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Smart meters generally suffer degradation of metering accuracy and performance due to
aging, faults, and other factors, which, however, are difficult to detect. This study proposes
a measurement error estimation method for distributed smart meters based on a modified
BP neural network. First, the relationship model between the metering correction
coefficient, network loss, and energy consumption measurement value for the
distributed system is established. Then, a modified BP neural network for the
parameter estimation method is proposed, in which the internal activation function,
iterative step size, and other parameters are comprehensively designed. Finally, the
parameters of the distributed smart meter measurement error are solved through
training and learning. The case study verifies the effectiveness of the proposed
method, and this study lays a theoretical foundation for accurate prediction of the
measurement error for distributed smart meters.
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1 INTRODUCTION

With the popularization of power networks and the full coverage of smart meters, energy metering
engineering has become the focus of increasing attention of the operation department of power
companies. Among them, the measurement error of the metering device is directly related to the
accuracy of the electric energy measurement and is also the basis for the economic accounting of the
power company (Wang et al., 2019a). Monitoring and evaluating the measurement error of electric
energy metering by metering devices has become an imperative method for the economic interest
and fairness of transactions for both power supply companies and users, and it is also an effective
means to manage and predict the use of electric energy (Steiner et al., 2018).

Generally, the measurement errors of electric energy metering devices are mainly caused by electric
energy meters, transformers, and secondary wiring. Many related works have been presented, including
error source detection, error modeling, and error evaluation. Among them, the measurement error
model, which describes the differences between the actual value and the estimated value, can be obtained
in the calibration study for smart meters (Dong et al., 2018); the corresponding measurement error is
commonly detected by the test system based on a pseudorandom distortion test signal and indirect
likelihood function (Wang et al., 2019b), which could also be confirmed by testing devices or platforms
(Donahue et al., 2014). In addition, the current remote error estimation has also become a state-of-the-art
field, in which remote calibration and monitoring systems including some monitoring equipment,
communication networks, and the master station should be installed (Gao et al., 2019;Zhang et al., 2018).
However, solving the measurement error requires the installation of a large number of standard terminal
devices, increasing investment, and operation and maintenance costs (Luan et al., 2015).
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Recently, the application of deep learning and mathematical
model construction methods to realize the remote analysis of
smart meter measurement error has become a state-of-the-art
field. Amathematical model of smart electrical meter errors in the
smart grid was proposed by Kong et al. (2020, 2021), which was
built by using the dimension reduction estimation model and
damped recursive least squares, and then the clustering and
Kalman prediction methods were presented to estimate smart
meter errors. An artificial neural network for power loss
estimation was proposed by Kashef et al. (2018a) to estimate
line loss; the advantage is that it has real-time estimation and high
precision for fast calculation of power loss of each line in the
distribution system. A remote estimation method based on the
neural network filter and generalized damping recursive least
squares was proposed by Kashef et al. (2018b), which can estimate
both users’ smart meters’ errors and the loss accurately. Most of
the mentioned methods integrated the analytical formulas of
network loss into the estimation models to mitigate the impact of
network loss changes (Sun et al., 2016;Liu et al., 2015), which,
however, are generally limited by the complexity, calculation
accuracy, and applicability of the network loss analytical
formulas (Alonso et al., 2020;Xia et al., 2019).

To overcome the above drawbacks, artificial intelligence
methods, especially neural networks, have been applied to
avoid cumbersome analytical formulas and improve
applicability. The back-propagation (BP) neural network
algorithm was used to achieve distributed computing of
network losses, and finally, obtain a root mean square error
that is lower than 5% by Chao et al. (2018). A novel real-time
power loss estimation method was proposed by Kashef et al.
(2018b) for the distribution system, in which a neural network
power loss estimation method was applied. Although neural
network-related methods generally need sample training to
obtain good performance in estimating network losses (Hao
et al., 2020;Ruan et al., 2019), it induces frequent and
drastically changing network losses simultaneously (Kashef
et al., 2018b), which results in neural networks becoming
unstable for remote error estimation (Zhou et al., 2021).

Motivated by the above analysis, this study proposes a novel
remote measurement error estimation method for distributed
smart meters through a modified BP neural network. The main
contributions lie in the following: 1) a measurement error model
considering network loss is established, and the k-means
clustering method is introduced to simplify the model in
estimating the correction parameter; 2) a traditional BP
network model is modified to fit the established model, where
the intrinsic activation function and iterative rules are optimized
to ensure the utilization of new data, estimator change range
reduction, and good robustness against the network loss; and 3) a
simulated distributed smart electricity meter system is built for
analyzing the distributed smart meter data, the feasibility, and
effectiveness of which are verified through tests. Finally, the
proposed method provides a basis for efficiently detecting
smart electricity meters with large measurement errors.

