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Insulator string is a special insulation component which plays an important role in overhead
transmission lines. However, working outdoors for a long time, insulators often have
defects because of various environmental and weather conditions, which affect the normal
operation of transmission lines and even cause huge economic losses. Therefore, insulator
defect recognition is a crucial issue. Traditional insulator defect identification relies on
manual work, which is time-consuming and inefficient. Therefore, the use of artificial
intelligence to detect the defect location and recognize its class has become a key
research field. By improving the classical YOLOv5 (you only look once) model, this article
proposes a newmethod to enable high accuracy and real-time detection. Our method has
three advantages: 1) Efficient-IoU (EIoU) replaces intersection over union (IoU) to calculate
the loss of box regression, which overcomes that the detection is sensitive to various scale
insulators in aerial images. 2) Since YOLOv5 itself detects some natural scenes in the real
world, some anchors setting by default are not suitable for defect detection, this article
introduces Assumption-free K-MC2 (AFK-MC2) algorithm into YOLOv5 to modify the
K-means algorithm to improve accuracy and speed. 3) The cluster non-maximum
suppression (Cluster-NMS) algorithm is introduced to avoid missing detection of
insulators because of mutual occlusion in images and improve the computation speed
at the same time. The experiments’ results show that this model can improve detection
accuracy compared with YOLOv5 and realize real-time detection.
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1 INTRODUCTION

Electricity is one of the most important energy sources in the 21st century, which is used,
popularized, and closely related to people’s life and equipment operations. A single fault will
bring huge losses to the economy and personal safety (Wang, 2022). Therefore, it is necessary to
ensure the normal operation of the power grid system. As an important part of the power grid,
transmission lines realize long-distance power transmission (Wu, Bozzi et al., 2021), which is closely
related to the transmission of information and communication, the operation of industrial minerals,
and people‘s production and life.

Insulators are essential components due to the high voltage level of transmission cables, which are
used to support and separate electrical conductors without allowing current through themselves
(Yousaf, Iqbal et al., 2022). However, insulators are usually exposed to various environmental and
weather conditions, such as thunderstorms, hurricanes, typhoons, frost-covering, and rain. These
harsh environmental and weather conditions make insulators lose their insulation capacity and cause
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power grid failures (Tao, Zhang et al., 2018; Zhai, Chen et al.,
2018). To ensure the electric system’s operation, an efficient and
effective insulator defect detection method is necessary.

In the past few years, defect detection methods have been
divided into three categories (Wen, Luo et al., 2021), including
physical methods, traditional vision-based methods, and deep
learning– based methods.

Physical methods often rely on manual work. Common
methods include direct observation, insulator resistance
measurement method (Huang, 2017), distributed voltage
measurement method (Li, Zhang et al., 2019), and ac voltage
withstand method (Sima, Yuan et al., 2010). These methods
have great requirements for weather conditions and are time-
consuming. In recent years, researchers have introduced the
ultrasonic wave method (Yao, Yu et al., 2019) and the
ultraviolet pulse method (Gao, Lyu et al., 2019). Yao, Yu et al.
(2019) proposed an ultrasonic wave method for detection by
receiving and processing ultrasonic signals between 20–40 kHz
and 80–140 kHz because ultrasound at these frequencies is emitted
from the insulator failure location. Gao, Lyu et al. (2019)
introduced the phase relationship between pulse waveform of
an ultraviolet photoelectric sensor and pulse current waveform
of partial discharge, the relationship between ultraviolet pulse
frequency and apparent discharge quantity, and the attenuation
characteristics of ultraviolet pulse frequency with the distance from
the sensor to detection target, thus, the partial discharge of
electrical equipment can be accurately detected. These two
approaches are more accurate but expensive.

Traditional vision-based methods are related to image
processing. According to the color and shape information of the
target, the candidate regions are extracted from the image for
detection and recognition. Ada Boost detection algorithm uses
Harr feature to combine weak classifiers to get strong classifiers,
which achieve quick detection of insulator defect (Zhai, 2014).
Similar methods include the HOG (histogram of oriented
gradient)+SVM (support vector machine) algorithm (Dadi and
Pillutla,2016), the improved MPEG-7 EHD (edge histogram
method) technique (Li, 2010), and the global minimization
active contour model (Wu, An et al., 2012). These methods
usually use shallow learning models to recognize, such as linear
classifier, boosting, and SVM. Therefore, feature extraction
becomes the key to improving the recognition rate. Traditional
methods are based on experience to design features, such as widely
used Harr, HOG, and sift features, and their advantage is speed.
However, due to the subjectivity and locality of human experience,
the detection and recognition accuracy is generally not high.

