduction in building battery capacity compared with independent operation. We
further investigate the impact of a building’s load profile patterns on the battery
capacity in a battery-sharing community. It is economical to introduce a larger capacity
battery system into buildings with no closing days and higher electricity consumption
throughout the year. The optimal BESS capacity in commercial buildings depends on the
lowest daytime power consumption. Commercial buildings with closing days have
limitations regarding BESS deployment. On closing days, buildings can only use BESS
by sharing. Buildings with two closing days a week lose 14.3% more energy than those
with one closing day.
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1 INTRODUCTION

1.1 Background
Buildings are now responsible for around 55% of total electricity use (Global, 2020). Electricity
consumption in the building sector shows irregular characteristics and is reflected in two main aspects.
The first aspect is the valleys of low energy demand and low prices. Conversely, periods with high
energy demand create peaks or ceilings in the load profile (Mehrjerdi, 2019). This irregularity in
consumption leads to inefficiencies in energy supply as well as uncertainty (because conventional
electricity suppliers were designed and created for average electricity demand rather than maximum
demand). Compounding this situation, energy consumption in the building sector continues to grow
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due to population growth and increasing per capita income (Al
Shawa, 2022). In Japan, after the FukushimaCrisis in 2011 (Li et al.,
2018), the safety of nuclear energy has been seriously questioned;
thus, Japan remains heavily dependent on imported fossil fuels that
provided 88% of the total primary energy supply (TPES) in 2019
(Cozzi et al., 2020; Global, 2020). Large-scale power outages and
year-round electricity bill hikes are also plaguing Japan due to
insufficient conventional power-generation capacity and changes
to the international situation. As a result, Japan is urgently
upgrading its energy system. Integrating energy storage systems
(ESSs) into the power system is one of the solutions being proposed
to improve the grid’s reliability and performance (Child et al., 2018;
Zhang et al., 2018). Distribution networks can utilize ESSs for a
number of grid applications, including mitigating renewable
resource uncertainties (Zhao et al., 2015), microgrid applications
(Awad et al., 2015; Comodi et al., 2015), and risk mitigation in the
electricity market (Zheng et al., 2013). Another significant benefit
on the distribution side is that ESSs can contribute in the time
shifting of energy outputs (Wong et al., 2019); for example, excess
generated energy is stored energy at off-peak or low-price periods
and the stored energy is dispatched during high-demand, high-
price, or low-generation periods. This method also smooths the
load pattern by decreasing the on-peak and increasing the off-peak
loads in a day, known as load leveling (Mehrjerdi, 2019). By
installing large-scale electricity storage facilities, planners would
need to build only sufficient generating capacity to meet the
average rather than the peak electrical demand (Van der
Linden, 2006; Wu et al., 2018). Consequently, ESSs can be a
critical element in helping to regulate a city’s peak demand by
implementing load leveling. Among the various available ESS
technology types, the battery energy storage system (BESS) has
attracted considerable attention with clear advantages, such as fast
response, controllability, and geographical independence (Divya
and Østergaard, 2009; Dunn et al., 2011; Mahlia et al., 2014;
Christiansen, 2015).

1.2 Literature Review
1.2.1 BESS Applications in Urban Areas
In spite of the fact that the use of BESSs for load leveling can bring
significant economic advantages, the high initial investment remains
an issue (Sparacino, 2012). It is therefore crucial that BESSs are
optimally sized. The application of BESSs for load leveling can be
broadly categorized as centralized battery storage and distributed
battery storage. The majority of existing studies propose optimal
manipulation and sizing for BESSs. Some researchers have examined
the optimal policy for charging and discharging power based on two
different optimization objectives (Lu et al., 2014). The first is to
minimize the difference between the peak and valley demand, and
the second is to minimize the daily variance in load. The storage
devices have been used to reduce the peak of the load profile and
therefore lessen the planning and operational costs. The allocation of
the ESS has been incorporated into the network planning problem
(Saboori et al., 2015a). A mixed integer nonlinear programming
(MINLP) model was proposed using a particle swarm optimization
algorithm (PSO) (Saboori et al., 2015b). As a result of the simulation,
both the cost and technical performance of the network were
improved. To increase the reliability of the distribution network,

Saboori et al. (2015b) proposed as an investment plan for ESSs. By
using the energy not supplied (ENS) index, the level of system
reliability is elevated and system failures are minimized through
optimal ESS planning. To perform load leveling and improve voltage
curves in networks, a bi-objective optimization model was proposed
by Mehrjerdi(2019). For economic assessment, Trivedi et al. (2020)
proposed the stochastic cost–benefit analysis framework for
allocating centralized ESSs to achieve load leveling in networks.
An algorithm was presented to solve the issues of load leveling and
loss minimization in networks impacted by temporary service
restoration activities but without considering optimal allocation
(Duerr et al., 2020). Jankowiak et al. (2020) introduced five
indexes to evaluate the technical performances of load peak
shaving for a test house in Northern Ireland but did not consider
optimal operation. In addition, mobile BESS technology can provide
services and economic benefits by connecting to the grid (such as a
vehicle-to-grid system). However, some researchers have pointed
out that the increased integration of electric vehicles is expected to
have a negative impact on power quality, as well as incurring
investment costs for microgrids. Hence, a decentralized energy
management system, based on multiagent systems, has been
developed for the efficient charging of electric vehicles, achieving
approximately 17% peak load reduction and 29% load variance
reduction (Boglou et al., 2022).

