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The interval prediction of wind speed is crucial for the economic and safe operation of wind
farms. To overcome the probability density function parameter optimization and long-term
correlation of time series problems in an interval predictionmethod, a hybridmodel based on the
beta distribution of an allele real-coded quantum evolutionary algorithm (ARQEA) and a shared
weight long short-termmemory (SWLSTM) neural network is proposed for predicting the interval
of short-term wind speed, which is beta–ARQEA–SWLSTM. Input variables are determined via
autocorrelation functions, and the shape and position parameters in the beta distribution
function are optimized by the ARQEA algorithm. An interval-divided multi-distribution function
aggregation is proposed to deal with the fluctuation of wind speed series. Lastly, case studies
are provided to demonstrate the effectiveness of the proposed method.
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1 INTRODUCTION

Wind power generation differs from traditional fossil power generationmethods. The integration of wind
power into a power grid is restricted by the uncertainty and intermittency of wind speed. Therefore, to
maximize the use rate of wind power, more accurate wind speed prediction is crucial for the control
strategy of wind farms (Li et al., 2019; Naik et al., 2019; Li et al., 2020; Gan et al., 2021). This process can
simultaneously deal with the indetermination of wind farms and decrease the schedule deflection of
power systems (Zhang YX. et al., 2016; Liang et al., 2017; Khosravi et al., 2018; Wang and Li, 2018). A
precise wind speed prediction interval (PI) can assist policymakers to control deviations in transmission
network planning and dispatching, risk evaluation, and reliability estimation. It is also a key factor to be
considered in reducing peak loads, guaranteeing backup capacity, and increasing the safe performance of
large-scale wind power generation systems (Wang et al., 2016).

In general, wind speed predictionmethods can be divided into two types: point wind speed prediction
(PWS) and PI of wind speed (PIWS). Compared with PWS, PIWS can obtain additional upper and lower
bounds for the predicted wind speed, which can provide more predictive information. Traditional PWS
methods include physical, statistical, and artificial intelligence models. A PWS prediction method is
simple in construction and facile to implement in wind farms. However, it is usually difficult to obtain
accurate prediction results with this method because of the randomness and intermittent nature of wind
resources. Although a lot of studies focus on improving the preciseness of the PWS method and have
made some progress, the impact of wind power uncertainty still cannot be solved. For instance, the
inhomogeneous distribution of wind farms is affected by local terrain, the nonlinear vibration of wind
generators, andmachine halts outside the plan (Kiplangat et al., 2016; Li and Jin, 2018;Wang et al., 2018).
Therefore, errors occur in wind power prediction, posing risks to grid dispatch. By contrast, PIWS can
provide additional forecast information and reduce risks in grid dispatch (Yuan et al., 2017a; Peng et al.,
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2017); thus, it will improve the understanding of decision-makers on
the indeterminacy of wind power fluctuations to avoid
potential risks.

In recent years,many studies were conducted on the uncertainties
of wind power generation, and PIWS has already been used for
many actual items. There are two sorts divisions of the PIWS
methods. The first one uses neural networks to directly obtain
the upper and lower bounds of PIs. As an instance, the lower
bound/upper bound estimation (LUBE) for forecasting wind speed
time series is a significant breakthrough in PIWS (Zhang et al.,
2016b). The method solves the problem of probability prediction by
constructing PIs, wherein an interval is represented by upper and
lower estimates. However, the LUBE cannot deal with the fluctuation
as an indetermination in wind speed time series. Another interval
prediction method involves estimating PIs on the basis of the
probability density of a point prediction result. To determine the
uncertainty of wind speed, it is necessary to construct the probability
density curve of prediction results, which requires the probability
density prediction method. This can provide accurate prediction
information on power system operation through this curve.