Considering that physical methods are time confusing and
traditional vision-based methods have low accuracy, an accurate
and fast detection method is needed. Benefit from the multi-
layered structure, deep neural networks use fewer parameters to
represent complex functions (Montavon, Samek et al., 2018),
especially with the successful application of convolution neural
networks (CNN) in image recognition (Chauhan, Ghanshala
et al., 2018), the automatic detection and recognition of targets
by deep learning method has become the focus and hotspot of
research that can meet the needs. Deep neural network object
detection algorithms use a large amount of data to extract features

by models automatically, which avoids the subjectivity of
traditional visual-based methods. The object detection
algorithms based on deep learning can be divided into two
categories: two-stage and one-stage. The representatives of
two-stage methods are SPP (He, Zhang et al., 2015), faster
R-CNN (Ren, 2015), and R-FCN (Dai, Li et al., 2016). These
methods first generate region proposals and then make bounding
box regression and object detection. One-stage methods usually
achieve great detection accuracy but consume much time because
they need to generate a lot of region proposals. One-stage
methods include YOLO (Redmon et al., 2016) and SSD (Liu,
Anguelov et al., 2016). As the most famous one-stage detection
method, YOLO does not need to generate region proposals,
completing the selection of the region and classification
simultaneously. Therefore, it can achieve real-time detection
but slightly lower accuracy than two-stage methods.

With the aim to achieve the effect of real-time detection of
insulator defects with high accuracy, in this study, we chose
YOLOv5 as the backbonemodel. We propose a series of advanced
techniques to improve the performance, including EIoU, AFK-
MC2, and Cluster-NMS.

The main contributions of this article are as follows:

1) This article first introduces a new loss function EIoU to solve
the problem that the model can be hard to train when the
images have high resolution. The experiments’ results show
that EIoU loss function improves detection accuracy.

2) Randomized anchor generation severely limits the
performance of insulator detection. We propose a more
reasonable anchor generation method, namely AFK-MC2.

3) Traditional deep learning models can not realize real-time
detection due to their complex anchor selection mechanisms.
This work introduces Cluster-NMS methods to simplify the
mechanisms while ensuring accuracy.

4) Existing methods often require a trade-off between accuracy
and speed, but these two factors are both important in practical
application. This study proposes a high-accuracy real-time
insulator defect detection method that meets this need.

The remaining parts of this article are organized as follows:
Section 2 discusses related work of insulator detection and the
CPLID (Chinese Power Line Insulator Dataset) dataset. Section 3
explains how our model works. In Section 4, a series of
comparative experiments are used to verify the validity of the
model in this study. Section 5 concludes the article.

2 RELATED WORK

In this section, we first make a review of the former work of
insulator defection. Then, we introduce the CPLID dataset that
was used in our experiments. Finally, we have an overview of the
development of YOLO.

2.1 Insulator Detection
The fast development of deep learning and object detection models
gives researchers a new way to detect defects in insulators. However,
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both two-stage methods and one-stage models are designed for the
detection of things in daily life, so researchers need to come up with
ideas to modify these models in order to detect insulators defect. To
overcome the shortcomings of traditional vision-basedmethods, Tao,
Zhang et al. (2018) used cascading architecture to transform defects
detection into a two-level object detection, which improves accuracy.
However, due to its complex anchor selection method, it took a long
time to finish the detection. In the study by Lu (2021), faster R-CNN
with an improved anchor selection method, Soft-NMS, was applied
to detect insulators. This method achieved good accuracy and
consumed less time to get a final result. Nevertheless, it only
detected three images per second, which is far from real-time
detection. The abovementioned methods are all based on two-
stage methods, and it is necessary to research the one-stage
methods too. Sadykova (2019) used the one-stage method
YOLOv2 to detect insulators. This work finished 25 images per
second, which just reaches the minimum standard for real-time
detection, while the final accuracy only reached 88%. In the work by
Feng, Guo et al. (2021), YOLOv3 was applied to detect insulators
defect. This method realized a fast detection speed with 100 images
per second. Nevertheless, this method sacrificed accuracy for speed, it
only had 81% accuracy, which means that this method cannot be
used in practical applications.