The various works mentioned here discuss strategies for the
placement of BESSs to improve the load-leveling performance of
the building sector and propose solutions in terms of optimal
location and size. Most importantly, previous research has
demonstrated the feasibility of BESS participation in grid
management in terms of economics. As the prices of
centralized or distributed battery systems (explained in detail
in Section 3.3) decrease, they are expected to become an attractive
application for the building sector. Centralized energy storage not
only requires operational and size optimization considerations
but also requires battery siting and distribution system upgrade
considerations due to large transient branch circuit current
changes over long distances. The conventional designs of
distributed systems are based on single-building energy
allocation for sizing the distributed batteries, so they neglect
the interaction (that we call “energy sharing” in this article)
between the smart grid, smart buildings, and distributed
energy storage to achieve better energy management practices.

1.2.2 Battery Sharing Structure
With the rapid growth of the sharing economy around the world,
a new proprietary idea for community-centric sharing has
recently emerged in the energy market (Roberts et al., 2019;
Kang et al., 2022). Unlike traditional individually owned BESSs
and large utility-level BESSs, customers in a community can
provide optimal energy management services through energy
sharing (for example, using remaining power to match the power
needs in the same community) and storage sharing (for example,
using the battery to take remaining power to or out of the building
community) (Huang et al., 2020). A peer-to-peer (P2P) energy-
sharing paradigm involving hybrid solar-wind renewable energy
systems, battery storage, and grid-connected commercial
prosumers (a high-rise office and hotel) has been proposed
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(Zheng et al., 2021). Zheng et al. (2021) found that the proposed
P2P sharing operation with storage sharing can promote self-
consumption from 0.591 to 0.795 and reduce the net cost. Henni
et al. (2021) established a shared economy model that enabled
residential communities to share solar power generation and
storage capacity. The model saves an average of €615 per year
compared to operating alone. A P2P energy trading framework
was proposed by He et al. (2021), enabling distributed
photovoltaic (PV) consumers and prosumers to participate in
a community sharing market created by a stakeholder. Dai and
Charkhgard (2018) proposed a bi-objective mixed-integer linear
programming (MINLP) approach for managing clusters of
buildings equipped with shared electrical energy storage.
Therefore, the uneconomical use case for batteries may
become profitable when individual EES assets are aggregated
into a large portfolio to provide grid-scale ancillary services
(Rappaport and Miles, 2017).

1.2.3 Cloud-Based Energy Sharing
Currently, large-scale batteries are mainly used for load leveling in
electricity generating plants by supplying power. The power
generated by the electricity suppliers at times of low demand (i.e.
at dawn or other off-peak hours) or during periods of overgeneration
is charged to the battery and discharged to buildings during times of
high need and electricity shortage (i.e. peak hours). Economic
viability is the major critical element in large battery
implementations because of the high initial costs. However, the
utilization rate of large BESSs for load leveling can be low due to
fluctuating demand. In addition, large BESSs also have high
transmission loss due to size and distance limitations. Conversely,
the ability to perform energy arbitrage is the biggest motivation for
individual users to install BESSs. Therefore, through energy sharing,
private BESSs can participate in load leveling to reduce the peak
stress of the power supply, saving costs for peak power generators.
Electricity suppliers are willing to pay a fee to cooperate with
individuals by sharing information and optimizing energy use.
Stakeholder-based information exchange is essential to enable
energy sharing between electricity suppliers and buildings where
load leveling is performed. Hence, a wide-area monitoring system
(WAMS) based on real-time measurement and monitoring is
becoming a key solution for online stability, situational
awareness, and grid planning. The possibility of monitoring and
controlling the operation of the whole power system to achieve real-
time, dynamic power control has been proven (Karavas et al., 2021).
Mekikis et al. (2016) studied the performance of communication
technology in dense networks with wireless energy harvesting
(WEH)-enabled sensor nodes. Li et al. (2021) proposed an
information-sharing strategy based on linked data for the
improved management of net-zero communities. This strategy
systematically integrates stakeholders’ engagement by using
energy performance indicators as information carriers and linked
data as engagement channels.

1.3 Aims and Objectives
With the development and application of technologies such as
blockchain and the Internet of Things (IoT), the outstanding
flexibility and rapid response of BESSs has been proven. With the

increasing impact of distributed energy on the grid, BESSs and the
sharing strategy have gradually become the most effective means
to improve distributed energy use in the community. Most of the
literature mentioned in Section 1.2 focuses on this area. Co-
investment by producers and consumers can effectively reduce
energy costs, avoid unnecessary investments, and increase BESS
use. This trading model enhances community resilience by
reducing the community’s reliance on the main grid and
increasing the ability to participate in demand response (DR)
to achieve better load leveling. Many studies have also discussed
the role of appropriate pricing models in sharing (through the
auction model, blockchain, and bilateral contracts) (Wang et al.,
2021), as this directly affects the incentives of P2P participants for
participating in energy sharing. However, there is a lack of
understanding of the impact of sharing strategies on battery
sizing across multiple buildings (especially non-residential
buildings), and it is unclear whether community or grid-level
battery sharing will provide the best solution for load leveling
performance. To address the knowledge gaps identified above, we
aim to achieve load leveling by grouping individual BESSs based
on the information sharing and energy sharing strategy of linked
data.

The main achievements of this work are as follows:

• We develop an energy-sharing framework between the
distribution network and the individual batteries for the
allocation of distributed ESSs for community load-leveling
applications.

