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Lithium-ion batteries are currently the most utilized power source in medical devices
due to their long service life, high energy performance, and being portable. The
performance of battery-powered medical devices is heavily dependent on battery
capacity, which would be directly affected by related battery component parameters.
To widen the application of battery-powered medical devices, it is vital to effectively
monitor battery capacity and analyze the effects of battery component parameters.
This article derives a hybrid data-driven method to achieve accurate early predictions of
battery capacity and reliable analysis of battery component effects. To be specific, a
Gaussian process regression-based data-driven model is first developed to efficiently
capture the underlying fitting among four component parameters and battery capacity.
Then two effect analysis tools including the automatic relevance determination kernel-
based weights and tree-based local interpretable model-agnostic explanation are
equipped to quantify and analyze both global and local effects of these four
component parameters, respectively. Illustrative results show that the designed
hybrid data-driven method is able to provide accurate battery capacity predictions
with 0.97R2, while both global effects and local effects of four component parameters
are successfully quantified. Due to the merits of data-driven characteristics, the
designed hybrid data-driven method is capable of efficiently helping users to
monitor/predict battery capacity and analyze/understand the effects of interested
component parameters. This could further benefit battery-powered medical devices
for higher-performance and longer-lifetime applications.

Keywords: data-drivenmethod, artificial intelligence, battery-poweredmedical devices, battery capacity prediction,
component parameter analysis, medical applications

1 INTRODUCTION

Lithium-ion (Li-ion) batteries are one of the most popular power sources in medical devices
owing to their advantages of long service life, high energy performance, and being portable (Li
et al., 2021a; Liu et al., 2022a). The property of the battery such as capacity plays a vital role in
affecting battery-powered medical devices’ performance and will be influenced by related
component parameters. In light of this, to improve battery operational performance and
widen the applications of battery-powered medical devices, it is crucial to monitor/predict
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battery capacity and analyze/quantify the effects of
corresponding component parameters simultaneously (Li
et al., 2021b).

However, Li-ion batteries belong to a complicated power
source involving numerous chemical, mechanical, and
electrical dynamics during their operations (Wu et al., 2019;
Chen et al., 2021). To date, the widely used approaches to analyze
and understand how component parameters affect battery
performance especially for its capacity are mainly based on
trial and error solutions, which usually lead to huge cost and
time consumption (Li et al., 2016; Yang et al., 2021). Therefore,
developing the proper approach to not only predict the battery
capacity of medical devices and analyze the corresponding
component parameters is a challenging but important task for
widening battery-powered medical devices.

With the quick development of data science, artificial
intelligence, and cloud platform, data-driven approaches have
become a promising and powerful tool in the field of Li-ion
battery management (Lucu et al., 2018; Li et al., 2019; Liu et al.,
2022b). Specifically, lots of data-driven approaches are derived for
estimating the internal states of batteries (Feng et al., 2020a; Feng
et al., 2021; Shi et al., 2021; Tang et al., 2021), predicting battery
aging trajectories (Hu et al., 2022a; Hu et al., 2022b; Liu et al.,
2022c) and remaining useful life (Liu et al., 2020a; Ren et al., 2020;
Hu et al., 2021), balancing battery cells (Feng et al., 2020b; Liu
et al., 2020b), performing effective battery charging (Liu et al.,
2017; Xie et al., 2020), and energy management (Li et al., 2022;
Wang et al., 2022; Xie et al., 2022; Zhang et al., 2022). In
summary, according to the well-designed data-driven
approaches, reliable management could be achieved to
improve battery operational performance. However, these
approaches are mainly related to battery macro-dynamic
rather than micro-dynamic such as its component parameters.
Currently, there are still limited research focuses on the analysis
of battery component parameters by designing related data-
driven methods. For example, according to the cross-industrial
standard process, a neural network-based data-driven method is
proposed in the study by Schnell et al. (2019) to analyze the
dependency between battery component parameters. After using
four parameters from battery mixing and coating processes, a
Gaussian process regression (GPR)-based data-driven method is
developed in the study by Liu et al. (2021a) to predict battery
electrode mass loading and analyze the effects of these
parameters. To handle the imbalance issue during battery
production, an RUBoost-based data-driven method is derived
in the study by Liu et al. (2021b) to classify the quality of battery
and analyze formulation components. In real battery-powered
medical device applications, it should be known that the
component parameters will be crucial for determining and
influencing battery property, especially for its capacity. To
improve the performance of battery-powered medical devices,
it therefore becomes necessary to develop an efficient data-driven
method to predict battery capacity and analyze how related
component parameters would influence the battery capacity.