In summary, two-stage methods have high accuracy and have
benefited from their two steps processing and anchor mechanism.
As a side effect, they need more time to train because they are
designed to extract features of images and classify them as the
same as the classifiers at first. On the contrary, one-stage methods
complete the selection of the region and classification
simultaneously. Hence, these methods usually detect more
than one hundred images per second but are often
accompanied by a reduction in detection accuracy. Therefore,
when comes to practical applications, a new method needs to be
proposed to realize both high accuracy and speed.

2.2 Chinese Power Line Insulator Dataset
Because insulator data sets are largely unpublished, we choose
a public insulator used by Tao, Zhang et al. (2018). It is an
insulator dataset which provides normal insulator images
captured by uncrewed aerial vehicle (UAV) and synthetic

defective insulator images. This dataset is divided into two
parts: Normal insulators contain the normal insulators
captured by UAV, and the number of the normal insulator
images is 600; Defective insulators contain the insulators with
defects, and the number of the defective insulator images is
248. The samples of a normal insulator and a defective
insulator are shown in Figure 1.

Because defective insulator images are rare, a data
augmentation method is applied, and it follows the following
process. First, the algorithm is used to segment the defective
insulators from a small part of the original images, which is called
mask images. Then, affine transform is applied to augment the
original images and their mask. The U-Net is trained by these
images (Fischer and Brox 2015), where U-Net is a famous model
to automatically segment important blocks on the image. The
trained U-Net is then used to segment defective insulators from
the rest part of the images. Finally, the defective insulators are
attached to different backgrounds.

2.2 Development of YOLO Models
J. Redmon proposed the first version of the YOLO algorithm
(Redmon et al., 2016), which is the beginning of a one-stage object
detection method. It first frames object detection as a regression
problem to spatially separated bounding boxes and associated
class probabilities. Therefore, a single neural network predicts
bounding boxes and class probabilities directly from full images
in one evaluation, and that is why this model is called ‘you only
look once’. The first version of YOLO contains 24 convolution
layers and two fully connected layers, which makes performance
not very well when the objects are close to each other.

Next, YOLOv2 and YOLOv3 were proposed by J. Redmon in
2017 (Redmon and Farhadi 2017) and 2018 (Redmon and
Farhadi 2018), respectively. YOLOv3 made great progress by
using the Darknet-53 network as its backbone, which influenced
the next two versions of YOLO. In 2020, YOLOv4 (Bochkovskiy,
Wang et al., 2020) was inspired by CSPNet (Cross Stage Partial
Network) and formed the CSPDarknet-53 network as its
backbone. Based on YOLOv4, G. Jocher released YOLOv5
subsequently, which now contains five versions: YOLOv5n,
YOLOv5s, YOLOv5l, YOLOv5m, and YOLOv5x.

FIGURE 1 | Images of a normal insulator (A) and a defective insulator (B), where the defect is marked with a red rectangular box.
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3 PROPOSED METHODOLOGY

In this section, we first introduce how our models work from
input to output. In addition, we propose three new methods and
explain how we come up with these methods. They are EIoU for
loss function, Cluster-NMS for anchor generation, and AFK-
MC2 for anchor selection.

3.1 Model Structure
The entire model structure is shown in Figure 2, which contains
four stages: input, backbone, neck, and prediction. The input is an
image of a normal insulator or defective insulator, and then it is
fed to the backbone to extract the preliminary feature, which is
also called a feature map. After that, the feature map is passed to
the neck. The neck then processes the feature map and digs the
deeper information hidden in the feature, which contains
positioning information and semantic information. In the end,
the output of the neck is sent to prediction to give box with the
corresponding class. In the prediction stage, there are three steps
that have a big impact on the final accuracy, loss function, anchor
generation, and anchor selection, corresponding to the three new
methods in this study.

3.1.1 Backbone
YOLOv5 uses the CSPDarknet-53 network as its backbone based
on YOLOv4 (Bochkovskiy, Wang et al., 2020). It starts from
an input image of 640 × 640 × 3. After multi-layers of CBL,
where CBL is a kind of convolution layer, it comes to a
feature map of 20 × 20 × K, K means the number of
convolution kernels. There are two special layers in the
backbone: Focus layer and CSP layer.

