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The state of health (SOH) of lithium-ion batteries is an important part of the battery
management system (BMS). Accurately grasping the SOH of the lithium-ion battery will
help replace the battery in time, to avoid accidents. Aiming at the problems of complex
BMS management and high calculation cost caused by too many inputs/attributes, this
study used feature engineering to mine the higher temperature variety rate associated with
degraded capacity as the input of temporal convolutional networks (TCNs) and SOH as the
output to establish the TCN model. On this basis, three lithium-ion batteries, namely, as
B0005, B0007, and B0018 are verified, and the mean absolute error (MAE) and root mean
square error (RMSE) of predicted SOH are not more than 1.455% and 1.800%,
respectively. To further obtain the uncertain expression of predicted SOH, this study
adopts the sampling method to obtain the confidence interval of lithium-ion battery SOH
prediction results.

Keywords: lithium-ion battery, temporal convolutional networks, NASA dataset, uncertain expression, state of
health (SOH)

1 INTRODUCTION

The lithium-ion battery is favored by people because of its advantages of high energy density,
long service life, high stability, and moderate price. It has the highest degree of
commercialization and is widely used in aerospace, electric vehicles, and smart grid.
However, frequent fires and explosions make people gradually aware of the aging
problem behind battery safety (Zhang and Lee, 2011; Li et al., 2021a). State of health
(SOH) is an important indicator in the battery management system (BMS). By accurately
grasping SOH, you can choose the time to replace the battery or change the charging strategy
(Wang et al., 2022) to prolong the battery life. Therefore, accurate estimation of SOH is
particularly important for control strategy formulation, operation, and maintenance (Meng
et al., 2020).

There are two main methods for the evaluation of SOH: model-based and data-driven. The
former includes the mechanism model, equivalent circuit model, and empirical model (Liu et al.,
2017), which have the advantages of accuracy, simple modeling, and strong robustness,
respectively, but they also have the problems of modeling difficulty (Ma et al., 2019), poor
dynamic characteristics, and insufficient accuracy (Cai et al., 2021). The data-driven method based
on statistics and artificial intelligence algorithms (Pang et al., 2014) does not need modeling. The
accuracy of prediction results depends on feature engineering and algorithm selection. It has
strong adaptability, so it is more widely used. At present, SOH is generally defined as follows
(Zhang and Lee, 2011):
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SOH � Cτ

CN
, (1)

where CN is the rated capacity and Cτ is the maximum capacity
that can be charged/discharged. As a direct health factor, Cτ

needs to be obtained using the ampere-hour integral method,
which has the disadvantages of being time-consuming and with
low accuracy (Zhang et al., 2019). Therefore, it is necessary to
explore the relevant parameters (indirect health factors) that can
indirectly reflect the battery performance to realize the evaluation

of SOH. Because the electrochemical parameters are not easy to
obtain, it is necessary to extract the characteristics with the help of
external physical quantities such as voltage, current, and
temperature in the working process of the battery. On this
basis, themachine learning algorithm is used to evaluate the SOH.

Song et al. (2020) and Lu et al. (2020) extracted some features
from the capacity increment curve and studied the battery SOHwith
the help of Gaussian process regression and artificial neural network,
respectively. Zhang et al. (2021a) extracted the average voltage,
voltage difference, current difference, and temperature difference
and evaluated the SOH of lithium-ion battery using XGBoost. Li
et al., (2021b) established the SOH evaluation model by taking
charging capacity, charging time, average charging temperature,
average charging voltage, discharge temperature, and average
discharge voltage as the input and discharge capacity as the
output of the LSTM model. Li et al. (2020) directly used the
voltage data during charging as the input of the GRU model to
evaluate SOH. Shen et al. (2021) and Orchard et al. (2015) took
voltage, current, and temperature in each cycle as inputs and used
the CNN to establish the SOH prediction model. However, a large
number of input attributes or input data greatly increase the
complexity and computational cost of battery management
(Olivares et al., 2013). In this study, through feature engineering,
the temperature variety rate with the highest correlation with health
status is mined as the input of the SOH evaluation model to predict
SOH. However, a small number of characteristics or samples are
difficult to reflect the capacity regeneration phenomenon in the
aging process of the lithium-ion battery, which affects the accuracy of
SOH evaluation [capacity regeneration phenomenon (Widodo et al.,
2011; Bai et al., 2018) refer to the phenomenon that there is a certain
interval between charging and discharging cycles, resulting in the
increase of the maximum available capacity of the battery]. The
recurrent neural network can track the capacity decline trend
through the learning of time series, but at the same time, there is
the problem that the prediction result lags behind the actual result.
While the time convolution network (TCN) (Li et al., 2019) can also
be used in time series, there is no lag problem and it has a better
prediction effect. In addition, most studies only focus on the
accuracy of the proposed algorithm, but for BMS, it is also