Based upon the above discussion, to benefit battery-powered
medical devices, a hybrid data-driven method is designed in this
study to accurately predict battery capacity and analyze both

global and local effects of component parameters of the
corresponding battery. Several contributions are made as
follows: 1) a GPR-based data-driven model is developed to
perform accurate battery capacity prediction by using four
battery component parameters as the input terms; 2) after
equipping the automatic relevance determination (ARD)-based
kernel structure, the global effects of these four battery
component parameters are quantified and analyzed based on
the ARD-based weights; and 3) after equipping tree-based local
interpretable model-agnostic explanation (LIME), the local
effects of these component parameters are quantified and
analyzed for four randomly selected sample points. Due to the
pure data-driven nature, the developed hybrid data-driven
method can accurately predict battery capacity at the early
prediction stage and analyze both global and local effects of
corresponding component parameters, generating an effective
way to well monitor battery capacity and understand the related
component parameters, further benefitting the performance of
battery-powered medical devices.

The rest of this article is organized as follows: Both battery key
component parameters and related capacity dataset are described
in Section 2. The GPR-based data-driven model, two effect
analysis tools including ARD-kernel-based weights and tree-
based LIME, and related performance indicators are described
in Section 3. Section 4 then provides and discusses the results of
both battery capacity predictions and component effect analyses.
Section 5 summarizes this study finally.

2 KEY BATTERY COMPONENTS AND
RELATED CAPACITY DATASET

As the main power source to supply energy for numerous medical
devices, Li-ion batteries are usually composed of some components
including the positive electrode, negative electrode, and electrolyte
(Ayerbe et al., 2021; Niri et al., 2021). It should be known that these
component parameters play an important role in affecting battery
properties such as its capacity, which would then determine the
performance of relatedmedical devices. Therefore, in order to ensure
the effectiveness of battery-poweredmedical devices, battery capacity
dynamics require to be carefully monitored and how battery
component parameters affect battery capacity must be well
analyzed (Liu et al., 2022d).

For the battery within medical devices, it generally consists of
several electrode component parameters, as shown in Figure 1. To be
specific, the battery electrode usually contains the active material
components, electrode additive components, and polymeric binder
components. For real medical device applications, LTO is usually
selected as a widely utilized activematerial as it has themerits of being
nontoxic and adaptive to complicated conditions such as high
temperatures and large currents. In addition, electrode additive is
another important component parameter for Li-ion batteries (Liu
et al., 2022e). In order to increase the intrinsic electronic conductivities
of battery electrodes, several conductive fillers such as carbon-black as
well as carbon-nanofiber are generally needed within Li-ion batteries.
Moreover, to further increase batteries’ mechanical cohesion,
polymeric binders are also required. In many battery-powered
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medical device applications, three types of polymeric binders
including polyvinylidene fluoride (PVDF), polyethylene co-ethyl
acrylate co-maleic anhydride (TPE), and hydrogenated nitrile
butadiene rubber (HNBR) are adopted as they have the
advantages of presenting exceptional chemical stabilities and
efficient binding properties. All these component parameters are
crucial for determining battery electrode properties such as
thickness and electronic conductivities, further affecting battery
performance, especially for its capacity, which must be carefully
monitored and analyzed in battery-powered medical device
applications.