The main purpose of the Focus layer is to reduce parameters,
reduce CUDA memory, and increase forward and backward
speed while minimally impacting mAP. The key of the Focus
layer is the slicing operation. As shown in Figure 3, after slicing,
the 4 × 4 × 3 image is sliced into a 2 × 2 × 12 feature map.
Therefore, each image from input goes through four slice
operation in parallel and concatenates them together, with the
image size changing from 640 × 640 × 3 to 320 × 320 × 12.

Then, we come to the CSP layer. Different from YOLOv4,
YOLOv5 designs two kinds of CSP modules. One is used in the
backbone, called CSP1, while another is used in the neck, called
CSP2. They are on the basis of the YOLOv3 backbone network
Darknet53 (Redmon and Farhadi,2018), drawing on the
experience of 2019 CSPNet (Wang, 2020). The authors of
CSPNet believe that the problem of excessive inference
calculation is caused by the repetition of gradient information
in network optimization. Therefore, by introducing CSPNet, the
feature mapping of the base layer is divided into two parts, and
they are combined by the cross-stage hierarchical structure,
which can reduce the computation and ensure accuracy.

3.1.2 Neck
YOLOv5 uses FPN + PAN structure as its neck. Figure 4 shows
the changes in the feature map in the neck. It can be seen that a
large feature map is at the bottom and a small one is at the top,
which makes it looks like a feature pyramid. These two feature
pyramids differ in the direction when it is formed. In the FPN
structure, the feature map size gradually changes from 20 × 20 to
80 × 80 through up-sampling, which forms a feature pyramid
from top to bottom. In contrast, inspired by the 2018 PANet (Liu,
2018), which is mainly used in the field of image segmentation,

FIGURE 2 | Entire model structure:1) Input an insulator image. 2) Backbone to extract feature map. 3) Neck to process the feature map and dig the deeper
information. 4) Prediction to detect the insulator and defect.
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the PAN structure forms a feature pyramid from bottom to top
with the feature map size from 80 × 80 to 20 × 20.

In this way, the FPN structure conveys strong semantic
information from the top down, while the PAN feature
pyramid conveys strong positioning information from the
bottom up. By working in pairs, the deeper information
hidden in the feature map is extracted.

3.2 New Methods for Prediction
In the prediction stage, this study considers the factors that limit
performance and proposes three new methods for loss function,
anchor generation, and anchor selection.

3.2.1 Loss Function
In object detection, IoU is an essential evaluation index to
measure the similarity of the predicted bonding box and the
ground truth box, which can improve the accuracy of object
location (Yu, 2016). We considered the disadvantages of the
existing loss function and proposed a new loss function EIoU that
is easy to train.

It is assumed that Apred represents the area of the predicted
bounding box, and Agrou represents the area of the ground truth
bounding box. Then, the IoU is expressed as the ratio of the area
where two boxes overlap to the total area occupied by the two
boxes, and it is shown as follows:

IoU(Apred , Agrou) �
∣∣∣∣Apred ∩ Agrou

∣∣∣∣∣∣∣∣ Apred ∪ Agrou

∣∣∣∣ (1)

However, there are two existing problems of IoU. One is that
when the predicted box and the ground box do not overlap, IoU
becomes 0, which cannot reflect the distance between the two
boxes. In this case, the loss function cannot be derived. Another is
that when two predicted boxes have the same size and same IoU
but different positions, IoU-loss cannot distinguish the difference
between them. Therefore, GIoU is proposed (Rezatofighi, 2019).
It is expressed as follows:

GIoU(Apred ,Agrou) � IoU −
∣∣∣∣AC − Apred ∪ Agrou

∣∣∣∣
|AC|

(2)

where C denotes the smallest enclosing box covering the
predicted bonding box and the ground truth box.

When the predicted box and the ground truth box are not well
aligned, the area of the smallest enclosing box C will increase, thus
reducing the value of GIoU, and when the two rectangular boxes
do not coincide, GIoU can also be calculated. GIoU Loss solves
the preceding two problems of IoU. However, when two boxes
belong to the containment relationship, the following Figure 5 is

FIGURE 3 | Operation of slicing: An image is divided into four regions for slice reconstruction, with the 4 × 4 × 3 image sliced into a 2 × 2 × 12 feature map.

FIGURE 4 | The two feature pyramids (FPN and PAN) in the neck by
processing the feature map.