The preciseness of the wind speed probability distribution
function (PDF) is determined by the selected approaches and the
prediction error level, because the key factor of PIWS estimation is
the PDF of forecasting error (Allen et al., 2017; Naik et al., 2018;
Zhao et al., 2018). A shared weight long short-term memory
(SWLSTM) neural network can decrease the variable number
that should be optimized (Zhang et al., 2019). It also exhibits the
advantages of nonlinear prediction, fast convergence, and the
capability to capture the long-term correlations of the time series.
At present, the SWLSTM model has been applied for wind speed
prediction. Previous studies have shown that wind speed time series
demonstrate long-term memory characteristics. The present study
adopts the SWLSTM model as the basis for wind speed prediction.
In addition, normal or Laplace distribution functions and beta
distribution functions are also widely used as PDFs in the field of
PIWS. Among them, the beta distribution is more effective in
estimating the PIWS than the normal distribution and Laplace
distribution (Ren et al., 2016). The beta distribution is selected as
the basis of the PIWS in the present study consequently.

In this study, to improve the accuracy of wind speed, a new
hybrid method based on the SWLSTM model and beta–ARQEA
algorithm is proposed, which combines methods of artificial
intelligence and statistics. The main contributions are listed as
follows in four parts:

1) The SWLSTMmodel is applied to wind speed prediction. The
partial autocorrelation function is adopted to determine the
input variables of the SWLSTM model to reduce the
prediction error.

2) The real-coded quantum evolutionary algorithm (ARQEA) of
alleles (Zhang et al., 2016c) is adopted to optimize the shape
and position parameters in the beta distribution function for
selecting the appropriate distribution function to fit the wind
speed prediction error obtained by the SWLSTM model.

3) The entire wind speed time series are divided into plenty of
intervals per error distribution to improve the prediction
accuracy of PIWS methods.

4) The optimized parameters of different distribution
functions are utilized to fit the prediction error of each
wind speed interval, then confirm the confidence interval of
the wind speed series, and superimpose them to get the PI
of the entire wind speed. The PIWS based on
beta–ARQEA–SWLSTM achieves higher reliability and
narrower interval bandwidth.

Eventually, the PI of the entire wind speed series is acquired by
superimposing the confidence interval of each wind speed level.
Therefore, the PIWS based on beta–ARQEA–SWLSTM achieves
higher reliability and narrower interval bandwidth.

The rest part of this study is as follows: a review of the principle
of an SWLSTM neural network is shown in Section 2. Section 3
presents the key theory of ARQEA optimization parameters
based on beta distribution and discusses how to use it to
calculate confidence intervals. The PIWS process with the
beta–ARQEA−SWLSTM model is introduced in section 4.
Section 5 contains a case study and result analysis. Section 6
provides the conclusion drawn from the study.

2 SWLSTM NEURAL NETWORK

The SWLSTM model is a special artificial intelligence model. It
keeps the characteristics of the recurrent neural network model,
which can make use of a series of memory cells to deal with the

FIGURE 1 | Schematic of the SWLSTM network structure.

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 9272602

Sun et al. Wind Speed Interval Prediction

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


arbitrary input data and enhance the learning process of the time
series. In addition, the SWLSTM model can capture the long-
term dependence of the input data to prevent the gradient
disappearing from information transmission, which enhances
its capacity to capture the dynamic changes of the time series.

In SWLSTM, a new type of shared gate is proposed, which is
composed of input, output, and forget gate. The network
structure is shown in Figure 1. SWLSTM does not change the
gate structure of the standard long short-term memory (LSTM),
but shares the weight and bias of the gate structure. The
advantages of SWLSTM are reducing the number of variables
that must be optimized and shortening the training time (Zhang
et al., 2019).

As shown in Figure 1, the shared gate in the SWLSTM model
has an inherent relationship with the time series, of which the
purpose is to ensure that the training results often tend to be the
new input information. Hence, training the time series model by
the SWLSTM model has some advantages.

The hyperparameters of the SWLSTM model are shown in
Table 1.