In light of this, to ensure the effectiveness of battery-powered
medical devices, it is necessary to develop a suitable solution which
can not only perform accurate battery capacity prediction but also
analyze the effects of these key component parameters on battery
capacity dynamics. In this study, a hybrid data-driven method
through equipping the GPR data-driven model with effect
analysis tools is designed to predict battery capacity and quantify
both global as well as local effects of component parameters. To
ensure model training effectiveness, the well-proven data (Rynne
et al., 2019) from Hawaii Natural Energy Institute Franco are
utilized. More information regarding these data and how to carry
out an experiment for generating this dataset are referred to (Liu
et al., 2021c) for the interested reader. In this study, four basic battery
component parameters including LTO-based active materials (LTO)
with a formulation weight from 75% to 95%, C65-based carbon
black (C65) with a formulation weight from 0% to 20%, CNF with a
formulation weight from 0% to 10%, and binders with a formulation
weight from 3% to 20% are utilized. To obtain the capacity data of
the corresponding battery, the coulomb-counting approach with a
C/25 current rate is utilized.

3 HYBRID DATA-DRIVEN METHOD

In this section, the Gaussian process regression (GPR)-based
model is first introduced for battery capacity prognostics. Then
the effect analysis tools including automatic relevance
determination (ARD) kernel weight and tree-based local
interpretable model-agnostic explanation (LIME) are derived
to analyze the global and local component effects, respectively.
Afterward, several performance indicators are given to evaluate
the performance of battery capacity prediction via the developed
data-driven model.

3.1 Gaussian Process Regression
According to Bayesian theory, GPR is able to give a Gaussian
process for non-parametric regression (Tagade et al., 2020; Liu
et al., 2021c), whose probability distribution can be described by a
mean function m(x) and a kernel function k(x, x′) as follows:

f(x) ~ GPR(m(x), k(x, x′)) (1)
with

{ m(x) � E(f(x))
k(x, x′) � E[(m(x) − f(x′))(m(x) − f(x′))] . (2)

Here, m(x) is generally set to zero for simplifying
computation. For a prediction, the output’s prior distribution
can be described by

y ~ N(0, k(x, x′)). (3)
Assuming training dataset x and testing dataset x′ present

similar Gaussian distributions, then the testing output y′ could
show a joint prior distribution with training output y (Williams
and Rasmussen, 2006):

[ y
y′] ~ N⎛⎝0, ⎡⎢⎣ k(x, x) k(x, x′)

k(x, x′)T k(x′, x′) ⎤⎥⎦⎞⎠. (4)

According to this joint prior distribution, predicted output y′
corresponding to inputs x′ can be calculated by computing the
conditional distribution p(y′|x, y, x′) as

p(y′|x, y, x′) ~ N(y′|�y′, cov(y′)) (5)
with⎧⎪⎨⎪⎩ �y′ � k(x, x′)T[k(x, x)]−1y

cov(y′) � k(x′, x′) − k(x, x′)T[k(x, x)]−1k(x, x′) (6)

where �y′ is the mean predicted values, while cov(y′) reflects its
variance values.

It can be seen that kernel function k(x, x′) plays an important
role in determining GPR’s performance and must be carefully
designed. In this study, to ensure the effectiveness of GPR in
battery capacity prediction, three kernel functions are explored.

The first one is a classical kernel function called squared
exponential (SE) kernel.

FIGURE 1 | Main component parameters within Li-ion battery for battery-powered medical devices.
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kSE(x, x′) � σ2SE exp( −
����x − x′

����2
2σ2

m

) (7)

where σSE and σm are its two hyperparameters for determining
the amplitude and length of the SE kernel function.

In general, the SE kernel function is easy to cause smooth
distribution. To further enhance the performance of GPR in
fitting nonlinear relations, another two classical kernel functions
including Mater5/2 kernel function kM5/2(x, x′) and quadratic
kernel function kQuadratic(x, x′) could be used as follows:

kM5/2(x, x′) � σ2
M5/2(1 + �

5
√ ����x − x′

����
σm

+ 5
����x − x′

����2
3σ2m

)exp(
−
�
5

√ ����x − x′
����

σm
) (8)

kQuadratic(x, x′) � σ2Q(1 + ����x − x′
����2

2ασ2m
)−α

(9)

where σM5/2 and σQ are hyperparameters to determineMatern5/2
kernel and quadratic kernel functions’ amplitudes, respectively.
σm is the hyperparameter to determine their length.