The rest of the article is organized as follows: Section 2
introduces the distributed smart meter error model, which
builds the relationship among the master meters’ reading

value, network loss, and sub-meters’ reading value. Then, an
overview of the measurement error estimation method based on a
modified BP neural network is described in Section 3. In Section
4, experiments are carried out, as well as the verification
experiment of the measurement error estimation. The
conclusions are drawn in Section 5.

2 DISTRIBUTED SMART METER ERROR
MODEL

In the distribution energy consumption measurement system, the
classic topology for the distribution feeder unit is shown in
Figure 1. According to the conservation of energy, there is an
electric energy relationship between the smart electricity meters
of the terminal and the master meter in the distributed topology
during the tth measurement period, that is,

y(t) � ∑m
i�1
ri(t)ξi + Δw(t) (1)

where y(t) is the total electric energy (kW.h) from the master
smart meter in the tth measurement period, ri(t) is the electric
energy (kW.h) generated from the ith meter on the user’s side,
and ξi is the correction parameter of the smart meter to evaluate
the measurement error. Δw(t) is the network loss in the tth
measurement period of this distribution system.

Based on the error model analysis in Eq. 1, each terminal
smart meter (sub-meter) measurement may be biased due to the
degradation or lack of proper maintenance, thus leading to the
measurement results of the master smart meter being biased from
the actual value. For description convenience, the reading value of
the smart meters and the master smart meter is applied into Eq. 1.
Thus, Eq. 1 can be written as follows:

Y(t)t×1 � R′(t)t×(m+t)X(t)(m+t)×1 (2)
where Y(t)t×1 is the matrix represented by Y(t)t×1 = [y(1) y(2). . .
y(t)]T, R′(t)t×(m+t) is the matrix written as R′(t)t×(m+t) = [R(t)t×m
It×t] with R(t)t×m = [r(1)1×m r(2)1×m. . .r(t)1×m ]T, where r(i)1×m =
[r1(i) r2(i) . . .rm (i)], i = 1,. . ., t, and It×t is the identity matrix. Let

X(t)(m+t)×1 � [ ξm×1

Δw(t)t×1 ] be the objective matrix where Δw(t)t×1
is the network loss matrix during the tth measurement period.

FIGURE 1 | The distribution of smart meters in the electric grid.
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From the description of linear equations in Eq. 2, the final
matrix X(t) can be solved by the least-squares method, that is,

X(t)(m+t)×1 � ([R′(t)t×(m+t)]TR′(t)t×(m+t))−1 [R′(t)t×(m+t)]TY(t)t×1
(3)

Generally speaking, the actual model of smart meter errors can
be considered as a set of linear equations consisting of t equations.
However, X is a matrix of unknowns to be solved since it contains
m + t unknown variables. In this situation, if the number of
unknown variables is more than those of equations, then the
matrix inverse may not be solvable, where R′(t) may contain an
indefinite value. To this end, a modified BP neural network is
proposed to solve the model parameters for estimating the
measurement error of smart electricity meters.

3 PARAMETER ESTIMATION FOR THE
MODEL

To estimate the parameters in the distributed energy
consumption measurement system, the following strategies are
carried out. First, the k-means clustering method is adopted for
classifying the data from the master smart meter to simplify the
model considering the same network loss in the same class. Then,
a traditional BP neural network is modified in terms of an
activation function and iterative length to fast fit the model
for the distributed measurement system.

3.1 k-Means Clustering Model
The k-means clustering algorithm is a classic clustering method
based on Euclidean distance. Since the number of centers k is
given, the data will be classified into the center under the criterion
that its distance to the center is minimized. Through the cluster
centers being updated iteratively, the classes will finally be
generated. Generally, the mathematic model is to minimize the
within-class variance as follows:

SSE � ∑k
i�1

∑
x∈Ci

(x −mi)2 (4)

where x is the data belonging to the class Ci; k is the number of
cluster centers; and mi is the center of the class Ci containing Ni

data, which is obtained by

mi � 1
Ni

∑
x∈Ci

x (5)

Based on the rule of the k-means clustering, the number of
classes will be obtained once the number of smart meters is set. In
each class, network loss can be considered as a constant, that is,
Δw(t) ≈ Δwc, so the correction coefficient can be solved by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
y(1)c − Δwc

y(2)c − Δwc

..