FIGURE 1 | Discharge curve in different cycles during the aging process: (A) temperature; (B) voltage.

TABLE 1 | Correlation coefficients between different candidate indirect health
factors and capacity.

B0005 B0007 B0018

Temperature range 0.98 0.86 0.93
Temperature variety rate 0.99 0.99 0.99
Voltage variety rate 0.89 0.86 0.92

FIGURE 2 | Correlation between temperature variety rate and capacity.
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necessary to obtain uncertain expression. Therefore, based on the
TCNmodel, this study obtains the expression of uncertainty with the
help of sampling.

2 EXTRACTION OF INDIRECT HEALTH
FACTORS

Indirect health factors refer to the characteristics that are strongly
related to aging and can characterize the SOH of lithium-ion
batteries. Many studies mostly use equal voltage drop discharge
time (Zhang et al., 2019; Gou et al., 2020), equal voltage differential
charging time, or discharge voltage sample entropy (Zhang et al.,
2021b). However, the determination process of these health factors
is complex and cumbersome. Therefore, it is necessary to select
other factors with a simple and reliable structure. Figure 1 shows

the discharge temperature curve and voltage curve of the
B0005 lithium-ion battery in the NASA data set. Through
observation, it is found that the temperature curve and voltage
curve change feebly in the [1,000 and 2,000] range, and with the
deepening of the aging process, the slope of this part of the segment
decreases and increases synchronously. Therefore, the temperature
variety rate and voltage variety rate of the curve segments can be
used as candidate indirect health factors. In addition, it can also be
observed from Figure 1 that with the deepening of battery aging,
the maximum discharge temperature also shows a synchronous
upward trend. Due to some differences in the initial temperature,
the temperature range is used as a candidate indirect health factor.

2.1 Indirect Health Factor Time Series
The voltage variety rate, temperature variety rate, and
temperature range are, respectively, in the following forms:

FIGURE 3 | One-dimensional convolution.

FIGURE 4 | Capacity degradation curves for B0005, B0007, and B0018.
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ki(v) � v2000 − v1000
1000

, i � 1, 2, . . . , n, (2)

ki(T) � T2000 − T1000

1000
, i � 1, 2, . . . , n, (3)

Δi(T) � Tmax − Tmin, i � 1, 2, . . . n, (4)
where v2000 and v1000 are the voltage at the 2000s and 1000s in
the i-th discharge process, respectively, T2000 and T1000 are the
temperature at 2000 s and 1000 s in the i-th discharge process,
respectively, Tmax and Tmin are the maximum and minimum
temperature in the i-th discharge process, respectively, and i is
the discharge cycle in the whole aging process. Therefore, the
time series of indirect health factors can be expressed as
follows:

k(v) � {k1(v), k2(v), . . . , kn(v)}. (5)
k(T) � {k1(T), k2(T), . . . , kn(T)}. (6)
Δ(T) � {Δ1(T),Δ2(T), . . . ,Δn(T)}. (7)

2.2 Correlation Analysis
Zhang et al. (2019) used the gray correlation method to analyze
the correlation between candidate indirect health factor series and
capacity series, which is cumbersome. This study uses the Pearson
correlation coefficient method (Zhou et al., 2013) for research.

r � ∑n
i�1(xi − �x)(yi − �y)�����������∑n

i�1(xi − �x)2
√ �����������∑n

i�1(yi − �y)2√ . (8)

Thus, the correlation between candidate indirect health factor
sequences and capacity sequences during discharge in NASA data
sets B0005, B0006, B0007, and B0018 can be obtained.