In Figure 1, xt is the input of the input layer in the t-th cycle,
nett is the intermediate variable in the t-th cycle, St is the shared
gates in the t-th cycle, at is the information state in the t-th cycle,
Ct is the cell state in the t-th cycle, ht is the output of the hidden
layer in the t-th cycle, yt is the output of the output layer in the
t-th cycle, I− is one minus, and tanh, σ is the activation function.

SWLSTM has two stages: forward propagation and back-
propagation. The process of forward propagation of SWLSTM
in the tth cycle is discussed as follows.

1) Calculate the shared gate state and calculate the information
gate state:

nett � wh · ht−1 + wx · xt + b, (1)
St � σ(nett) � σ(wh · ht−1 + wx · xt + b), (2)

at � tanh(nett) � tanh(wh · ht−1 + wx · xt + b). (3)

2) Update the cell state:

Ct � stpCt−1 + (1 − st)pat. (4)

3) Calculate the output of the hidden layer:

ht � stptanh(Ct). (5)

4) Output predicted value of the output layer:

yt � s(zt) � σ(wy · ht + by). (6)
In the preceding formula and figure, t represents the current

cycle, xt is the input of the input layer, St is the shared gates, and
at is the information state. Ct−1 and Ct represent the cell state in
the previous and current cycles, respectively. ht−1 and ht denote
the output of the hidden layer in the previous and current cycles,
respectively. yt is the forecasted value of the current cycle.
Intermediate variables are represented by nett and zt.
[wh, wx, b] and [wy, by] are two sets of weight variables that
must be optimized. Symbol · and p indicate matrix multiplication
and multiplication between matrix elements, respectively. σ(x) is
the activation function of sigmoid and tanh(x) is the activation
function of tanh.

The process of error back-propagation in the tth cycle of the
SWLSTM is discussed as follows.

1) Use the squared error function as the optimization objective:

Et � 1
2
(yt − Yt)2. (7)

2) Calculate the error of variables in the output layer:

δyt � zEt

zyt
� yt − Yt, (8)

δzt � zEt

zzt
� zEt

zyt

zyt

zzt
� δytp[ytp(1 − yt)], (9)

δwy � zEt

zwy
� zEt

zzt

zzt
zwy

� δzt · ht, (10)
,

δby � zEt

zby
� zEt

zzt

zzt
zby

� δzt · 1 � δzt. (11)

3) Calculate the error of variables in the hidden layer:

δht � zEt

zht
�
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

zEt

zzt

zzt
zht

� δzt · wy , t � T,

zEt

zzt

zzt
zht

+ zEt

znett+1

znett+1
zht

� δzt · wy + δnett+1 · wh, t ≠ T,

(12)
δCt � zEt

zCt

�
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

zEt

zht

zht
zCt

� δhtpstp[1 − tanh2(Ct)], t � T,

zEt

zht

zht
zCt

+ zEt

zCt+1

zCt+1
zCt

� δhtpstp[1 − tanh2(Ct)] + δCt+1 · st, t ≠ T.

(13)
The shared gates in SWLSTM reserve the functions of the

three gates in the LSTM and still have the ability to discard useless
historical information and keep current useful information.
Coupling the input and forget gates simplified the LSTM
without significantly decreasing the performance. Activation
functions Sigmoid and tanh are retained in the SWLSTM.

TABLE 1 | Hyperparameters of the SWLSTM model.

Model Symbol Meaning

SWLSTM t Present cycle
— xt Input of the input layer
— nett Intermediate variable
— St Shared gates
— at Information state
— Ct Cell state
— ht Output of the hidden layer
— yt Output of the output layer
— I One minus
— tanh Activation function of tanh
— σ(x) Activation function of sigmoid
— w,b Weight variables
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These two points indicate that the SWLSTM does not
significantly reduce the prediction accuracy.