.

y(t)c − Δwc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
r1(1) r2(1) / rm(1)
r1(2) r2(2) / rm(2)
..
. ..

. ..
. ..

.

r1(t) r2(t) / rm(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ξ1
ξ2
..
.

ξm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

where y(t)c is the data belonging to cluster C and Δwc is the
constant network loss. If the number of data is larger than the
number of smart meters, the correction coefficient ξi can be
obtained by Eq. 6, and Δw(t) can be then calculated by Eq. 1.
Notably, the value of network loss is often positive. So, it is
necessary to place the constraint condition to solve the value of
Δw(t) in cluster C. Here, Δwc is obtained by the minimum error in
Eq. 7, that is,

min (y(t)c − Δwc − ŷ(t)c)2 (7)
where Δwc>0 and ŷ(t)c is the estimated value calculated by the
least-squares method through Eq. 6. Nevertheless, the constraint
condition Δwc>0 makes it difficult to solve Eq. 7directly by the
least-squares method. Here, the golden section method (Erik
et al., 2018) is used to obtain the value of Δwc, where the
maximum value of Δwc is set as 10% of the centers.

Notably, the network loss listed in Eq. 1 is mainly generated by
the branch of smart meters. To alleviate the network loss while
fitting the model, the number of classes can be set by using the
number of meters.

Additionally, Δwc calculated by Eq. 6 simplifies the model in
Eq. 1. However, the network loss still affects the result of the
correction coefficient calculated by the least-squares method.
Thus, in this article, a modified BP neural network is
proposed to achieve the optimal value of the correction
coefficient ξi.

3.2 BP Neural Network
The BP neural network is regarded as a widely used neural
network and has wide applications. The main idea of the BP
neural network is to adopt a gradient descent to search for the
hypothesis space of possible weight vectors. Thus, the BP
neural network is generally taken as a gradient descent
method to adjust the weights of each layer of the neural
network to minimize the total error. On the one hand, the
minimum mean square error of reality and expectation can be
achieved through neural network iteration. On the other hand,
the BP neural network algorithm takes a forward feedback
learning process, which, in essence, is a process where errors
propagate backward and the weight coefficients of each layer
are connected as well. Since the feedback learning runs through

FIGURE 2 | BP neural network structure diagram.
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the adjustment of the connection mode, weight and threshold
of each neuron, and the identification of the whole network,
the corresponding neural network structure can be given as in
Figure 2. Usually, the neural network has three layers, that is,
input layer, the hidden layer, and output layer. The data stream
often contains two aspects. One aspect is the data forward
feedback, that is, the input data xi is transmitted to the output
layer via the hidden layer. In this process, the neuronal state of
each layer only affects the neuronal state of the next layer, and
the state is determined by the weight and bias terms as well as
the activation function. The other aspect is the back-
propagation error, that is, network weights and thresholds
are adjusted according to the prediction error, such that the BP
neural network prediction output can constantly approach the
desired output.

To be specific, let x be the input data, ω and b1 be the
parameters from input layers to the hidden layers, and v and
b2 be the parameters from hidden layers to the output layers. Each
neural layer is connected by the activation function, which is
designed as follows:

(1) The activation function S1 from the input layer to the
hidden layer

net1 � ωTx + b1, h � S1(net1) (8)

(2) The activation function S2 from the hidden layer to the
output layer

net2 � vTh + b2, ŷ � S2(net2) (9)
According to Eqs 8, 9, the predicted value of the neural

network can be written as

y � S2(vTS1(ωTx + b1) + b2) (10)
To measure the approximation between the predicted value

and the actual value, the expected value of the loss function
adopted by the BP neural network is obtained as

E(θ) � 1
2
∑
i

(yi − ŷi)2 (11)

where θ is the parameter of the inner model. By the derivative of
the loss function in Eq. 11 for v and b2, respectively, the error
terms of the output unit can be calculated as follows:

∇(k)v� zE

zv
� zE

zŷ

zŷ

znet2

znet2
zv

∇(k)b2� zE

zb2
� zE

zŷ

zŷ

znet2

znet2
zb2

(12)

where k is the iteration number and ∇ denotes the gradient
operation. The error terms of the hidden neuron can be
expressed as

∇(k)ω� zE

zω
� zE

zŷ

zŷ

znet2

znet2
zh

zh
znet1

znet1
zω

∇(k)b1� zE

zb1
� zE

zŷ

zŷ

znet2

znet2
zh

zh
znet1

znet1
zb1

(13)