It can be seen from Table 1 that the temperature change rate
has the highest correlation and the visual effect is shown in

Figure 2. Therefore, the temperature change rate is finally
selected as an indirect health factor.

3 TCN ALGORITHM THEORY

To resolve the traditional neural network not being able to solve the
timing constraints of time series, a recurrent neural network
(RNN) was proposed. However, with the increase in data scale,
the problems of gradient disappearance and gradient explosion
may occur. To overcome this disadvantage, long–short-term
memory (LSTM), gated recurrent unit (GRU), and other
methods have been derived based on the RNN. Although LSTM
and GRU show better performance than the RNN in memory and
accuracy, the advantage of “infinitememory” does not exist. Li et al.
(2019) point out that convolution structure is superior to recurrent
neural networks in tasks such as audio synthesis and machine
translation. On this basis, the TCN framework is explored. This
framework is superior to recurrent neural networks in memory
ability and accuracy, which provides a novel idea and direction for
the solution of time-series problems. The TCN includes one-
dimensional causal convolution, extended causal convolution,
and residual connection.

3.1 One-Dimensional Causal Convolution
One-dimensional convolution in the TCN, such as two-
dimensional convolution, still has the characteristics of weight
sharing. Given a time series (Xt, Yt), the time series is
transformed into the input and output of supervised learning.
When the input Xt and output Yt form a single channel, the
output at any time t depends on the sub input sequence with the
same convolution kernel length including the current time, that
is, causal convolution, as shown in Figure 3 in the following part.
When the convolution kernel length is k � 3, then
yt � xt−2 · w1 + xt−1 · w2 + xt · w3. In addition, TCN default
step size stride � 1, that is, the input sub time series moves
one step at a time.

3.2 Dilatory Causal Convolution
The deep network can be obtained by superposition based on a
one-dimensional causal convolution network, but the increase of
the receptive field is obtained at the expense of the depth of the
network, so it is difficult to deal with long historical data. To solve
this problem, TCN proponents refer to the dilatory causal
convolution in the WaveNet model (Ding and Jia, 2019). The
definition of extended causal convolution is given as follows:

F(s) � (xpdf)(s) � ∑k−1
i�0

f(i) · xs−d·i, (9)

d � bi, (10)
where f: {0, . . . , k − 1} is the convolution kernel and d is the
dilation factor (b is usually taken as 2).

The operation is realized using the dilation factor (default 2),
which increases the receptive field w on the premise of fewer
network layers.

FIGURE 5 | Complete TCN model.
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TABLE 2 | Discharge test conditions of lithium-ion battery.

Battery Discharge current Discharge cut-off voltage Room temperature

B0005 2A 2.7V 24°C
B0007 2A 2.2V 24°C
B0018 2A 2.5V 24°C

Note that unlike the end of life (EOL) standard (Sun et al., 2021) defined in IEEE1188-1996, NASA, defines EOL, as 70%, that is, 1.4 Ah. Capacity degradation curves for B0005, B0007,
and B0018 is shown in Figure 5.

TABLE 3 | Model configuration.

Kernel size Residual block number Base dilation factor Optimizer Learning rate

3 3 2 Adam 1e-5

TABLE 4 | SOH prediction effect under different prediction starting points and algorithm combinations.