3 ESTIMATION OF RANDOM SAMPLES
BASED ON THE BETA–ARQEA MODEL

Considering the optimization problem of probability density
function parameters in interval prediction methods, to find the
appropriate distribution function for fitting prediction errors of
wind speed obtained by the SWLSTM model, the present study
uses random sample estimation based on the beta–ARQEA
model. The position parameters in the beta distribution
function are optimized by using ARQEA. The beta
distribution is expressed for a random sample R �
{r1, r2, . . . , rn} as follows:

β(γ, η) � ∫1

0
zγ−1(1 − z)η−1dz, (14)

where γ> 0, η> 0. z � (r − a)/(b − a), where a and b are the
position parameters of the beta distribution (Yuan et al., 2019).
The PDF based on beta distribution can be expressed as
Y � f(R, γ, η, a, b), n � 1, 2, . . ..

Using ARQEA to find the optimal parameters of the beta
distribution function can further improve the precision of the
beta distribution model.

Allele real-coding for beta position parameters is as follows
(Zhang YX. et al., 2016):∣∣∣∣∣∣∣∣ position parameter1 position parameter2

position parameter1
′ position parameter2

′

∣∣∣∣∣∣∣∣, (15)

where position parameteri and position parameter′i are encoded
in the form of probability stacking. This process can effectively
increase population diversity, prevent the occurrence of
premature phenomena, and provide preconditions for
improving optimization. The relative superiority of
position parameteri and position parameter′i is determined in
accordance with the distance relationship between each iteration
process and the present optimal solution. The one that is closer to
the present optimal solution is called the “better gene” xi, and the
other is called the “poor gene” x′

i. The hybrid evolution strategy is
adopted to balance the global search and local search for different
advantages.

1) The “better gene” xi fully uses existing information to
approach the present optimal solution under the guidance
of the present optimal solution while searching for a better
solution, which is

xinew � xi + sign(xp
i − xi) · (K∣∣∣∣xp

i − xi

∣∣∣∣), (16)
where sign(xp

i − xi) controls the evolution direction, K is the set
constant that controls the step length of the directional evolution,
and |xp

i − xi| is the maximum range of evolution.

2) For the “poor gene” x,
i , a local search with a scale shrink is

used, that is,

xinew � xi + U(−1, 1) · (1 − arctan(r
g
)) · Δd, (17)

where U(−1, 1) is a random distribution between −1 and 1; r is
the present algebra; g is the maximum iteration algebra; (1 −
arctan(rg)) is the contraction function that decreases from 1 to 0 as
algebra r increases, causing the scale of variation to decrease
gradually with evolution; and Δd is the allowable range of
variation.

The “better gene” and the “poor gene” perform local search
and global search, respectively. A hybrid evolution strategy is
developed when the two genes are transformed into each other,
enhancing the balance between the local search and global search
of the algorithm.

To evaluate the performance of the beta distribution model,
the approximate index I is selected, which is defined as follows:

I � ∑M
n−1(yn − �Nn)2

M
,yn � f(�Cn), n � 1, 2, ...,M, (18)

where M is the number of frequency distribution histograms; in
the nth histogram, �Nn and �Cn are the height and center position,
respectively; the approximation PDF is represented as f(�Cn) ;
and yn is the approximate PDF value of �Cn center position. When
the fitting index I is small, approximation accuracy is high.

According to Eq. 18, the fitness function of the beta
distribution optimization model and its constraints can be
obtained as follows:

minfitness � min(I), (19)
s.t.{ γ, η ∈ (0, 1),

a, b ∈ (xmin, xmax), (20)

where xmin and xmax are the minimum and maximum values,
respectively, of the sample.

To obtain the PDF of beta–ARQEA, we calculate the
histogram of the frequency distribution of the sample X �
{x1, x2, . . . , xn} to obtain the desired fitting objective, then
randomly initialize the parameters (a, b, γ , η) of the beta
distribution function according to the constraint (20). After
that, calculate the distance of each position parameter,
determine the better gene and poor gene, then calculate the
fitness of the genes, and retain the genes with better fitness.
When the maximum number of iterations is reached, stop the
loop. Finally, obtain the optimal parameters (a, b, γ , η) of the
beta distribution function. According to Eq. 14, we can get the
PDF based on optimized beta distribution.

