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INTRODUCTION

The increasing greenhouse gas emissions rates are drawing the attention of the world
(Chapman et al., 2022). Carbon neutrality is proposed to guide economical construction
within energy conservation and environmental protection. For now, various efforts have been
taken to realize a low-carbon economy, for example, the developments of cold chain logistics
based on the application of liquefied gas (Dong et al., 2021), thermal environment control of
buildings based on energy storage using phase change material (Wang et al., 2012; Zhang et al.,
2020), and renewable energy supply of vehicles based on hydrogen fuel cells (Tsuchiya, 2008).
With the explosively increasing requirements of data processing, the power density of a data
center can reach up to 400–3,000 W/m2, which induces high heat dissipation demand (Zhang
et al., 2011; Liu et al., 2013). Thus, the CO2 emission for data center refrigeration is increasing
rapidly (Deymi-Dashtebayaz and Valipour-Namanlo, 2019). It is urgent to develop
refrigeration and cold-storage technologies based on zero-carbon energy. Since the
extensively existed renewable energy (such as solar energy and geothermal energy)
provides heat instead of electricity, the refrigeration methods driven by the heat source is
optimal. We introduce the thermal-driven refrigeration methods and the renewable energy
that can be utilized to provide insights for optimizing of low-carbon refrigeration for data
centers.

THERMAL-DRIVEN REFRIGERATION

Absorption Refrigeration
As illustrated in Figure 1A, in an absorption refrigeration cycle, the refrigerant absorbs heat from the
heat source in the evaporator and turns from liquid into gas, producing a cooling effect. The gaseous
refrigerant is absorbed in the absorber and then pumped to the generator to be pressurized. In the
condenser, the gaseous refrigerant condenses into liquid and then expands through the valve and
returns to the evaporator for cycling (Best and Rivera, 2015).

The most efficient and common working pairs are water–lithium bromide and ammonia–water.
The former is used where moderate temperatures are required while the latter is generally used in
large-capacity industrial applications requiring low temperatures. Water–lithium bromide
absorption systems are disadvantageous when working at a condensation temperature higher
than 40°C due to crystallization (Izquierdo, 2004). The binary ammonia–salt solutions of NH3-
NaSCN and NH3-LiNO3 are regarded as a viable alternative for ammonia–water. The Rankine cycle,
including single-loop cogeneration cycle, Goswami cycle, and dual-loop cogeneration cycle, is
applied in the co- and tri-generation system. The energy efficiency of a trigeneration system can
reach more than 80% and meanwhile reduce CO2 emission.
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Adsorption Refrigeration
The earliest adsorption refrigeration, single-bed intermittent cycle, is
simple and reliable, but the efficiency is very low and the cooling
output is discrete, as shown in Figure 1B. So recovery cycles are
designed to improve the efficiency and practicability of adsorption
refrigeration. Enhancing the adsorbent and optimizing the design of
the adsorber are two common ways to improve the heat and mass
transfer in adsorption systems. The adsorbent is improved by adding
materials with high thermal conductivity. For example, the thermal
conductivity of calcium chloride is only 0.1–0.2W/(m °C) which can
be increased by ten times by adding graphite powder (Eltom and
Sayigh, 1994). Fins and heat pipes are optimal in increasing the
effective heat transfer area of adsorbers (Vasiliev et al., 1996). The
effects of fin geometries, spatial positions, and volume fractions of the
filled adsorbent in a parallel-flow aluminum flat tube adsorption bed
were compared on the heat transfer performance (Chen et al., 2020).

In summary, adsorbent refrigeration has a lower efficiency and
is more robust than absorption refrigeration. Some
improvements have been made to enhance the efficiencies of
adsorbent refrigeration. However, it seems that it does not work
for applications below freezing temperature.

RENEWABLE ENERGY REFRIGERATION

Among various renewable energy, such as wind energy, biomass
energy, solar energy, and geothermal energy (Himri et al., 2009),
the last two are the most applicated and easy to access. Hence,
refrigeration of data centers based on solar energy and
geothermal energy is most feasible.