90 100 110

MAE (%) RMSE (%) AE MAE (%) RMSE (%) AE MAE (%) RMSE (%) AE

B0005 LSTM 0.542 0.736 6 1.504 1.678 6 0.914 1.004 3
GRU 0.636 0.778 2 0.52 0.709 6 0.991 1.179 6
CNN–LSTM 0.99 1.111 5 14.579 15.905 none 1.806 2.14 none
TCN 0.991 1.329 0 1.015 1.332 0 1.455 1.8 1

B0007 LSTM 2.512 2.873 — 2.163 2.43 — 1.915 2.064 —

GRU 1.88 2.189 — 1.515 1.727 — 1.496 1.623 —

CNN–LSTM 4.903 4.589 — 1.098 1.4 — 1.441 1.558 —

TCN 1.168 1.443 — 0.996 1.294 — 1.186 1.433 —

B0018 LSTM 0.96 1.537 2 1.204 1.435 — 0.503 0.653 —

GRU 0.904 1.117 3 0.395 0.498 — 0.843 0.972 —

CNN–LSTM 0.361 0.454 3 4.247 4.53 — 4.534 4.776 —

TCN 0.297 0.374 1 0.373 0.465 — 0.323 0.406 —

FIGURE 7 | B0018 SOH prediction effect under different prediction
starting points (TCN).

FIGURE 6 | B0018 SOH prediction effect under different algorithms
(starting point is set to 90)
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w � 1 +∑n−1
i�0
(k − 1) · bi � 1 + (k − 1) b

n − 1
b − 1

, (11)

where b is the base dilation factor, n − 1 is the number of network
layers, and i is the number of network layers before the
current layer.

3.3 Residual Connection
It can be seen from the aforementioned text that through the
selection of convolution kernel size and base expansion factor, a
relatively small number of network layers can be used to achieve a
large receptive field. However, despite the abovementioned
operations, the network will be very deep. Therefore, TCN
proponents introduced a residual block structure similar to
Resnet. As shown in Figure 4, the residual block includes a
two-layer convolution network and nonlinear mapping. To
normalize the input of the hidden layer and offset the problem
of gradient explosion, weight normalization is applied to each
convolution layer. However, the aforementioned architecture can
only realize complex linear regression, and nonlinearity needs to be
introduced by adding the activation function. In addition, to
prevent overfitting and gradient disappearance and accelerate
model training, regularization is introduced by dropout after
each convolution layer of each remaining block.

During the jump connection, because the number of channels
in the input layer and the output layer may be inconsistent, the
output and input cannot be added directly. To solve this problem,
1 can be introduced × 1 convolution to ensure that the two
tensors have the same shape.

o � Activation(x + F(x)), (12)
where x is the input of the network and the function F(x) is the
residual mapping to be learned. Through the residual connection,
the problems of gradient disappearance and gradient explosion

can be effectively alleviated, and the degradation of the model can
be avoided.

4 SIMULATION

4.1 Simulation Environment
The experimental analysis model in this study is based on Python
3 6. The experiment was carried out on the Dell Notebook. The
relevant configurations are as follows: the system model is
Inspiron 5488, the GPU is NVIDIA GeForce mx250, the
CUDA version is 10.1, and the Pytorch version is 1.7.1.

4.2 Data Sources
The data set was provided by the NASAAmes prediction Excellence
Center (Lin et al., 2021). On the accelerated life test platform
developed by NASA, a 18650 lithium cobalate battery with a
rated capacity of 2 Ah was used to carry out reference charge
and discharge tests according to different test configuration files.
First, for the reference charge test, the battery was charged to the
charge cut-off voltage at constant current and then charged to the
cut-off current at a constant voltage. For the reference discharge test,
the battery should be discharged at a constant current until the
voltage is below the discharge cut-off voltage. The dataset files in the
mat format include two parts: one is the voltage, current,
temperature, and time in the test; and the other is the capacity
estimated using the Coulomb counting method (Lee et al., 2020).
The discharge test conditions are shown in Table 2 below.

4.3 Data Preprocessing
In this study, “charge–discharge” is regarded as a cycle. It should be
noted that there are some wrong data in the NASA data set. For
example, in the 310th and 313rd operations of B5, the charging
record is missing, resulting in repeated discharge. For this
phenomenon, the records of repeated charging or discharging
operations are deleted (Zhao et al., 2021). Therefore, the cycle
times of B5, B6, B7, and B18 are 167, 167, 167, and 132,
respectively. Then, the time series comprising temperature
change rate and SOH is transformed into samples required for
supervised learning according to a certain window (is set to 8), and
then the samples are divided into the training set, verification set,
and test set according to different prediction starting points. If the
starting point is set to 90, the training set is 73 samples generated
from the data of the first 80 discharges. The validation set is 10
samples immediately after the training set, and the test set is the
remaining samples. In addition, at the beginning ofmodel training,
the Z-score method should be used to standardize the data.