• Representative load profiles (RLPs) for non-residential
buildings are extracted by clustering and feature analysis
methods, the optimal deployment of BESSs in the RLP with
sharing framework are discussed, and the results provide
promising insights into battery sharing.

• We propose a generic sharing model that takes into account
the interaction between various hierarchies in the city, and
the application of BESSs is expanded from the individual
building to the community level and finally to the city,
providing a basis for efficient energy sharing for city
hierarchies in the future.

The remainder of this article is organized as follows. The basic
idea of cloud-based battery sharing is presented in Section 2. The
general process and proposed methodology are presented in
Section 3. The results are presented and discussed in Section
4. Future directions for BESSs are discussed in Section 5, and the
conclusions are presented in Section 6.

2 SYSTEM DESCRIPTION

The proposed energy-sharing network allows potential users to
benefit from operating the BESS and to participate in energy
trading. Real-time energy monitoring and physiographic data
from multiple perspectives will help to build a database in the
cloud-based battery-sharing community (Supplementary Figure
S1). All energy participants, including power producers and
customers and all energy components (including distributed
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generation systems and consumers) can be interlinked in a
decentralized battery system within a community to influence
each component.

3 METHODOLOGY

3.1 General Process
Raw power demand data are collected via meters from a smart
community in Japan. A 1-h time-step is used for monitoring the
active power and reactive power. In this study, only active power
is considered. Raw electricity demand data are provided in a
single-column format, with each row corresponding to a selected
time range. Data formatting is performed by extracting the daily
load profile (DLP) of the annual data set. It is challenging for
utilities to analyze a large number of DLPs from different
customers, especially when the volume of customer data is
very large or when the study time is very long. A common
solution is to assign a representative load profile (RLP) to each
customer. The RLP is usually calculated by averaging DLPs over a
period of time. Therefore, each customer is represented by one
RLP rather than many DLPs. There are various clustering
algorithm methods, of which three of the most common are
self-organizing maps (SOMs) (Zhang et al., 2011), hierarchical
clustering (Chicco, 2012), and K-means (Richard et al., 2017).
Clustering algorithms always assign DLPs with the same
consumption pattern to the same group. Commercial
buildings, for example, do not undergo significant changes in
DLP due to stable commercial activities. The K-means algorithm
stands out for its high-quality clustering effect, strong
interpretability, fast convergence, and other advantages (Rajabi
et al., 2019; Bourdeau et al., 2021) when applied to non-residential
building performance analysis (Miller et al., 2018). Conversely,
the application of clustering algorithms is a challenge when
dealing with highly variable data sets (e.g. residential
customers, who do not use specific appliances or electrical
equipment at the same time every day). At this point, if
clustering is performed using the K-means algorithm and
distance metrics such as Euclidean distance, a customer’s DLP
may be assigned to many different clusters. Therefore, the SOM
approach has been proven to be the most suitable clustering
algorithm for residential customers (McLoughlin et al., 2015).
The strategy of hierarchical clustering is to first treat each object
as a cluster, and then merge these atomic clusters into larger
clusters until all objects are in a cluster or some end condition is
satisfied (Wang et al., 2020). Once two clusters are merged, they
are not undone, so that the computational storage is costly.
Therefore, its disadvantages are obvious: 1) the computational
complexity is too high; and 2) the singular values can have a
significant impact (e.g. caused by maintenance or temporary
closures). As a result, we adopt the K-means clustering
algorithm to reduce the calculation sophistication while
retaining high accuracy in this study. The specific steps are as
follows:

• First, the annual data set is processed using principal
component analysis (PCA) to extract the most important

features of each day. Feature extraction finds meaningful
information within a confusing data set. In addition,
feature extraction can reduce complex data sets to a
lower dimension while retaining the variation to
eliminate noise and reveal hidden structures (Yilmaz et
al., 2019).

• After reconstructing the total load curves using PCA, the
daily load-demand curves are clustered into
independent nonoverlapping clusters (Richard et al.,
2017).

• The feature-based DLPs are used as inputs to search the
optimal set of BESS deployments. Meanwhile, feature
extraction is used to provide the physical meaning for
identifying the results (Supplementary Figure S2).

3.2 Battery Energy Storage System
In the past few decades, BESSs have become significantly more
attractive because of the rapidly decreasing price. Additionally,
BESSs have the ability to transform the
production–consumption energy paradigm into a new
production–storage–consumption paradigm. In our case
study design, we select sodium–sulfur (NaS) technology as
the electricity power storage tool because of its high energy
efficiencies (Divya and Østergaard, 2009). The state of the
battery changes during the input and output of power. The
state of charge (SOC) and power rating of the battery are used
to develop a realistic model of the storage system. During the
charging and discharging process, the SOCs of the battery can
be described by Eqs. 1, 2, respectively, as:

SOC(t + 1) � SOC(t) + ηcha · Ej
BESS(t)

Cap j
, (1)

SOC(t + 1) � SOC(t) − Ej
BESS(t)

Cap j · ηdis
, (2)

where SOC(t) is the state of charge of the BESS, and ηcha and
ηdis denote the charging and discharging efficiency of BESS,
respectively. Capj is the energy capacity of the BESS in
building j. Ej

BESS(t) is the energy state at the time t.
Battery cycle aging has been one of the main factors
considered in the performance of BESS technology over its
lifetime. During charging and discharging, battery
performance, especially energy capacity, decreases as a
result of oxidation and reduction reactions between the
positive and negative electrodes. Consequently, under the
conditions given in the following subsections, the battery will
not be degraded due to overcharging or over discharging
(Sudworth and Tiley, 1985).

