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The identification of decision variable interactions has a crucial role in the final outcome of
the algorithm in the large-scale optimization domain. It is a prerequisite for decomposition-
based algorithms to achieve grouping. In this paper, we design a recognition method with
higher efficiency and grouping accuracy. It is based on the decomposition strategy of min
hash to solve large-scale global optimization (LSGO) problems, called MHD. Our proposed
method focuses on discovering the interactions of decision variables throughmin hash and
forming subcomponents with a principle that the interdependencies between these
subcomponents are maintained at a minimal level. This is described as follows: first,
the min hash performs several permutations of the vector composed of decision variables.
Second, the index value of the first non-zero row of the vector after rearrangement is found
to obtain the new feature vector. Third, the probability of identical data at each position is
calculated based on the new feature vector to decide whether there are some certain
interactions between the decision variables. The advantages of min hash are: simpler
computation and greater efficiency improvement than comparison between two or two
decision variables; ability to find similar decision variables very quickly; and ability to cluster
decision variables in a simple way. Therefore, the efficiency as well as the reliability of MHD is
guaranteed. On the accuracy aspect, the proposed algorithm performs well in various types
of the large-scale global optimization benchmark test function. Finally, the experimental
results analysis and summarize the performance competitiveness of our proposed MHD
algorithm from several aspects when it is used within a co-evolutionary framework.

Keywords: min hash, evolutionary algorithms, cooperation co-evolution, decision space decomposition, large-scale
global optimization

INTRODUCTION

The large-scale global optimization (LSGO) is of interest to researchers with the fast increase of
complex optimization problems in applied engineering and science fields such as medicine and
chemistry. The dimensionality of decision variables involved in various engineering fields problems
has grown exponentially (Ma et al., 2021a; Li et al., 2022). There are many examples in large-scale
optimization, such as the optimal design of satellite layout (Teng et al., 2010), the parameter
identification in large-scale system models (Kimura et al., 2005), the inversion of seismic waveforms
(Wang and Gao, 2012), and the parameter calibration of water supply systems (Wang et al., 2013).
The common features of these problems are: the search scope of the objective problem exponentially
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expands as the dimensionality of decision variables grows, leading
to an increasing number of locally optimal solutions for the
optimization process; in addition, the coupling (or interaction)
relationships between variables become more complex. Thus, the
challenge of large-scale optimization problems can be
summarized as the emergence of dimensional catastrophes as
the number of decision variables grows exponentially and their
coupling relationships become more complex (Liu, 2019).

Problems of complex engineering optimization systems
generally use Evolutionary algorithm (EA) as a search engine
to get the global optima in a complex high-dimensional search
space. However, the EA is difficult or even impossible to deal with
these problems with the increase of decision variables in the
problem and the complexity of the inter-coupling relationship
between variables. EA is a heuristic search algorithm based on the
natural biological evolution mechanism, which does not require
the gradient information of the target problem and has better
robustness for solving complex NP-hard problems (Xue, 2021).
For small and medium-scale optimization problems, EA has
achieved excellent performance in various industrial
application systems and can effectively handle various
nonlinear, strongly coupled, mixed-variable, and other
complex optimization scenarios (Xue, 2021; Xue and Jiang,
2021). However, when the scale of decision variables of the
target problem exceeds a certain order of magnitude,
conventional EA (Strasser et al., 2017; Ma et al., 2021b; Ma
et al., 2021c; Zhang, 2022) are difficult to obtain satisfactory
performances such as solution accuracy and convergence speed
even with improved global optimization operator strategies due
to their limited search capability (Fan et al., 2014; Ran Cheng and
Yaochu Jin, 2015; Yang et al., 2017; Ma et al., 2019). Therefore,
how to design efficient large-scale global optimization methods is
an urgent problem to solve complex engineering system
applications in big data environment.

Currently, a lot of excellent work has emerged to solve large-
scale global optimization problems, such as dimensionality
reduction (Bhowmik, 2016), local search (LaTorre, 2013; He
et al., 2019; Ma et al., 2021d), and decomposition methods
(Yang et al., 2008a), among which the method that has gained
popularity is decomposition. Decomposition methods divide a
complex large-scale optimization problem into several sets of
small-size subproblems that are easier to handle. After
conducting policy decomposition, the whole complex function
can be optimized via optimizing each subproblem in a separate
way. The role of this decomposition has been demonstrated in
lots of optimization methods (Dantzig and Wolfe, 1960;
Griewank and Toint, 1982; Bertsekas, 1995). Potter and De
Jong (Potter and Jong, 1994) devised an effective Cooperative
coevolution (CC) framework for decomposing complex large-
scale problem. It has been shown that contribution-based
Cooperative coevolutionary schemes (Omidvar, 2011) are
superior to the traditional CC framework. The contribution-
based CC scheme mainly lies in quantifying the importance
level of a subcomponent over the entire fitness. When this
contribution/importance information is computed, we can
provide different computation resources among the
subcomponents depending on their importance. The