During back-propagation, the learning rate parameter η is
used to update the weights and bias terms of the BP neural
network. Then, it can be written as

v(k)� v(k−1) − η
zE

zv
, b(k)2 � b(k−1)2 − η

zE

zb2
(14)

Alternatively, the parameter can then be updated in hidden
layers as follows:

ω(k)� ω(k−1) − η
zE

zω
, b(k)1 � b(k−1)1 − η

zE

z b1
(15)

With the neural network iterations described above, the
parameters of the weights and biases in the neural network are
optimal since the loss function is satisfied with the condition that
the error is less than the given threshold or the number of
iterations exceeds the setting value. Then, the neural network
can work well in terms of classification, prediction, and so on.

FIGURE 3 | The framework of our model.
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3.3 A Modified BP Neural Network for
Parameter Estimation
In the BP neural network, the activation function is the core part
that enables the neural network to achieve good performance.
Traditional activation functions, such as the sigmoid function,
generally aim at nonlinear data mapping. The established
mathematical model contains linear equations as previously
discussed, as seen in Eq. 3. The traditional activation
functions of the BP neural network may not be suitable to

solve the parameters of the model. Thus, the BP neural

network is optimized and improved here, the framework of

which is shown in Figure 3. The details are given as follows.

(1) Parameter for the BP neural network

To facilitate the corresponding modified BP neural network,
the input x in the neural network model and neuron weight ω can
be expressed as

FIGURE 4 | The data from six smart electricity meters: (A) sub-meter 1, (B) sub-meter 2, (C) sub-meter 3, (D) sub-meter 4, (E) sub-meter 5, and (F) sub-meter 6.
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x� ( r1 r2 / rm )T (16)

ω�
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω1,1 ω1,2 / ω1,k

ω2,1 ω2,2 / ω2,k

..

. ..
. ..

. ..
.

ωm,1 ωm,2 / ωm,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (17)

where k is the number of hidden-layer neurons and m is the
number of input.

(2) Structure for BP neural network

The BP neural network with one hidden layer in an
engineering application usually has better approximation
performance, and the number of neurons in the hidden layer
plays a role in fitting the output value. Here, the empirical
formula is adopted (Erik et al., 2018), which is expressed as

l � ceil( �����
n + k

√ + a) (18)
where n is the number of neurons in the input layer, k is the
number of neurons in the output layer, a is a constant selected
from the range [1, 10], and ceil (.) is the top integral function.

(3) Activation function for BP neural network

In this article, Eq. 1 belongs to the multivariate linear model.
Thus, the activation functions S1 and S2 are set as the linear
model:

S(z) � z (19)
The output can be then written as

y � vT(ωTx + b1) + b2 (20)
Thus, the correction coefficient ξi can be finally determined by

ω and v.

(4) Iterative step length for the BP neural network

FIGURE 5 | The data from the master meter.

FIGURE 7 | The data from the master meter and the predicted value by
the proposed method.

TABLE 1 | The parameter setting of the BP neural network.

Hidden
neurons

Maximum iteration
number

Learning
rate η

Training
error

10 1000 0.0002 1e-3

TABLE 2 | The class center and network loss.

Class center Network loss

Class 1 0.3713 0.0070
Class 2 0.6146 0.0060
Class 3 0.8436 0.0080
Class 4 1.0962 0.0040
Class 5 1.3752 0.0010
Class 6 1.7671 0.0050

FIGURE 6 | | The modified BP neural network training error during
iteration.
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Consider the fact that ξi is related to the weights that do not
change frequently with time in the mathematical model. Thus, let
the correction coefficients ξi of smart meters be unchanged over
time. The updating procedure of parameters can be simplified as

ω(k)� ω(k−1) − ηsign(zE
zω

)
b(k)1 � b(k−1)1 − ηsign(zE

zb1
)

(21)

where sign is a symbolic function and expressed as

sign(z) � {−1 z< 0
1 z≥ 0

(22)

4 TEST RESULTS AND DISCUSSION

To verify the effectiveness of the proposed method, experiments
were carried out in a laboratory. In this case, seven smart meters
were installed. One of them was taken as a master meter and the
others as sub-meters. In the sub-meters, sub-meter 2 was set with

a 15% measurement error for the test, and the remaining
measurement accuracy was 0.5 s level. The whole experimental
test period was 2 days, and energy consumption data were
recorded every 15 min. A total of 192 measuring points were
recorded, as shown in Figure 4 and Figure 5. In the test, k was set
as 6 in the k-means clustering; the weight ω of the modified BP
neural network was initialized as the full 1m × k matrix, and other
parameters are shown in Table 1. Experiments were performed
by usingMATLAB 2021A on a computer with Intel(R) Core(TM)
2 Duo 2.1 GHz i7 CPU 16G RAM, and Windows 64bit operation
system.