After obtaining the PDF, the distribution function F(x) can be
calculated by integration, the definition of which is as follows:

F(x) � ∫1

0
(PDF(p))dx. (21)

Presume the confidence level is 100(1 − α)%, and the
unknown parameter for sample X is θ. If P{θ1< θ < θ2} � 1–α
and the interval [θ1, θ2] is minimum, these two conditions are
satisfied at the same time, and the interval [θ1, θ2] occurs at a
certain level of confidence, then
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
θ1 � F(α

2
),

θ2 � F(1 − α

2
). (22)

Then, we can obtain the confidence interval (θ1, θ2) of θ with
the confidence level 100 × (1 − α)%.

4 PIWS ESTIMATION BASED ON THE
BETA–ARQEA–SWLSTM MODEL

Since the SWLSTM’s point prediction accuracy is high and
beta–ARQEA’s probability prediction results are reliable, SWLSTM
and beta–ARQEA are combined to obtain high-precision point
prediction, high-reliability interval prediction, and probability
prediction. The wind speed PI implementation process based on
the beta–ARQEA–SWLSTM model can be shown as follows:

Step 1: Divide the wind speed historical data into training
dataset Data1 and test dataset Data2, Data1 � {x1, x2, ..., xn},
Data2 � { x1, x2, ..., xn}.

Step 2: Data1 and Data2 are normalized, and new training
data X1 and new test data X2 are obtained.

Step 3: The PACF of X1 is calculated, and the lag coefficient
with a value of k is obtained. Then, the input data of the SWLSTM

model are determined as follows: input � {xt−1, xt−2, ..., xt−k},
where t � (k, k + 1, k + 2, ..., m), t≥ k , and k> 0.

Step 4:X1 is used to train the SWLSTMmodel, and the trained
SWLSTM model is obtained.

Step 5: X2 is used to test the trained SWLSTM model, and
wind speed prediction Y2 � {y1, y2, ..., yn} is determined.

Step 6: The errors between X2 and Y2 are calculated, and the
error can be written asD � {d1, d2, ..., dn}, where di � yi − xi

and i � 1, 2, ..., n.
Step 7: The predicted data Y2 are divided into K levels in

accordance with the rated speed of a wind farm.
Step 8: Wind speed prediction values and their forecasting

errors under each wind speed level are statistics. The values and
errors are denoted as Y2k � {yk

1, y
k
2, ..., y

k
nk} and

Dk � {dk1 , dk2, ..., dknk}, where the prediction error number of the
kth wind speed level is represented as nk.

Step 9: Input Dk to the beta–ARQEA, and the upper-lower
limits of every wind speed level are calculated according to Eq. 22.
Then obtain the PI of the kth wind speed level [Δ1

k,Δ
u
k].

Step 10: The wind speed series PI of every level, which can be
represented as [Y2k + Δ1

k, Y2k + Δu
k], is acquired.

Step 11: The entire wind speed series PI consists of each wind
speed level.

Wind speed PI implementation based on the
beta–ARQEA–SWLSTM is shown in Figure 2.

5 CASE STUDY

5.1 Wind Speed Series Data
In the current study, the wind speed series data of a wind farm in
Jilin, China, are used. The wind speed series data in April 2018 were
selected, which were measured and recorded by the wind tower. The
step of wind speed series data is 15 min. The model of the wind
turbine used in the wind farm is S82–1.5, the rated wind speed is
13 m/s, and the cut-in wind speed and the cut-out wind speed are
4 m/s and 20m/s, respectively. To verify the performance of the

FIGURE 2 | Wind speed PI implementation based on
beta–ARQEA–SWLSTM.