3.2.1 Maximum SOC Constraint

Ej
BESS(t)< � Cap j · SOCmax, (3)

Ej
BESS(t)> � Cap j · SOCmin, (4)

where SOCmin is the lower limitation of SOC, and SOCmax is the
highest limitation of SOC.
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3.2.2 BESS Operation Power Rating Limitation

∣∣∣∣Ej
BESS(t)/ΔT∣∣∣∣< � pwc, (5)

where pwc denotes the rated power capacity of the BESS.

3.3 Energy Flow
Load-transfer management is the main work of load leveling. The
purpose is to optimize the allocation and rational use of power
resources, improve the economic operation of the power grid by
changing the time and method of power consumption, increase
facility use, and simultaneously benefit customers.

3.3.1 Aggregated BESS
The community’s buildings are equipped with a single centralized
battery, which is usually mounted on the outside of the structure.
The capacity and power of the aggregated BESS are defined by the
load demand of all buildings in the community. The aggregated
BESS is charged when the load demand is low (e.g. at night) and
discharged when the load demand is high to relieve the
instantaneous supply pressure on the power plant and to
improve the energy efficiency. This is a conventional
application of a large BESS on the distribution network side
(Trivedi et al., 2020). Because all processes take place outside the
building, the overall peak-shaving performance is not affected by
the individual building. Hence, there is no need to consider the
load of a single consumer; it easily reaches a stable state both in
on-peak and off-peak periods (see the red line in Supplementary
Figure S3A).

3.3.2 Distributed BESS
Each building has its own individual battery, and energy
exchange is based on single building energy allocation. The
common solution is to deploy the BESS inside the building to
achieve load leveling individually according to load demand.
For example, Mair et al. (2021) took a demand-driven
approach to determine the residential battery capacity of
individual household demand both for load smoothing and
peak shaving. The results show that the BESS can successfully
achieve load smoothing and keep the cell size within the design
specification. However, due to the complexity of building types
(e.g. shopping malls and office buildings have highly variable
electricity consumption habits), when the number of buildings
in a community reaches dozens or even hundreds of buildings,
such a solution will become inefficient. When each BESS is
installed individually, there is no interchange of information
between them and the whole system becomes unpredictable.
Hence, although it is possible to maintain a smooth load profile
at an individual level, the final balance performance is difficult
to predict and control due to the involvement of multiple users
(Supplementary Figure S3B). The innovation introduced by
Mair et al. (2021) was that they also compared the battery
capacity required for a single house with the battery capacity
required for the total needs of a group of households (20
households). Aggregation reduces battery demand per house
by 50% for load smoothing and 90% for peaking. This means

that allowing battery resources to be shared among users may
result in smaller battery deployments per house to achieve the
same level of load smoothing (Bayliss et al., 2012).
Consequently, under the cloud-based energy sharing
framework, the individual BESS has the capability to
manage the energy of the other buildings in the community.
The relationship between the distribution network and the
individual batteries is developed so that the individual
consumer’s management system can adjust the charging
and discharging power by means of the peak information of
the distribution network. However, the disadvantage is that the
capacity and charging/discharging power of the distributed
battery are limited by its own load demand. Therefore, when
the load demand is compensated by its own battery at a certain
moment, the remaining power is supplied by the other
buildings in the community (battery storage sharing).

3.4 Energy Flow Modeling
The energy system configuration may vary depending on the grid
and the components of the energy flow. As an example, the
following equation can be used to represent the load balance
between components of the system:

Ej
net(t) � Ej

grid(t) − Ej
BESS(t), (6)

where Ej
net(t) is the net load demand of the end user, Ej

gird(t) is
the electricity from the external grid, and Ej

BESS(t) donates the net
electricity exchange of the BESS. t is the index that indicates the
time period of each hour of the day. Due to the cloud-based
energy-sharing framework, the individual battery not only
charges or discharges electricity power to its own building, but
also stores or uses the remaining power in the building
community. Therefore, the interaction with net load and the
BESS of the whole community can be defined by Eq. 7. The
matrix provides a visual representation of the energy exchange
between buildings, so that the charge and discharge power
between buildings can be defined by Eqs. 8, 9:

∣∣∣∣∣∣∑ Ej,′
net(t)

∣∣∣∣∣∣ � ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑ Ej

cha(t)/ηcha, if ∑ Ej,′
net(t)< 0

0, if ∑Ej,′
net(t) � 0∑ Ej

dis(t) · ηdis +∑ Ej
grid(t), if ∑Ej,′

net (t)> 0

,

(7)

Echa(t) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
E1,1
cha(t) E2,1

cha(t) / Ej,1
cha(t)

E1,2
cha(t) E2,2

cha(t) / Ej,2
cha(t)

..

.

E1,j
cha(t)

..

.

E2,j
cha(t)

1
/

..

.

Ej,j
cha(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (8)

Edis(t) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
E1,1
dis(t) E2,1

dis(t) / Ej,1
dis(t)

E1,2
dis(t) E2,2

dis(t) / Ej,2
dis(t)

..

.

E1,j
dis(t)

..

.

E2,j
dis(t)

1
/

..

.