FIGURE 5 | Example of the disadvantage of GIoU, in which the two
predicted boxes have different locations but the same size, making the same
GioU.

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 9281645

Ding et al. High Accuracy Real-Time Detection

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


used as an example: GIoU degenerates into IOU and cannot
distinguish its relative position.

In order to resolve the insufficiency of GioU, DioU is proposed
(Zheng, Wang et al., 2020), which considers the center distance of
the two boxes. It is shown as follows:

DIoU(Apred , Agrou) � IoU − ρ2(b, bgt)
c2

(3)

where b and bgt represent the center of the predicted box and the
true box, respectively. ρ denotes the Euclidean distance between
two central points, and c denotes the diagonal distance of the
smallest enclosing box C.

A good target-box regression function should consider three
important geometric factors: overlap area, center distance, and
aspect ratio. Therefore, the author of DIoU proposes a new loss
function CIoU (Zheng, 2021). The formula of CIoU and DIoU is
similar, but an impact factor is added to take into account the
aspect ratio of both the prediction box and the target box. It is
expressed as follows:

CIoU(Apred , Agrou) � IoU − ρ2(b, bgt)
c2

− ϑ2

(1 − IoU) + ϑ
(4)

where ϑ is a parameter measuring the consistency of aspect ratio,
which can be defined as follows:

ϑ � 4
π2

(arctanwgt

hgt
− arctan

wp

hp) (5)

where w and h represent the length and width of the box.
In this work, we propose a new loss function, EIoU. Although

CIoU considers the overlap area, center point distance, and aspect
ratio of boundary box regression. However, using ϑ to reflect the
difference of aspect ratio in its formula, rather than the real
difference of width and height, sometimes prevents the model
from effectively optimizing. In view of this problem, EIoU is
proposed as follows:

EIoU(Apred , Agrou) � IoU − ρ2(b, bgt)
c2

− ρ2(w,wgt)
c2w

− ρ2(h, hgt)
c2h

(6)
where cw and ch are the width and height of the smallest enclosing
box C.

In this way, we can retain the profitable characteristics of the
CIoU. At the same time, the EIoU directly minimizes the
difference between the target box’s and anchor box’s width
and height, which results in a faster converge speed and a
better localization result. For a clear demonstration of the
superiorities of the EIoU, we perform contrast experiments of
different loss functions in Section 4.2.1.

3.2.2 Anchor Generation
In order to improve the accuracy and efficiency of detection, it is
important to set the anchors in advance. Anchors are a predefined
collection of boxes whose width and height match the width and
height of objects in the data set. In the target detection algorithm,
the anchor point is the center, and the algorithm predefined

several prior frames with different length–width ratios. Typically,
four to ten anchors are preset at each location in the image.

K-means is one of the simplest algorithms to generate an
anchor (Krishna and Murty, 1999). The main idea is that
randomly initialize K centers ci from dataset X, each center
represents one category yi. Calculate the distance of data point
x ∈ X to each center, and xwill belong to the center nearest. Then
calculate the center of each category again:

ci � 1∣∣∣∣yi∣∣∣∣ ∑x∈yi x (7)

For the new center position, reclassify the data point x. Then
iterating a certain number of times until the center don not
change. The K-means algorithm has a serious shortcoming, when
the initialized K centers are not appropriate, it will affect the effect
of clustering.

A strategy needs to be adopted to select the initial center
points. K-means + algorithm is first proposed to address this
problem (Arthur and Vassilvitskii 2006). The improvement of
K-means + compared with K-means mainly lies in the
initialization stage of the cluster center, as shown in Figure 6.

It randomly initializes one center c1. To make each center
point as far away as possible, it proposed a sampling distribution
p(x|C) as expressed as follows:

p(x|C) � d(x,C)2∑x′∈Xd(x′,C)2 (8)

where d(x, C) denotes the distance of x to the nearest center:

d(x,C)2 � min
ci∈C

‖x − ci‖2 (9)

In this condition, the further x away from ci, the more likely x
will be selected as the next center. Repeating formulas 8 and 9
until K centers are selected. The next steps are the same as the
K-mean algorithm. However, because each time a new center
point is selected, the dataset X needs to be overpassed, which
increases the amount of computation.