FIGURE 3 | Dataset of wind speed.
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model, four datasets are selected for testing, one of which is shown in
Figure 3. Each dataset uses a data length of 7 days consisting of 672
wind speed time series. Take approximately 80% of the data from
every set as a training set and take the remaining portion as a
validation set. The training set is used to calibrate the parameters of
the beta–ARQEA–SWLSTMmodel and the validation set is used to
verify the performance of the beta–ARQEA–SWLSTM model for
the prediction interval of wind speed.

5.2 Evaluation Criteria
5.2.1 Evaluation Criteria of PIWS
To evaluate the performance of different models, these indicators
are selected to verify the effectiveness of the PI model: PI coverage
probability ( PICP ), average bandwidth (Δ�P), index F, and
sharpness (�Sα) (Yu et al., 2018).

To clarify the definition, the ith measured value is represented
by xi, and thus, I(i) � [lb(i), ub(i)] represents the 100(1 − α)%
confidence PI of xi, which is a random interval, where lb(i) is the
upper limit and ub(i) is the lower limit. The PICP is shown as
follows:

PICP � 1
n
∑n

i�1ci, (23)

where n is the number of samples and ci is the indicator of PICP.
If X � 1, then ci � 1; otherwise ci � 0.

The average bandwidth Δ�P is defined as:

⎧⎪⎪⎨⎪⎪⎩
Δ�P � 1

n
∑n

i�1ΔPi,

ΔPi � ub(i) − lb(i).
(24)

At the same confidence level, a smaller Δ�P results in better
performance of the PI.

If the interval width Δ�P is narrower and PICP is larger, there
will be better prediction results. Therefore, we use a
comprehensive index F, which considers PICP and Δ�P, to
evaluate the performance of the PI (Tasnim et al., 2018):

F � 2 × PICP × 1
Δ�P

PICP + 1
Δ �P

, if PICP≥ (1 − α). (25)

The F value takes into account two contradictory
indicators, which can integrate the evaluation of the quality
of the PI. The higher the F, the more effective the test method
will be.

FIGURE 4 | Wind speed prediction results for validation sets 1 and 2. (A) Validation set 1. (B) Validation set 2.
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In accordance with the concept of sharpness, the quality of the
PI opposite to xi can be computed, denoted by Sα(xi), which is
defined as

Sα(xi) �
⎧⎪⎨⎪⎩

−2α · ΔPi − 4[lb(i) − x(i)], if x(i)< lb(i),
−2α · ΔPi, if x(i)< l(i),

−2α · ΔPi − 4[x(i) − ub(i)], if ub(i)<x(i).
(26)

Here, sharpness �Sα is defined as

�S
α � 1

n

∣∣∣∣∣∣∣∣∣∑
n

i�1S
α(xi)

∣∣∣∣∣∣∣∣∣. (27)

Here, a smaller Sα(xi) indicates higher PI quality.

5.2.2 Probability Prediction Evaluation Indicator
To verify the certainty, ensemble, and probability prediction, the
comprehensive evaluation indicator of prediction performance,

TABLE 2 | Fitting indicators in each wind speed grade of the four models.

(0.3–0.4) S (0.4–0.5) S (0.5–0.6) S (0.6–0.7) S (0.7–0.8) S

Beta–ARQEA–SWLSTM 0.128 0.406 0.227 0.118 0.128
Beta–PSO–SWLSTM 0.198 1.698 0.494 0.121 0.198
Beta–SWLSTM 4.976 12.219 8.887 26.295 4.976
LSSVM 5.601 14.181 9.852 24.577 4.601

FIGURE 5 | Wind speed PI at 90% confidence level. (A) Validation set 1. (B) Validation set 2.

TABLE 3 | Performance of the compared PIWS models.