3.2 Effect Analysis Tools
After developing a GPR-based data-driven model for battery
capacity prediction, to further quantify and analyze the effects
of corresponding component parameters, two data-driven-based
effect analysis tools including the ARD kernel weight and local
interpretable model-agnostic explanations need to be adopted.

3.2.1 ARD Kernel Weight
To equip the GPR model with the capability of quantifying the
global effects of parameters of interest, the classical kernel
functions including SE kernel, Matern5/2 kernel, and the
quadratic kernel can be enhanced with the ARD structures
(Zhao et al., 2018) as follows:

kSE ARD(x, x′) � σ2SE exp[ − 1
2
(����xLTO − xLTO

′
����2

σ2LTO
+
����xBinder − xBinder

′
����2

σ2
Binder

+
����xC65 − xC65

′
����2

σ2
C65

+
����xCNF − xCNF

′
����2

σ2
CNF

)] (10)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
k5/2 ARD(i, i′) � σ25/2(1 + �

5
√

r + 5
3
r2) exp(− �

5
√

r)
r �

������������������������������������������������������������xLTO − xLTO
′ ����2

σ2
LTO

+
����xBinder − xBinder

′ ����2
σ2Binder

+
����xC65 − xC65

′ ����2
σ2
C65

+
����xCNF − xCNF

′ ����2
σ2CNF

√√ , (11)

kQuadratic ARD(i, i′) � σ2
Q(1 + r2

2ασ2
l

)−α

r �

�������������������������������������������������������������xLTO − xLTO
′ ����2

σ2LTO
+
����xBinder − xBinder

′ ����2
σ2Binder

+
����xC65 − xC65

′ ����2
σ2C65

+
����xCNF − xCNF

′ ����2
σ2CNF

√√ .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(12)

Obviously, compared with classical kernels, the ARD
structure-based kernels have an individual hyperparameter for
each input term. The values of these individual hyperparameters
could reflect how important this input term will affect the
prediction results (Zhao et al., 2018). In light of this, the
global effects of component parameters on battery capacity

can be quantified directly by using the ARD kernel-based GPR
model. Theoretically, a larger hyperparameter σ i
(i � LTO, Binder, C65, CNF) would lead to a smaller ARD
kernel weight, which indicates the lower global effect on the
predicted battery capacity output.

3.2.2 Local Interpretable Model-Agnostic Explanation
After using ARD kernel weight to quantify the global effects of
component parameters, to further analyze the local effects of
these parameters on the specific samples, an effective data-
driven tool named the local interpretable model-agnostic
explanation (LIME) (Zafar and Khan, 2021) will be
adopted. According to the developed GPR-based data-
driven model, a detailed procedure to equip LIME for local
effect analysis is illustrated in Table 1.

Algorithm 1. Detailed procedure to equip LIME for local effect
analysis of component parameters.

In summary, based upon four key processes, LIME is able to
quantify the local effect of a sample point as follows: 1)
generating several new samples around the interested
sample S, as shown in step 3; 2) performing capacity
prediction of these generated samples based on the
developed GPR-based data-driven model, as illustrated in
step 4; 3) constructing a local prediction model by using the
generated samples and predicted points from GPR-based data-
driven model, as shown in line 5; and 4) using the coefficients
from this local prediction model to quantify the effects and
importance of component parameters on the capacity
prediction from the GPR-based data-driven model.

FIGURE 2 | Hybrid data-driven method structure to predict battery
capacities and analyze both global and local effects of component
parameters.
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3.3 Data-Driven Structure
Based upon the effective data-driven tools mentioned earlier, to
well predict battery capacity and analyze the effects of battery
component parameters of interest, a hybrid data-driven structure
is developed by equipping a GPR-based data-driven model, ARD
kernel-based weights, and tree-based LIME, as illustrated in
Figure 2.

To be specific, the input terms of this data-driven structure
are four battery component parameters including LTO, binder,
C65, and CNF, while the output term of this structure is the
corresponding battery capacity. After well training GPR-based
data-driven model by minimizing its negative log marginal
likelihood, the ARD kernel-based weights can be used to reflect
the global effects of these four component parameters on
battery capacity. Through equipping the tree-based LIME,
the local effects for some specific sample points can also be
quantified and analyzed.