Ej,j
dis(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (9)

• Charging state: The individual BESS is in a charging state
during the night when electricity is at the off-peak price. The
charging power of the private BESS can be defined as follows:
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Ej
cha(t) � ∑ Ej,i

cha

�

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
pwj , if

∣∣∣∣∣∣E j,′
net(t)

∣∣∣∣∣∣> pwj∣∣∣∣∣∣E j,′
net(t)

∣∣∣∣∣∣ · ηcha + ∣∣∣∣∣∣E j−1,′
net (t)

∣∣∣∣∣∣ · ηcha · ηtrans , if ∣∣∣∣∣∣E j,′
net(t)

∣∣∣∣∣∣≤ pwj ≤
∣∣∣∣∣∣E j,′

net(t) + E j−1,′
net (t)

∣∣∣∣∣∣
..
.∣∣∣∣∣∣E j,′

net(t)
∣∣∣∣∣∣ · ηcha + ∣∣∣∣∣∣∑ E j,′

net(t) − Ej′
net(t)

∣∣∣∣∣∣ · ηcha · ηtrans , if ∣∣∣∣∣∣∑ E j,′
net(t)

∣∣∣∣∣∣≤ pwj

(10)

• Discharging state: The BESS is in a discharging state during
the day, when the building has insufficient power (i.e.
Ej,′
net(t)> 0). If the other buildings in the community have

insufficient power while the battery has remaining capacity
(i.e. Ej−1,′

net (t)> 0/∨ E1,′
net(t)> 0), the BESS can also be in a

discharging state. The discharging power of the private
BESS can be defined as follows:

Ej
dis(t) � ∑ Ej,j

dis

�

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
pwj(t), if

∣∣∣∣∣∣E j,′
net(t)

∣∣∣∣∣∣> pwj∣∣∣∣∣∣E j,′
net(t)

∣∣∣∣∣∣/ηdis + ∣∣∣∣∣∣E j,′
net(t)

∣∣∣∣∣∣/ηdis · ηtrans , if ∣∣∣∣∣∣E j,′
net(t)

∣∣∣∣∣∣≤ pwj ≤
∣∣∣∣∣∣Ej,′

net(t) + E j−1,′
net (t)

∣∣∣∣∣∣
..
.∣∣∣∣∣∣E j,′

net(t)
∣∣∣∣∣∣/ηdis + ∣∣∣∣∣∣∑ E j,′

net(t) − E j,′
net(t)

∣∣∣∣∣∣/ηdis · ηtrans , if ∣∣∣∣∣∣∑ E j,′
net(t)

∣∣∣∣∣∣≤ pwj

(11)

3.5 Performance Metrics
3.5.1 Load Leveling
Currently, the definition of load leveling is not clear. The purpose
of load leveling is to obtain a more stabilized and balanced load
curve, as well as to avoid frequent transitions between peaks and
troughs to reduce the peak-supply pressure on the electricity
supplier. Therefore, load leveling can be interpreted as a small
fluctuation of electricity consumption data. Xu et al. (2017)
proposed using the load standard deviation (LSD) to measure
the fluctuation statistically. The LSD is defined as:

LSD �
�����������������������������∑[Eload(t) + ∑Ej

BESS(t) − Emean(t)]2
N

√
, (12)

where Eload(t) denotes the system base load demand at time
period t, and Emean(t) is the mean load-demand value. t is a time
period for 1 day, and j is the set of all buildings, which is
represented as j ∈ {1, 2, . . . , 39}. In this study, LSD is used to
determine the load curve. The lower the standard deviation value,
the more stable the load curve will be.

3.5.2 Transmission Losses
Energy sharing requires reliance on the distribution network to
share surplus battery capacity to other buildings within the
community. Generally, a smaller power network will incur
relatively high transmission losses because even though the
electricity travels only a few miles, the low-voltage distribution
lines cause high losses in the community-level network.
Meanwhile, the different operation of individual batteries due
to their locations and capacities will cause different energy losses.
Therefore, energy loss cannot be ignored in shared energy
communities. Additional losses are incurred during the
charging or discharging of the BESS. The total energy loss can
be described as:

Eex(t) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 E2,1
dis(t) / Ej,1

dis(t)
E1,2
dis(t) 0 / Ej,2

dis(t)
..
.

E1,j
dis(t)

..

.

E2,j
dis(t)

1
/

..

.

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (13)

Losstrans � ∑Eex(t) · ηtrans, (14)
where Losscha/dis represents the conversion losses due to the
BESS charging or discharging, and Losstrans is the transmission
loss due to surplus battery sharing through the distribution
network. In this work, the distance to buildings within the
community is within 1 km and the transmission losses due to
energy sharing are defined in Eqs. 13, 14. The transmission
loss rate is assumed as 8%. It is noted that the loss rate of a
building taking stored power from or into that same building is
0% because the energy exchange takes place within the
building.

3.5.3 Economic Indicators
The net present value (NPV) of an investment is the difference
between the present value of cash inflows and the present value of
cash outflows over time. The NPV is a tool used in capital
budgeting and investment planning to determine whether a
planned investment or project will be profitable. Ignoring the
operation and maintenance costs, the NPV of the BESS can be
determined as:

NPVBESS � ∑∑(Edis(t) − Echa(t) − Eex(t)) · Pr(t)
(1 + i)y −∑Capj

· Cinv ,

(15)
whereNPVBESS donates the net present value of the BESS, Pr(t)

is the electricity price at time t, i is the discount rate, y is the
lifecycle of the project, and Cinv is the investment price, which
includes the inverters, equipment costs, installation costs, and
initial conservation costs.