This article proposes AFK-MC2 algorithm to settle the
aforementioned problem. AFK-MC2 algorithm uses
Metropolis–Hasting’s algorithm to sample the centers. The
Metropolis–Hastings algorithm is a MCMC method for
sampling from the probability distribution p(x|C) whose

FIGURE 6 | Difference clustering performance between K-means
algorithm (A) and K-means + algorithm (B), where (B) seems more
reasonable.
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density is known only up to constants. First, randomly initializes
one center c1. Consider the following variant that uses an
independent proposal distribution q(x|C) to build a Markov
chain: Start with an arbitrary initial state x1 and in each iteration
j ∈ [2, . . . , m] sample a candidate yj using q(x). Then, either
accept this candidate (i.e., xj � yj) with probability

π(xj−1, yj) � min⎛⎝ p( yj∣∣∣∣∣C)
p(xj−1∣∣∣∣C)

q(xj−1)
q( yj) , 1⎞⎠ (10)

or reject it ( xj � xj−1). The stationary distribution of this
Markov chain is p(x). Hence, for m sufficiently large, the
distribution of xm is approximately p(x). The last state xj

becomes the new center ci. Repeat these steps until K centers
are selected.

The proposal distribution q(x) in formular (10) is expressed as
follows:

q(x|C) � 1
2

d(x,C)2∑x′∈Xd(x′,C)2 +
1
2

1

|X| (11)

By using AFK-MC2 algorithm, it does not need to overpass
dataset X every time a new center is selected. The computational
complexity reduces from O(nkd) to O(mk2d). The performs of
K-means algorithm and AFK-MC2 algorithm is shown in
Section 4.2.2.

3.2.3 Anchor Selection
Anchor selection is another important part of object detection. It
pre-sets a threshold T to remove the redundant boxes and retains
the top scoring box. This work takes the concept of cluster into
the model, proposing Cluster-NMS method.

Traditional NMS (Rothe, 2014) algorithm is expressed as
follows:

S � { S IoU(B,P)<T
0 IoU(B,P)≥T (12)

where B denotes the predicted bounding box with the highest
score, P denotes another predicted bounding box, and S denotes
the confidence of P. When P have twomuch overlapped area with
B, it will be deleted.

However, IoU calculation and sequential iteration inhibit the
computational efficiency of traditional NMS. If there are n
detection boxes in a picture, the IoU of one box and other boxes
is calculated at least once and at most n − 1 times due to sequential
processing. In addition to sequential iterative suppression, the NMS
algorithm needs to calculate the IoU at least n − 1 times and at most
1
2n

2 − n
2 times. That is why this article introduces cluster.

A cluster is a collection of boxes. If a box A belongs to the
cluster, the IoU of other boxes in this cluster must greater than the
threshold T, and the IoU of boxes in other clusters should be less
than the threshold T.

Let us take a simple example, as shown in Figure 7, the black,
red, blue, and orange boxes constitute a cluster, while the two
green boxes constitute a cluster. Although the two clusters
intersect, they do not exceed the NMS threshold, so the two
box sets cannot be combined into a cluster.

Normally, when we use NMS, each cluster is iterated sequentially.
In traditionalNMS, although there should be no relationship between
different clusters, the IoU is repeatedly counted for the boxes
belonging to different clusters, and the number of iterations
suppressed by sequential iteration remains the same. However, in
cluster NMS, we can simplify iterating over all clusters into just
iterating over the cluster with the largest number of boxes. Different
clusters enjoy the samematrix operation and do not affect each other.
This results in nomore iterations than the number of boxes owned by
the largest cluster in a picture. In this way, computing speed is greatly
improved.

In addition to increasing the speed of NMS, we aimed to
improve the precision of NMS too. Considering the advantages of
DIoU over IoU, we added center point distance. Thus, the IoU
matrix becomes the DIoU matrix directly, and since DIoU also
satisfies the scale invariance, it can work well. The performances
of different anchor selection methods are shown in Section 4.2.3.

4 EXPERIMENT

In this section, the experiment details and results are introduced
concisely. First, some preparatory works of experiments are
introduced, such as experiment configuration, data
augmentation, experiment hyperparameter, and experiment
evaluation index. Then, we analyze a lot of comparative
experiments to evaluate whether our methods can realize high
accuracy and real-time detection at the same time. Finally, we
compare our model with other detection models.

4.1 Preparatory Work
4.1.1 Experiment Configuration
Deep learning requires good computer configuration, and the
accuracy and speed of the same method can vary greatly in
different configurations. In order to achieve reproducibility, our
experiment configuration is listed in Table 1.