3.4 Model Performance Indicators
To directly reflect the battery capacity prediction
performance of GPR-based data-driven model, the
following typical performance indicators (Šeruga et al.,
2021) are used:

1) Mean absolute error (MAE): Supposing T is the total number
of all samples, Yt stands for the real battery capacity value,
while Ŷt is the predicted capacity value from the GPR-based
data-driven model, MAE can be expressed as follows:

MAE � 1
T
∑T

t�1
∣∣∣∣Yt − Ŷt

∣∣∣∣ (13)

2) Root mean square error (RMSE): as another typical
performance indicator, RMSE is calculated by

RMSE �
��������������
1
T
∑T

t�1(Yt − Ŷt)2√
(14)

3) R2: let �Y reflect the average value of all predicted battery
capacities, R2 can be calculated by

R2 � 1 −∑T

t�1(Yt − Ŷt)2/∑T

t�1(Yt − �Y)2 (15)

It should be known that for real battery capacity
prediction, when the predicted values get close to the
actual values, MAE and RMSE would become close to 0,
while R2 will reach 1.

4 RESULT AND DISCUSSION

In order to evaluate the capacity prediction performance of
using a GPR-based data-driven model, this section first
presents and discusses the battery capacity prediction
results via three different ARD kernels. Then the tests using
ARD kernel-based weights and tree-based LIME are carried
out to quantify the local effect and global effect analyses of all
four battery components, respectively.

4.1 Capacity Prediction via GPR
We first focus on the battery capacity predictions by using four
component parameters as inputs to the GPR-based data-
driven model with three different ARD kernels. After
performing six-fold cross-validation, the capacity prediction
results of using SE-based GPR, Matern5/2-based GPR, and
quadratic-based GPR are illustrated in Figure 3, while their
corresponding performance indicators are illustrated in
Table 2. According to Figure 3, it can be seen that all three
GPR-based data-driven models can capture most of battery
capacity sample points, indicating the effective performance of
ARD-based kernel functions. To be specific, SE-based GPR
presents the worst prediction results with 4.52mAh RMSE and
0.91 R2 value, which is 57.5% and 5.2% worse than those from
Matern5/2-based GPR. In comparison, quadratic-based GPR
presents the best results for battery capacity prediction, whose
RMSE and R2 values are 2.43 mAh and 0.97, respectively,
which are 15.3% and 1.1% better than those of Matern5/2-
based GPR. It can be concluded that four battery component
parameters (LTO, binder, C65, and CNF) and battery capacity
present strong nonlinear relations as the smooth SE kernel
cannot well capture their underlying mapping. By using non-
smooth kernel functions like Matern5/2 and quadratic kernels,
the capacity prediction performance can be improved.

To further explore these battery capacity prediction results
using GPR-based data-driven models, the prediction versus
true plots for all GPR-based data-driven cases are illustrated
in Figure 4. In theory, the farthest observation in the
prediction versus true plots could make the prediction line
toward that sample. The more accurate a model is, the
observations from this model should get closer to the
perfect prediction line. In this study, it can be seen that
most observations can get close to the perfect prediction
line by using GPR-based data-driven models. But there still
exist several observations that are away from the perfect
prediction line this is mainly caused by the overfitting
issue of the data-driven model and can be improved when
more corresponding data are available.

4.2 Component Effect Analyses
Next, after developing the GPR-based data-driven model to
effectively predict battery capacity, the ARD-based kernel
weight and tree-based LIME would be carried out to analyze
both the global effects and local effects of four component
parameters, respectively.

4.2.1 Analysis of Global Effects
To quantify the global effects of component parameters for all
observation samples, the hyperparameters of the quadratic-based
GPR model are utilized as this GPR model gives the best results
for battery capacity prediction. For global effect analysis, after
normalizing the weights of the ARD-based kernel, the importance
of four component parameters (LTO, binder, C65, and CNF) are
quantified and plotted in Figure 5. It can be obvious that the LTO
term provides the largest importance weight with 0.89 value for
the battery capacity prediction. Binder term gives the second
largest importance weight with 0.09 value. In comparison, the
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importance weights of both C65 and CNF are too small, which
means their global effects can be negligible for this battery
capacity prediction.