3.6 Optimization
This section describes the design and optimization methods of
a distributed BESS within an energy sharing community. The
first step is to obtain the electrical load profile of the entire
community by evaluating each building. In the second step, the
battery capacity at the aggregation level is optimized using a
genetic algorithm (GA) using the aggregation level power/
demand as input parameters, with the goal of maximizing the
load leveling performance of the community. The objective
function of this step can be described as:

Jfitness � { min(LSD)
max(NPVBESS) , (16)

The output of this step is considered to be the minimum
capacity required to achieve the required energy performance
(load leveling) for the entire community. In step 3, nonlinear
programming (NLP) is used to optimize the capacity of the
distributed batteries installed in each building to minimize
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storage sharing (i.e. power exchange with other batteries) and
thus reduce the associated energy losses. The objective
function of NLP is represented by Eq. 17.

JNLp � min(∑ Eex(t) · ηtrans), (17)
A step-by-step method is described below. Supplementary

Figure S4 presents a flow chart depicting the method.

3.6.1 Data Fetching
The first step is the data fetching. Features of the BESS that are
collected consist of the design range of the BESS dimensions
(kWh), module dimensions of the BESS (kWh), module
dimensions of the power rating (kW), and the planning
optimization objective function. The parameters necessary
for the GA are also imported in this step.

3.6.2 Extraction of Representative Load-Demand
Curves
The load-demand curves for a standard year are approached
using PCA and clustered using the K-means method. After
alteration according to the chronology, representative load-
demand profiles are computed.

3.6.3 Creation of the Initial Population
An initial population of individuals is the starting point of
the process. Each individual is represented using an
alphabetical string (string of 1 and 0 s). Every individual
represents the capacity of the BESS. The parent groups are
initialized stochastically in this step.

3.6.4 Fitness Function
The fitness function determines how fit an individual is (the
fitness function is the LSD). MATLAB’s fmincon solver is used to
determine the optimal BESS operation for each population to
correspond with the minimum LSD. This step is performed for
each individual member of the population in turn and results in a
fitness score. Based on the fitness score of an individual, we
determine whether it will be selected for breeding.

3.6.5 Evolution via GA
Each individual progeny member of a population is evaluated
for fitness in step 4 of the evaluation of a generation. Selective
breeding, cross-breeding, and mutation are used within the
population to generate the offspring population. An elite
algorithm is used to blend the parent and offspring
populations together to form the next generation. Step 6
should be followed if the current generation is the final
generation; otherwise, update the number of generations,
reset the year to 1, and go to step 4.

3.6.6 Obtain the Results of the Aggregated Battery
Capacity
An optimal capacity of the aggregated battery, which has the
minimum LSD, is the result of the GA search.

3.6.7 Optimization of Distributed Battery Capacity for a
Single Building
In this step, GA is used to optimize the capacity of distributed
batteries (kWh) installed in individual buildings based on the
aggregated battery capacity, which aims to minimize load
limitations.

3.6.8 Calculating Feasible Solutions Using Nonlinear
Programming
In the eighth step, the battery capacity of all batteries to be tested
is calculated.We can use NLP and combine other factors to assign
the battery capacity.

Supplementary Table S1 provides an overview of the
input variables used in the study; the investment price of
the BESS is 25,000 Yen/kWh. The discount rate is set to 4.5%
by the Bank of Fukuoka. The power rating of each BESS is
limited to 16% of its capacity. The upper limit of the
discharging depth is 90%. The power transmission loss rate
is set as 8%. The parameters of the GA are also summarized in
Supplementary Table S1.

4 CASE STUDIES

4.1 Situational Analysis
We collected the load profile data from a typical commercial
community in Japan. The measurement occurred from April
2013 toMarch 2014. The data set contains annual load data for 39
buildings that form a load matrix (365 days × 24 data points/day).
The 39 buildings provide common activities of a commercial
community, including a supermarket, hotel, factory, convenience
store, gas station, shopping mall, stadium, exhibition hall, clinic,
station, service center, office, and restaurant. The daily electricity
consumption curves of the whole community are shown in
Supplementary Figure S5. Due to the chronological nature of
commercial activities, the electricity consumption is much higher
in the daytime than in the nighttime. The peak annual electricity
consumption is concentrated in the summer (June, July, and
August).