FIGURE 7 | Example for cluster operation, the black, red, blue, and
orange boxes constitute a cluster, while the two green boxes constitute a
cluster.
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4.1.2 Data Augmentation
Compared to the data that needed in-deep learning, the 848
images in the CPLID dataset seemed insufficient. Therefore, this
study used four data augmentation methods to improve the
training effect. These methods are listed in Table 2. After that,
a novel dataset of 2,085 images was generated with 1800 training
samples, 225 validation samples, and 60 testing samples
separately.

4.1.3 Experiment Hyperparameter
Most of the model parameters are learned in the process of training.
Contrarily, hyperparameters are parameters whose values are set
prior to the beginning of the learning process rather than parameter
data obtained through training. In general, it is necessary to optimize
the hyperparameters and select a group of optimal hyperparameters
for the learning machine to improve the performance and effect of
learning. Therefore, the experiment hyperparameters in our method
are listed: 0.01 initial learning rate, 0.0001 final learning rate, 0.937
momentum, 200 iterations, and a batch size of 4.

4.1.4 Experiment Evaluation Index
In object detection, precision (P), recall (R), average precision
(AP), and mean average precision (mAP) are often used as
evaluation indexes. The precision indicates the proportion of
proper predictions among all samples predicted by the model.
The recall denotes the proportion of proper samples predicted
by the model among all positive samples.

If a model performs well, it should behave as follows: precision
remains at a high level while recall grows. However, a model with
poor performance will lose a lot of precision value in order to
improve recall value. Therefore, research studies often use the
P–R curve to show the tradeoff between them. AP denotes the

area of the P–R curve, and the higher the AP, the better themodel.
In addition, the mAP is the average of all AP. These evaluation
indexes are expressed as follows:

P � TP
TP + FP

(13)

R � TP
TP + FN

(14)

AP � ∫1

0
P(R)dR (15)

mAP � ∑n
i�1APi

n
(16)

where the details of the definition of TP, FP, TN, and FN are given
in Table 3.

4.2 Comparative Experiment
In order to verify the effectiveness of the proposed method,
we conducted comparative experiments for loss function,
anchor generating, and anchor selection, respectively, and the
baseline of each experiment was the unchanged YOLOv5s model.

Since there are two kinds of targets, insulator and defect, to be
detected, we mostly used recall, precision, and mAP to evaluate
the effect. In addition, for the purpose of improvement of
different experiments, we added different evaluation indexes.

4.2.1 Loss Function Comparation
We chose the YOLOv5s model as the baseline, which uses IoU as
its loss function. We compare the different performances of the
four methods: IoU, GIoU, CIoU, and EIoU (ours), and the results
are shown in Table 4.

It can be seen from Table 4 that the EIoU method improves in
all evaluation indicators compared with other methods. Compared
with the other two indexes, EIoU improved the most in mAP by

TABLE 1 | Experiment configuration.

Software platform PyCharm
GPU NVIDIA TITAN Xp
Learning framework Pytorch
Acceleration toolkit CUDA 11.0

TABLE 2 | Data augmentation methods.

Rotation ± 20°
Saturation ± 10°
Nosie Up to 5 ° of pixels
Cutout 4 boxes with 5 ° size each

TABLE 3 | Details of experimental definition.

Ground Truth Prediction Definition

Positive Positive TP
Negative Positive FP
Negative Negative TN
Positive Negative FN

TABLE 4 | Different performances of loss function.

Method P (%) R (%) mAP (%)

IoU 96.0 90.2 93.0
GIoU 96.4 89.9 92.9
CIoU 96.6 89.9 93.0
EIoU (ours) 96.8 90.8 94.4

TABLE 5 | Different performances of anchor generating method.

Method P (%) R (%) mAP (%)

K-means 96.0 90.2 93.0
AFK-MC2 (ours) 97.2 91.5 95.0

TABLE 6 | Different performances of anchor selection method.

Method P (%) R (%) mAP (%) FPS

NMS 96.0 90.2 93.0 100
Cluster-NMS (ours) 96.5 90.4 93.3 156
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about 1.5%, indicating that thismethod achieved a balance between
precision and recall. These results show that the EIoU method can
obtain a good performance in insulator defect detection.