4.2.2 Analysis of Local Effects
Next, to further explore the local effects of component
parameters for some specific sample points, the tree-based
LIME is adopted. Here four sample points are randomly
selected for further local effect exploration with the
detailed information shown in Table 3. It can be seen that
these sample points are composed of different values of LTO,
C65, CNF, and binder.

To analyze the local effects of four battery component
parameters (LTO, C65, CNF, and binder) on predicting
battery capacity of these four case points, the quantified

FIGURE 3 | Battery capacity predictions by using a GPR-based data-driven model with different ARD kernels: (A) SE kernel, (B) Matern5/2 kernel, and (C)
quadratic kernel.

TABLE 1 | Performance indicators for battery capacity predictions by using the
GPR-based data-driven model with different ARD kernels.

Kernel SE Matern5/2 Quadratic

MAE [mAh] 3.53 2.32 2.04
RMSE [mAh] 4.52 2.87 2.43
R-Squared 0.91 0.96 0.97

FIGURE 4 | Prediction versus true plots using a GPR-based data-driven model with different ARD kernels: (A) SE kernel, (B)Matern5/2 kernel, and (C) quadratic
kernel.
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parameter effects through using tree-based LIME are
illustrated in Figure 6. Here the predicted model within
LIME is the decision tree. Both the capacity prediction
results of the GPR-based data-driven model and tree-based
LIME are shown for all four case points to reflect their
prediction difference. According to Figure 6, although there

exist a few differences between the quantified effects of these
four sample points, their quantified local effects all present a
similar trend. Specifically, the LTO term always gives the
largest quantified effect, while the binder term gives the
second largest effect. In comparison, the CNF term always
gives the smallest quantified effect for all these four sample
points. The trend of local effects is similar to the trend of global
effects, which indicates that our hybrid data-driven method
effectively quantifies both global and local effects of these four
component parameters. Moreover, it can be obviously
observed that the predicted battery capacity values from
tree-based model prediction are all close to the predicted
values from the GPR-based data-driven model, which
indicates that the tree-based LIME is able to well predict
battery capacity and the related local effect analysis can also
be well explained.

5 CONCLUSION

Li-ion batteries are the most popular power source and are widely
utilized in medical devices to supply power and energy. As the
performance of battery-powered medical devices is highly affected
by battery capacity, this study focuses on the accurate monitoring/
prediction of battery capacity and the explainable analysis of
related component parameters. To achieve this, a hybrid data-
driven method using the GPR-based data-driven model and effect
analysis tools is developed. Illustrative results indicate that the
designed GPR-based data-driven model is capable of accurately
predicting battery capacity with 0.97 R2 by using the quadratic-
based kernel. Through equipping ARD kernel-based weights and

FIGURE 5 | Analysis of global effects of all four components.

TABLE 2 | Randomly selected sample points for the analysis of local component
effects.

Case point LTO C65 CNF Binder

1 75.0 12.2 9.1 3.7
2 79.1 6.4 10.0 4.5
3 81.2 6.7 3.4 8.7
4 84.2 8.1 4.7 3.1

FIGURE 6 | Analysis of local component effects for four randomly selected sample points: (A) Sample 1, (B) Sample 2, (C) Sample 3, and (D) Sample 4.
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tree-based LIME, both the global effects and local effects of four
main component parameters including LTO, C65, CNF, and
binder can be successfully quantified and analyzed. Specifically,
LTO and binder provide the first and second most important
ranking for both global and local effects, while CNF gives the
smallest contribution to battery capacity prediction. Due to the
merits of the data-driven nature, the designed hybrid data-driven
method is capable of efficiently helping users to monitor/predict
battery capacity at the early prediction stage and analyze/
understand both global and local effects of interested
component parameters. This could further benefit battery-
powered medical devices for wider and longer-life applications.
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