4.2 Optimal Battery Capacity at Aggregation
Level
Supplementary Figure S6 shows the curve of load-leveling
performance with BESS capacity at the aggregation level. In the
initial part of the curve, the LSD decreases rapidly as the
aggregated capacity increases, while near the lowest point
(98,120 kWh/3,960) the rate of decrease slows. Then, with
increasing BESS size, the load-leveling performance
worsens. Energy losses are plotted in green in
Supplementary Figure S6. Energy losses increase with
increasing BESS sizes because the frequency of energy
exchanges is increasing. Therefore, the optimal BESS
aggregate capacity is 98,120 kWh.
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4.3 Results of Implementing Load Leveling
With the BESS
We select the four most representative days by season across
the whole year to verify the validity of the BESS for load
leveling. The load curve for the whole community with and
without BESS operation is plotted in Supplementary Figure
S7. The battery capacity is the optimal size of 98,120 kWh as
discussed in Section 4.2. The SOC of the virtual aggregated
BESS is also shown in Supplementary Figure S7 (green line),
which represents the comprehensive operation capability of
the distributed batteries. A large fluctuation in the community
load without BESS can be seen in Supplementary Figure S7
(black line). The peak demand is 44,300 kWh at noon while the
valley demand is 13,123 kWh at 4:00 a.m. in summer. The
difference between the peak and valley is more than
30,000 kWh. Optimal BESS operation results in the BESS
charging from 0 to 8 a.m. and discharging from 10 a.m. to
8 p.m. The green part represents charging, and the blue part
represents discharging. Therefore, the difference between the
peak and valley is greatly reduced and the peak becomes
significantly flatter (red line). In winter, although the peak
demand is 28,390 kW, the optimal BESS operation also reduces
the difference between the peak and the valley. Compared with
the case of no BESS, the peak demand is reduced by 26.6%.
These results show that optimal BESS operation can effectively
implement load leveling.

4.4 Aggregated Battery Capacity
Comparison with Individual Design
Supplementary Table S2 compares the results and
performances of the battery-sharing design method and the
individual design method. From the perspective of load-
leveling performance, the LSD value of the individual
design is 4,113, while that of the battery-sharing method is
3,960. Compared with the situation without BESS (Scenario 1),
these values are reduced by more than half, indicating that
both design methods offer good performance. The aggregated
capacity of the distributed batteries is 113,056 kWh under the
individual design and operation scenario (Scenario 2). The
aggregated capacity of the distributed batteries to achieve
better load-leveling performance is 98,120 kWh in Scenario
3. The aggregated battery capacity is significantly reduced (i.e.
a 13.2% decrease) compared with Scenario 2. Correspondingly,
the initial investment in the BESS also is significantly reduced
in Scenario 3.

4.5 Optimization at the Single-Building Level
Due to the energy-sharing framework benefits, private BESSs
manage all energy flows within the community. The
limitations of deploying batteries inside buildings are
greatly reduced. The surplus capacity can be consumed
inside other buildings, providing significant flexibility in
the BESS deployment. However, the variety of curves for
individual buildings shows the different features of BESS
operation. The flexibility of BESS deployment in a single

building is presented in Supplementary Figure S8 as the
optimal range of BESS capacities. BESS deployment flexibility
varies greatly between buildings. We selected three scenarios
that have the same BESS capacity at the aggregation level
(98,120 kWh) but with different capacities for each building.
It is noted that in the case of Scenario a, all the buildings
deploy the batteries under the optimal sizes. The energy flows
of the three scenarios are plotted in Supplementary Figure
S9. In the case of Scenario a, all energy flows of batteries occur
within the individual buildings so there is no energy loss to
exchange between buildings. In the case of Scenario b, some
buildings (such as buildings 1, 2, 21, and 22) first discharge
within the buildings, but they still have remaining capacity to
share with other building to achieve the load-leveling
objective. Therefore, 333,697 kWh of energy losses
occurred in the energy-sharing process. In the case of
Scenario c, there are much higher remaining battery
capacities in the buildings so the energy losses also are
much higher.

4.6 Building Features and Optimal Sizing of
the BESS
A comparison of Scenarios a, b, and c indicates that different-
sized buildings will have different energy losses. Scenario a
achieves 0 kWh energy losses, because all buildings consume
their own batteries’ charged power so that there is no energy
exchange between buildings. In the cases of Scenarios b and c,
surplus power always remains charged in the batteries. Some
buildings do not require electric power for much time and have
installed oversized batteries. Therefore, building load features
and battery sizes are highly dependent. Due to the
characteristics and operations of the BESS, power from the
grid is charged to the battery at night and discharged to the
building in the daytime. Supplementary Figure S10 illustrates
the relationship between daytime electricity consumption
(from 10:00 a.m. to 10:00 p.m. in this case) and optimal
battery capacity for all buildings. Daytime electricity
consumption is shown as a box plot, in which the dots
represent the four most representative sets of data points,
and the red boxes are 95% confidence intervals. The battery
capacity of the building is always below the minimum value of
daytime electricity consumption; when the capacity is greater
than the minimum value, the battery capacity remains surplus
power. The optimal capacity depends on the lowest daytime
electricity consumption.

4.7 Closing Days
The optimal capacity depends on the lowest daytime electricity
consumption. Commercial activities are the determinants of
electricity consumption in commercial buildings. On working
days, buildings have high electricity demand to cope with busy
commercial activities (e.g. air conditioning, lights, operation of
factory production equipment), but on closing days, buildings
have little demand for electricity consumption and require
only a small quantity of power to keep equipment on standby
(e.g. network, security, and some storage equipment). In
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Supplementary Figure S11, buildings 2, 8, and 22 have
relatively high consumption, but the optimal BESS
capacities are at a low level. Therefore, rest days can have a
significant impact on battery sharing as well as battery capacity
in a shared framework. We selected four buildings with similar
annual electricity consumption as a case study. Two of the
buildings (B9 and B11) have no closing days, and electricity
consumption is relatively stable throughout the year. One
building (B35) closes on Sunday. One building (B22) closes
on Saturdays and Sundays. The daily electricity consumption
curves are plotted in Supplementary Figure S11. There is a
clear difference between business days and closing days for
buildings B22 and B35.