4.2.2 Anchor Generating Method Comparation
As for anchor generating, we used the K-means method and
AFK-MC2 (ours) method to generate the preset anchor boxes.
Then, we trained the YOLOv5 model with these anchor boxes.
The results are shown in Table 5.

It can be seen from Table 5 that all evaluation indexes increase
a lot by using AFK-MC2, which verifies the idea of using a proper
approach to select the initial center of anchor boxes.

4.2.3 Anchor Selection Method Comparation
Because one of the goals of Cluster-NMS (ours) is to increase
computing speed, we added a new evaluation index FPS, which
means the number of images processed per second. The results
are shown in Table 6.

It can be seen from Table 6 that the Cluster-NMS method
mainly improves the speed of calculation and image processing,
with FPS increasing from 100 to 156, while improving other
indexes a little. An FPS of 156 means it can be used for real-time
detection for insulator detection.

In addition, this method aims to avoid missing detection of
insulators because of mutual occlusion in images. As shown in
Figure 8, the left one is predicted by YOLOv5 with NMS, and the
right one is predicted by YOLOv5 with Cluster-NMS. The results
show that when the NMS method misses the insulator on the
upper left because of the shielding, the Cluster-NMS method
successfully detects it, which increases the reliability of insulator
detection results.

4.3 Final Result
In the previous section, we performed several comparative
experiments to demonstrate the three new methods when used

alone. The results show that EIoU and AFK-MC2 obtain great
improvement in the detection accuracy, while Cluster-NMS
increase the detection speed with FPS from 100 to 156. In this
section, we applied all these methods, EIoU, AFK-MC2, and
Cluster-NMS, to get a final result of our improved model.

Then, we compared our model with many famous object
detection models such as DETR (Carion, Massa et al., 2020)
and Cascade-RCNN (Cai and Vasconcelos 2018). The results are
shown in Table 7. Before analyzing the final results, it is necessary
to make a review of our model, which contains four stages: input,
backbone, neck, and prediction. Among them, the backbone and
neck are well-designed to fully extract the information from
images. In addition, this article proposes three new methods
for the prediction stage and obtains a greatly improved model. As
shown in Table 7, compared with the original YOLOv5, our
model obtains a greater mAP of 96%, while FPS increases by
approximately 60%. This means that our new methods surely
improve the performance of insulator defect detection.
Compared with other two-stage models, although less accurate
than the most advanced two-stage model, such as DETR, it is
better than most two-stage models. But our model has an
overwhelming advantage over theirs in the aspect of detection
speed, which means that it can realize real-time detection while
maintaining high accuracy in routine insulator defect detection
applications.

FIGURE 8 |Difference performances between NMS (A) andCluster-NMS (B), where (B) successfully detects insulator on the upper left, while (A)misses it because
of the shielding.

TABLE 7 | Different performances of detection methods.

Method mAP (%) FPS

DETR 97.9 25
Cascade-RCNN. 94.0 6
YOLOv5 93.0 100
Ours 96.0 156
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5 CONCLUSION

In summary of this article, insulator defect detection technology
is the key to maintaining the normal operation of the power grid.
Existing methods can be divided into two categories. One-stage
method usually cannot achieve high accuracy, while two-stage
method sacrifices computational speed to improve accuracy.
Aiming to design a model that takes care of both speed and
accuracy, this study uses the YOLOv5model as the baseline. EIoU
loss function and AFK-MC2 anchor generation method are
proposed to improve the accuracy. We propose the Cluster-
NMS method to increase computational speed. Finally, the
experimental results show that our model achieved the highest
FPS of 156 with an mAP of 96%, which is higher than most two-
stage models. In this way, a high accuracy real-time insulator
string defect detection model is proposed in this study.

Our new detection model has a very broad application
prospect. As mentioned earlier, it will bring huge losses to the
economy and personal safety once insulators break and lose their
insulation capacity. Therefore, a real-time insulator string defect
detection means that it can detect the location of insulator failure
as soon as possible, which prevents the further expansion of the
accident. At the same time, the high precision ensures that it is
almost impossible to miss any insulator defects, which protects
the power grid and personal safety.

Finally, there is still a lot of room for improvement in our model.
For instance, all our new methods are proposed in the prediction

stage, which ignores the improvements in the backbone and neck. In
the following work, starting from the framework structure of the
model, we plan to study whether the backbone can be lightweight
while ensuring accuracy and whether the neck can use a better
structure to obtain more information.
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