contribution-based CC scheme is not like the conventional CC
framework, which distributes computational budget equally
among the subcomponents. For CC and contribution-based
CC frameworks, the decomposition strategy used in
decomposing the decision variables into several
subcomponents is important, because the final result of the
optimization is extremely sensitive to the chosen
decomposition strategy.

In this paper, we develop a decomposition strategy using min
hash. The min hash method is a technique for quickly
determining whether two collections are similar or not. This
method was developed by Andrei Broder and was originally used
in the AltaVista algorithm to find and remove duplicate Web
pages in the obtained results. It can be employed for the large-
scale clustering problems, such as clustering by the similarity of
words contained between documents. It has the advantages of
being simpler to compute and more efficient than comparison
between two decision variables; being able to find similar decision
variables quickly; and being able to cluster decision variables
simply. In MHD, we use it to decompose the decision variables
and improve the decomposition efficiency.

The most useful and innovative points of this work include:

1) We apply the min hash thought to the large-scale global
optimization for decomposing high-dimensional decision
space, i.e., decision variables. The efficiency of decision
variable decomposition is improved due to the properties
of the min hash itself.

2) From the experimental results, the proposed algorithm has
potential advantages. The minimum hash incorporates the
Jaccard similarity coefficient, which is more accurate for the
splitting of decision variables and ensure an excellent
optimization performance.

The rest of this paper is laid out as follows. In Background and
Problem Statement, a partial summary and analysis of the large-
scale decision variable interaction problem, decomposition
strategies and min hash methods are given. In The Proposed
Method, the specific contents of our proposed algorithm are
described. Experimental Verification provides experimental
results about the decomposition effect of the algorithm on the
LSGO benchmark test function CEC 2013 (Li, 2013) and its
performance, and compares it with several other classical
algorithms. Conclusion concludes and summarizes the paper.
Conclusion summarizes and concludes the paper.

BACKGROUND AND PROBLEM
STATEMENT

LSGO Problems
The target LSGO problem can be defined as

xp � argminf(x)
x∈Rn

. (1)

where f: Rn → R is a real value objective function, x = (x1, x2, . . .,
xn) is a decision vector with n dimensions, n indicates
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the dimension of the variable, usually larger than 100
(Liu, 2019).

For the CC framework, the aim of decomposing the problem is
to minimize the dependencies between subgroups (Omidvar
et al., 2017), which is usually determined by the separable
construction of the optimization function formulated as follows:

Definition 1. The function f (x) is said to be partially separable
with m independent subgroups if:

argminf(x)
x

� ( argminf(x1, ...),
x1

..., argminf(.., xm)
xm

) (2)

where x = (x1, x2, . . ., xn) is an n-dimensional vector, x1, . . . , xm
are the m disjoint sub-vectors of x, 1 < m ≤ n. If m = n, f (x) is
considered as completely separable (Omidvar et al., 2017).

Definition 2. The function f (x) is said to be fully non-separable if
n decision variables are all interacting with each other and m = 1
(Omidvar et al., 2015).

In fact, the partially additively separable problem is a special
type of the partial separable, which usually shows the modular
nature of the practical LSGO problems (Omidvar et al., 2015).
Especially, it is formulated as below:

Definition 3. The function f (x) is partially additively separable if:

f(x) � ∑m
i�1
fi(xi), m > 1 (3)

where m is the number of independent subgroups, fi (.) is a non-
separable subfunction (Omidvar et al., 2017).

Decomposition Strategy
Cooperative coevolution framework is currently a useful
approach to address LSGO. The effectiveness of this
approach is attributed to the fact that it decomposes or
divides a LSGO function into several sets of easier
subfunctions. This thought of divide and conquer first
appeared in a book called A Discourse on Method.
Moreover, the validity of this idea has been verified in the
paper (Weicker and Weicker, 1999; Liu et al., 2001). However,
the disadvantage of CC framework lies in that the
corresponding overall performance is highly relative to the
selected decomposition strategy. Here, we briefly review the
existing recognized and widespread decomposition strategies
devised for CC, i.e., decomposition-based LSGO algorithms.