Batteries with a capacity of 2,000 kWh were installed in all
four buildings. The operation of the batteries between
buildings can be clearly seen in Supplementary Figure S12.
On weekdays, all buildings have high power consumption
during the day, so all batteries have to be discharged within
their own buildings and there is no energy exchange. On
Saturdays, the batteries in B22 will be shared between B9
and B11 because B22 is closed and there is almost no power
consumption during the daytime. On Sundays, the remaining
battery capacity in B22 and B35 will be shared between B9 and
B1, as B22 and B35 are closed. Buildings with two closing days
in 1 week contribute 14.3% more energy loss than those with
one day.

5 FUTURE DIRECTIONS FOR BATTERY
SHARING

Based on the literature review of battery sharing and on our
work, the effectiveness of BESS for better energy planning at
the individual as well as community level can be
demonstrated. However, when moving up to the city level
of service recipients, there is still room for improvement in
data utilization, interoperability, and the integrated
management of the technologies currently used in BESS
applications. This section will discuss the upgrading of
BESS service targets and future directions for application.
It is well known that cities are pagoda-shaped, from many
single buildings to fewer communities to the city as a whole,
and the higher levels have exponentially more individuals or
systems involved. The current BESS applications are used
only for specific buildings or groups within cities and do not
take into account the city as a whole. As a result, we have
taken an important step forward in our work. We have
expanded the application of BESS from individual
buildings to the community level and are connecting
customers scattered across a community through battery
sharing. Accordingly, the BESS will improve the
connectivity between systems to fully integrate the various
factors that affect energy generation and consumption in
cities. BESS application strategy still faces some challenges
in city-level interaction. First, the BESS requires the analysis,
utilization, and interaction of data. Therefore, energy data
need to be collected and shared at all levels of the city through

an integrated IoT. Geospatial information and automation-
based technologies need to be shared as well in order to reflect
the changing spatial and environmental characteristics of the
city.

6 CONCLUSION

In this work, we have proposed an energy-sharing framework
to optimize the control strategy and allocation method for a
distributed battery system. The framework achieves the
optimization of load leveling by investigating interactions
between buildings, the BESS, and the distribution network.
First, we have proposed the advantages of energy sharing to
analyze the differences between centralized and distributed
energy storage in dealing with load-leveling problems. We
have established a strategy to reduce the peak-to-valley
difference for the battery management system. Then, we
have capitalized on the advantages of centralized energy
storage to propose a size allocation method for distributed
energy storage to optimize the load-leveling performance and
reduce the battery capacity at the aggregation level. The
proposed distributed battery system was modeled in a
typical community with 39 buildings in Japan to analyze
the load-leveling performance.

The major conclusions of this study are as follows:

1) The optimal solution obtained with the energy-sharing
structure performs load leveling effectively. It achieved a
peak-shaving rate of 26.6%.

2) Compared with individual operation, the energy-sharing
model achieves better load-leveling performance for the
public grid, while it reduces the battery capacity by 13.2%
at the aggregation level.

3) Energy sharing is a generic framework for decomposing the
optimal BESS allocation problem into individual optimal
BESS sizes within buildings. This approach obtains optimal
solutions by reducing unnecessary energy exchange between
buildings. Conversely, the approach also obtains near-optimal
solutions for the whole system (with energy losses) due to the
different investment budgets and preferences for the
buildings. This gives flexibility in the placement of the
BESS, and investors can choose a solution according to
their budget, other available investment opportunities, and
their preferences.

4) Commercial buildings have great potential for BESS
placement because of their fixed power-consumption
patterns. The optimal BESS capacity in commercial
buildings depends on the lowest daytime power
consumption. Commercial buildings with closing days
have limitations on BESS deployment. On closing days,
buildings can only use a BESS by sharing. Buildings with
two closing days a week lose 14.3% more energy than those
with one day.

5) The proposedmethod highlights the possibility of cooperation
between consumers. It provides a blueprint for the
implementation of regional battery sharing.
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Many buildings are now producing their own electricity from local
PV panels and selling it to the grid. However, PV penetration and its
intermittent output place additional management burdens on the
public grid. There is no consideration of the impact of PV penetration
or power trading on the design of individual BESSs in this study. Thus,
future work should consider the techno-economic case of a
PV–battery system for building-energy-sharing communities to
identify interactions between coordinated ESSs and a smart grid.
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NOMENCLATURE

Abbreviations
BESS Battery energy storage system

DLP Daily load profile

EL Energy loss

ESS Energy storage system

GA Genetic algorithm

LSD Load standard deviation

NAS Sodium–sulfur

NPV Net present value

PCA Principal component analysis

PV Photovoltaic

SOC State of charge

Set
d Index for time (days), d = {1,2, . . . 365}

j Index for number of buildings

t Index for time (hours), t = {1,2, . . . 24}

yr Index for year

Variable
Eload Base load power (kW)

ηcha Charge efficiency

Echa Charging power (kWh)

ηdis Discharge efficiency

Edis Discharging power (kWh)

i Discount rate

Losscha/dis Energy losses in battery charging and discharging process

Losstrans Energy losses in transmission process

Cinv Investment cost

Emean Mean load power (kW)

Enet Net power (kW)

EBESS Power exchange of the BESS (kWh)

Egrid Power from external grid (kW)

Eex Shared power within the community (kWh)

Losstot Total energy losses

ηtrans Transmission efficiency

Cap Capacity of the BESS

E Energy (kW/kWh)

Pr Electricity price

pw Rated power of the BESS
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