Solar Energy
The single-effect lithium bromide absorption refrigerators with
solar energy as a heat source are superior due to their excellent
temperature match and economy. Categories, types, and volumes
of solar energy collectors are pivotal in determining energy

efficiency of the system (Gao et al., 2021; Yu et al., 2021). The
average coefficient of performance (COP) of an absorption air
conditioner with solar energy in summer was 0.6, with an average
cooling capacity of 40 kW (Ebrahimi and Ahookhosh, 2016).
Through TRNSYS software, a solar energy–driven lithium
bromide absorption refrigeration system with a capacity of
11 kW was analyzed. The results prove that this system was
economically competitive and the effect of global warming was
lower than that for conventional refrigeration systems
(Balghouthi et al., 2008).

The intensity of solar irradiation meets the duration for
refrigeration demand. However, the low power density of solar
energy restricts its application. The spotlighting device was
proposed to promote the power density of solar energy (Rabl
et al., 1978). A composite parabolic concentrator (CPC) combined
with a fin-tube adsorber was applied to the adsorption refrigeration, in
which the temperature of the adsorption bed rose from 26 to 124°C in
120min (Wang et al., 2018). Both numerical and experimental studies
show that fins enhance the performance of the CPC adsorption bed
(Zhao et al., 2019).

Overall, the absorption refrigeration of solar energy is superior
to the adsorption refrigeration. However, the inherent instability
of solar energy restricts constant and sustainable cooling. Solar-
driven refrigeration assisted by energy storage is viable
in situations that require unintermittent refrigeration.

Geothermal Energy
A large amount of geothermal energy is contained in the earth’s
interior, which offers a stable heat source. It is usually divided into
shallow geothermal energy, hydrothermal geothermal energy,
and hot dry rock geothermal energy.

The COP of an absorption cycle driven by geothermal energy
was expected to reach 0.5654 at the mass flow rate of geothermal
energy of 12 kg/s, and the relationship between COP and mass
flow rate was positively correlated (Keçeciler et al., 2000). A
combination of photovoltaic, solar chimney, and geothermal air

FIGURE 1 | Schematic diagram of refrigeration: (A) absorption refrigeration, (B) adsorption refrigeration, and (C) multi-energy complementarity.
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tubes was proposed for the refrigeration and ventilation of a room
(Rania Elghamry, 2020). It turned out that the room temperature
decreased by 3.4°C and the maximum power output of the
photovoltaic panel increased by 30%.

Multi-Energy Complementarity
The combination of solar energy and geothermal energy can
achieve better performance for refrigeration, as demonstrated in
Figure 1C. The geothermal energy with medium and high
temperatures is stable and sustainable, which contributes to
the stable operation and high cooling efficiency. However, the
natural recovery of soil temperature is difficult. Consequently,
multi-energy complementarity, which combines the superiorities
of geothermal energy and solar energy, is a solution for zero-
carbon refrigeration. The solar–geothermal hybrid system
showed a 5.5% boost in annual power generation and a 3.4%
increment in maximum second efficiency compared to separate
systems (Ghasemi et al., 2014). Integrating the CO2-based
Enhanced Geothermal Systems (EGS) into the solar power
plant can achieve equal or higher efficiency than the sum of
the two original systems (Jiang et al., 2017). Moreover, the cost of
the system installation and maintenance could be reduced due to
the decreased operating pressure and removal of the compressor.

CONCLUSION

Zero-carbon refrigeration technology based on renewable energy is
significant in putting forward the carbon-neutral technical evolution.
Multi-energy complementarity is a promising approach to realizing
zero-carbon refrigeration for data centers. The high efficiency and
sustainable operation of a zero-carbon refrigeration system depends
on the efficient utilization of photovoltaic–photothermal energy,
energy storage, step utilization of energy, and irreversible losses
reduction.
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