4.4 Model Parameter Configuration
The model parameters are configured in Table 3, as follows:

In addition, to stop training in and obtain a better model, early
stop technology is also adopted.

4.5 Prediction and Evaluation Indicators
For the prediction effect of SOH, in addition to the average
absolute error MAE (mean absolute error) and root mean error

FIGURE 8 | Uncertainty expression of SOH prediction results of B0018.
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RMSE (root mean square error), the absolute error AE (absolute
error) between the predicted value of EOL and the real value is
used as the evaluation index.

MAE � 1
N

∑N
m�1

∣∣∣∣ym − ym

∣∣∣∣, (13)

RMSE �

��������������
1
N

∑N
m�1

(ym − ym)2
√√

, (14)

AE � ∣∣∣∣cycleEOL − cycleEOL
∣∣∣∣, (15)

where ym and ym are the predicted and true values of the MTH
discharge, respectively and cycleEOL and cycleEOL are the cycles
from the predicted starting point to the predicted value or the true
value reaching EOL, respectively.

4.6 Prediction Results
4.6.1 Prediction Results of Different Algorithms and
Prediction Starting Points
To better illustrate the rationality of the selected health factors and
algorithms, it is further compared with LSTM, GRU, and
CNN–LSTM algorithms, and the prediction effect is shown in
Table 4 below. Since B0018 has prominent capacity regeneration
and there are fewer samples to be predicted than other batteries, it has
a better visual display effect. Therefore, taking B0018 as an example,
Figures 6, 7 show the SOH prediction effects under different
algorithms and different prediction starting points, respectively.

It can be seen from the table that the performance of the TCN in
B0007 and B0018 is significantly better than that of LSTM, GRU,
and CNN–LSTM. For B0005, when the prediction starting point is
90, the MAE and RMSE of the prediction results of the TCN
algorithm are greater than those of other algorithms, but AE is
less than that of other algorithms, indicating that the TCN can better
predict the SOH of the discharge process before EOL, and there is a
large deviation in the later stage, resulting in larger MAE and RMSE.
Therefore, in general, the effect of the TCN is significantly better
than that of other comparison algorithms involved in this study.

Since the effect of the TCN algorithm is obviously better than
that of other algorithms, only the SOH prediction effects of the
other two batteries under different prediction starting points are
shown in Supplementary Figures SA1, SA2.

4.6.2 Expression of Uncertainty
The aforementioned prediction process is point estimation.However,
the prediction of SOH should also include confidence interval, that is,
uncertainty expression. In this study, the confidence interval of SOH
in each discharge process is obtained by 100 repeated simulations.
Still B0018 is taken as an example. When the starting point of
prediction is 90, it can be seen from Figure 8 that the real value can
better fall within the prediction confidence interval between [91, 134].
For the visual display effect of B005 and B007, please refer to
Supplementary Figures SB1, SB2). The average value of standard
deviation in the confidence interval is 0.096% and 0.153%. Similarly,
Table 5 also gives the confidence interval, mean value, andmaximum
value of standard deviation for other batteries and prediction starting
points. Through comparison, it is found that when the prediction
starting point is set to 90, the reliable prediction interval is the largest,
and the mean value and maximum value of standard deviation are
also small. Therefore, the prediction starting point should be set to 90.

5 CONCLUSION

Based on the NASA public data set, a novel convolutional neural
network is used to evaluate the SOH of lithium-ion batteries by
using the temperature variety rate of indirect health factors mined
by feature engineering. On this basis, the uncertainty expression
of SOH evaluation is given by sampling. The verification results
show that the extracted health factors are simple and feasible and
the algorithm has high accuracy. Therefore, the method proposed
in this study has high practical value.
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