Table 2 illustrates the class centers computed by k-means
clustering. It can be seen that the network loss in each class is very
small. This phenomenon occurred because it only had small loads
such as lighting among the master meter and the sub-meters, and
the master meter was not far away from the sub-meters in the test
environment.

Figure 6 illustrates the error during the proposed modified
BP neural network training. It can be seen that the error
decreases as the number of iterations increases. After 50
iterations, the error tends to be 0.05, and the final predicted
value of the proposed BP model is basically close to the actual
value, as shown in Figure 7. Thus, it will fit the mathematical
model in Eq. 1. The parameter of the proposed BP neural
network is listed in Table 3.

Since the BP neural network is modified as linear mapping
as in Eq. 20, the proportional coefficient ξi can be obtained
from ω and v, where ξi = vTωi

T. Thus, the measurement
accuracy of each sub-meter can be then solved by 1/ξi, i =
1, 2,. . ., 6, as shown in Table 4. It can be seen that the value of
1/ξ2 is 0.8532. Thus, the measurement error is 0.1468, which is
close to the 15% measurement error in sub-meter 2. This
demonstrates that our model can effectively detect the
measurement error.

Alternatively, to demonstrate the performance of the proposed
method in estimating the measurement error, a comparison with
the least-squares method was carried out. The results are shown
in Table 5. It can be seen that the result value 1/ξ2 from the least-
squares method is 0.8606. Thus, the measurement error is 0.1394,
which is a larger offset than the 15% measurement error.
Generally, the least-squares method only pursues the
minimum error of least-squares equations, regardless of the
network loss. Nevertheless, our method uses the k-means
clustering method to classify the data, which can eliminate the
influence of the unknown network loss during the calculation of
the correction coefficient ξi. To demonstrate this point, the result
of the modified BP neural network without the k-means
clustering method is listed, as seen in Table 5. It can further

TABLE 3 | The parameter results from the proposed modified BP neural network.

Layer Parameter Value

Input layer to hidden layer ω = [ω1, ω2, ω3, ω4, ω5, ω6] (1.0100, 1.1763,1.0071, 1.0075, 1.0053, 1.0019)
b1 −0.0128

Hidden layer to output layer v = [v1] 1.0035
b2 0.0095

TABLE 4 | Measurement error estimation.

1/ξ1 1/ξ2 1/ξ3 1/ξ4 1/ξ5 1/ξ6

0.9936 0.8532 0.9964 0.9960 0.9982 1.0016

TABLE 5 | Comparison results.

Least-squares method Proposed BP without
k-means method

1/ξ1 0.9907 0.9972
1/ξ2 0.8606 0.8550
1/ξ3 0.9915 1.0008
1/ξ4 0.9903 1.0000
1/ξ5 0.9979 0.9984
1/ξ6 0.9959 0.9984

TABLE 6 | Running time.

Method Time/s

Least-squares method 0.0352
Proposed BP without k-means method 0.1768
Proposed BP with original parameter updated 0.2268
Proposed method 0.1834
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demonstrate the desired performance of the proposed method in
detecting the measurement error.

Table 6 illustrates the running time of the above methods. It
can be seen that the proposed method costs more CPU time
than that of the least-squares method. Nevertheless, to obtain a
better parameter, the proposed model utilizes k-means
clustering and a modified BP neural network. Generally, it
has the same level of running time. However, the original
strategy for parameter updating takes a bit more time than the
proposed method. This demonstrates the usefulness of the
modified strategy.

5 CONCLUSION

In this article, a remote error estimation method is proposed
which is based on a modified BP neural network. The method
takes the distributed smart electricity meter as the research
object and builds the mathematical model inherent in the
correction coefficient that is hidden by the energy from the
smart meter and the master meter in the system. A classic
k-means clustering is applied to classify the data, allowing the
model to be simplified during the calculation of parameters. The
BP neural network is then optimized to solve the parameter by
modifying the activation function and the update rule of the

neural network parameter. The experiments show that the
desired performance can be obtained by our model. In the
near future, the proposed method will be applied to the
actual application, and the remote experiment platform will
be set up as well.
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