PICP/% Δ�P/(m/s) �S
α

F

Beta–ARQEA–SWLSTM 90 4.32 0.672 4.42
Beta–PSO–SWLSTM 90 4.592 0.784 5.85
Beta–SWLSTM 90 5.416 0.744 6.27
LSSVM 90 5.824 0.93272 6.33
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namely the continuous sorting probability score (CRPS)
(Alessandrini et al., 2015), is adopted. Assuming that p(yi) is
the PDF of the ith forecast value obtained by the
beta–ARQEA–SWLSTM, F(yi) is the cumulative distribution
function (CDF) of p(yi). The CRPS is defined as

CRPS � 1
Te

∑ Te
i�1 ∫+∞

−∞
[F(yi) −H(yi − Yi)]2dyi, (28)

F(yi) � ∫yi

−∞
p(x)dx, (29)

H(yi − Yi) � { 0, yi <Yi,
1, others,

(30)

where H(yi − Yi) is the Heaviside function. When the CRPS is
smaller, the comprehensive performance is better.

5.2.3 Reliability Evaluation Indicator
Reliability is the statistical consistency between forecasting and
observations. Probabilistic integral transformation (PIT) values
are used to evaluate the reliability of forecasting by a unified
probabilistic graph (Liu et al., 2018). PIT is computed by
observation results and CDF, which is defined as:

PIT � F(Yi) � ∫Yi

−∞
p(x)dx. (31)

To check whether the PIT values of the test samples follow
uniform distribution, all test samples can be found from the
uniform probabilistic graph. PIT values will be uniformly
distributed between 0 and 1 if the forecast is reliable.

5.3 Results and Analysis
To verify the effectiveness of the method proposed in this research,
beta–ARQEA–SWLSTM is compared with other wind speed
prediction methods in terms of point prediction accuracy, PI
suitability, and probability prediction comprehensive performance.
Then, the reliability of beta–ARQEA–SWLSTM is verified.

1) Point prediction results of wind speed.

To test the point forecasting accuracy of the method, the
beta–ARQEA–SWLSTM model is applied for wind speed
forecasts. The results are shown in Figure 4.

It can be seen from Figure 4 that the wind speed forecasted
values of the SWLSTM model is near the observed values. The
PDF is difficult to fit all the wind speed forecasting errors, so we
partition the wind speed into 10 wind speed grades following the
predicted value. The grade gap of wind speed is 0.1 S, in which S is

the cut-out wind speed. Compare the beta–particle swarm
optimization (PSO)–SWLSTM model (beta–PSO–SWLSTM),
standard beta distribution SWLSTM model (beta–SWLSTM),
and least square support vector machine (LSSVM) model with
the beta–ARQEA–SWLSTM model to verify the validity of the
beta–ARQEA–SWLSTM model. In accordance with Eq. 19, the
fitting indexes of these models are shown in Table 2.

When the results of each distribution model in Table 2 are
compared with that of the beta–ARQEA distribution model, the
fitting indicator I output by the beta–ARQEA model is the
smallest among the four distribution models for every wind
speed grade, indicating that the beta–ARQEA–SWLSTM
model has the highest accuracy. This finding proves that the
beta–ARQEA–SWLSTM model is superior to other models in
wind speed point prediction.

TABLE 4 | Probability prediction metrics in each dataset.

CRPS Dataset 1 Dataset 2 Dataset 3 Dataset 4

Beta–ARQEA–SWLSTM 0.020 0.019 0.014 0.016
Beta–PSO–SWLSTM 0.025 0.023 0.019 0.021
Beta–SWLSTM 0.029 0.025 0.022 0.020
LSSVM 0.036 0.029 0.028 0.029

FIGURE 6 | Reliability test of beta–ARQEA–SWLSTM. (A) Validation set
1. (B) Validation set 2.

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 9272608

Sun et al. Wind Speed Interval Prediction

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


2) Interval estimation of wind speed.

The interval estimation of wind speed is to verify the suitability
of beta–ARQEA–SWLSTM. The wind speed PI results obtained
from beta–ARQEA–SWLSTM are shown in Figure 5.

It can be seen from Figure 5 that the PI adopting the
beta–ARQEA–SWLSTM model basically contains all the actual
wind speed data. The little green dots in Figure 5 are the points at
which the observation exceeds the prediction interval of
beta–AEQEA–SWLSTM. The performance indicators of four
models are computed and compared to verify the superiority of
the beta–ARQEA–SWLSTMmodel. The results are shown inTable 3.

As indicated in Table 3, the coverage rate of each model reached
90%.When the coverage rate reaches the standard, the interval width
is represented by Δ�P. In the four models, the
beta–ARQEA–SWLSTM model has the smallest Δ�P, the smallest
sharpness �Sα, and the highest F index, indicating that the bandwidth
of the wind speed PI obtained by the beta–ARQEA–SWLSTMmodel
is narrower and has the highest sharpness and quality. In addition,
there is a higher preference for PI. Based on the aforementioned
results, it can be seen that the beta–ARQEA–SWLSTM model has a
better coverage rate and narrow bandwidth in the wind speed PI, and
can realize high-quality wind speed PI.

3) Probability prediction results.

To verify the entire performance of the PDF of each model,
probability prediction evaluation is applied. The CRPS is used to
evaluate the whole PDF, and the results contain point forecast, PI,
and the entire performance of the PDF (Tang et al., 2020; Zhang
et al., 2020). The CRPS of each model on each dataset is shown in
Table 4. In each dataset, the CRPS of beta–ARQEA–SWLSTM is
optimal. This finding fits well with point prediction and PI.

4) Verification of beta–ARQEA–SWLSTM reliability.

To guarantee that the prediction results of
beta–ARQEA–SWLSTM are convincing, the reliability
evaluation is essential. If the prediction results are reliable,
then the PIT of each predicted value in the validation set
should satisfy uniform distribution (Liu et al., 2018). To see
the distribution of PIT values intuitively, their uniform
probability diagram is plotted, as shown in Figure 6.

As can be seen from Figure 6, the PIT range of the two
datasets is uniformly covered (0,1), and uniformly distributed
along the diagonal and at the Kolmogorov 5% visibility band,
showing that the predicted PDF is in an appropriate range (Yuan
et al., 2017b). In consequence, the prediction results of
beta–ARQEA–SWLSTM are persuasive and reliable.

To summarize, compared with other models, the proposed
hybrid model has higher accuracy, coverage rate and reliability in
wind speed point prediction, interval estimation, probability
prediction and reliability evaluation, and can provide higher
quality wind speed prediction interval and more accurate results.

6 CONCLUSION

To achieve the goal of “carbon peaking, carbon neutralization,”
clean and renewable wind energy is very important. Accurate
wind speed prediction is crucial for the smooth operation of wind
turbines and improving their connection to grids. A new hybrid
method based on the ARQEA algorithm and beta–SWLSTM
model is proposed to improve the accuracy of wind speed
prediction and the convergence speed. Compared with the
traditional PIWS method, the hybrid model retains
functionality while being able to capture the long-term
correlations of the time series. The intervals of the wind speed
time series are divided by the error distribution, which enables the
hybrid model to obtain a PDF with higher reliability and
narrower interval bandwidth.

The proposed method is applied on a wind farm in Jilin,
China, to verify its effectiveness on wind speed forecasting. In
order to accurately verify the applicability of point prediction,
interval prediction, and the reliability of probability
prediction, six reference indexes of PICP, Δ�P, �Sα, F, CRPS,
and PIT are adopted. Compared with the results of other
models, it can be seen that the beta–ARQEA–SWLSTM model
can obtain a wider coverage range and narrower interval
bandwidth. Moreover, the prediction results can also show
high performance in point prediction, interval prediction, and
probability prediction. The proposed method can not only be
used for wind speed prediction problems but also for other
problems related to time series.

The beta distribution is considered in the proposed model.
However, for the wind power prediction problem, other
distributions such as the Gaussian distribution may have a
better performance for different scenarios. In future, more
wind farms in different geographical conditions and more
probability distribution hypotheses will be testified.
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