The key to applying the cooperative coevolution to handle
LSGO problems is how to decompose a set of variables into a
small number of subgroups. With no prior knowledge about the
underlying constructions, we can decompose the specific problem
using different methods. Ideally, we need to construct
subcomponents according to a basic principle that the
dependent effects among decision variables should be
minimized. A cooperative coevolutionary technique proposed
by Weicker (Chen et al., 2011) is used to analyze the interaction
relations between variables. It is the first coevolutionary
technique for automatic identifying interaction variables.

However, it was not applied with a high-dimensional search
space for the large-scale global optimization problems. Then,
Chen (Chen et al., 2011) presented an improvement method for
this technique and obtained well performance in handling LSGO
problems. Another excellent method is the Delta grouping
(Omidvar et al., 2010), which is an effective technique that
automatically identifies interactive decision variables in the
problem. However, the technique performs effectively
especially in the scenario where only one set of interacting
variables exists.

In addition to the above decomposition strategies, there are
also grouping strategies where the size of the subcomponents is
predetermined. For example, random grouping (Yang et al.,
2008a), which decomposes an n-dimensional large problem
into m s-dimensional smaller problems. The main
disadvantage of this strategy lies in that it is required to
specify an m or s value, which is inefficient for the use of the
algorithm. For the optimization scenario where a large number of
mutually interacting decision variables exist in the target large-
scale problem, the algorithms do not achieve the desired
performance metrics when s is small. Conversely, when few
interacting decision variables exist in the problem, then the
performance of the algorithm cannot be fully exploited when s
is large. To address this problem, Yang (Yang et al., 2008b)
suggested a multilevel cooperative coevolution (MLCC)
algorithm. The algorithm is to provide an array with the
possible s-values instead of using a fixed value. The
evolutionary process allows measuring the performance of
subcomponents of different sizes. The better value, in terms of
performance indicator, is more likely to be chosen in the
following evolution round. In this way, this strategy is able to
address the issue of specifying s-values. However, this multilevel
strategy suffers from an issue that if an s-value is selected, the
variable is grouped into several subcomponents of equal size. In
many practical problems, the specifications of the groups that
appear to interact with each other are the same. Therefore, the
most effective strategy is to adaptively find out the specification
and the number of subcomponents.

Perturbation strategies are to some extent more convincing
than random grouping. The key of the perturbation strategy is to
use various methods to perturb the decision variables. Ultimately,
the interaction between the decision variables is detected by
detecting changes of the corresponding objective function. In
most cases, the decomposition phase of the strategy is performed
offline. When the interactions of all decision variables are
detected, the decomposition phase is started, which in turn
initiates the optimization process. In the background of
cooperative coevolution, more and more decomposition
algorithms that rely on perturbations have been developed,
such as DG (Omidvar et al., 2014) and DG2 (Omidvar et al.,
2017). DG is executed by first detecting the interaction
information within each pair of the first decision variable and
the other ones in the problem. When the algorithm finds the
interaction within the pair of the first variable and any other
decision variable, we can take this decision variable from the
entire set of variables and puts it into one subgroup. Another key
point of this strategy is the metric to be used in determining
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whether there is an interaction or not. In other words, what
criteria determine whether they are interactions or not. DG uses a
user-set threshold to determine whether there is an interaction or
not. This approach is too intrusive in determining interactions,
and human factors have a large influence on the decomposition
results. Therefore, in 2017, Omidvar (Omidvar et al., 2017) et al.
proposed DG2. One contribution of DG2 is to improve the
shortcoming of DG that requires thresholding by eliminating
the influence of human factors on interactions. It will
automatically determine the threshold value based on the
characteristics of the problem, having a higher practicality.

In addition, related scholars have proposed specifically
threshold-based decomposition strategies: decomposition of
decision variables by pre-setting the relevant thresholds for
subgroups. Examples include RDG (Sun et al., 2018), RDG3
(Sun, 2019), and DGSC (Srinivas and Amgoth, 2022). RDG3
solves the overlapping LSGO problem by setting a threshold to
specify the size of subcomponents. The DGSC algorithm
predetermines the number of subcomponents and uses
clustering to group the decision variables, which can avoid the
grouping unevenness problem and save computational space.
However, this type of algorithm ignores the coupling
dependencies among decision variables, and it is difficult to
place the closely dependent variables into same
subgroups, which makes it difficult to achieve the desired
optimization effect.

To the best of our knowledge, there are two decomposition-
based strategies in addition to the methods described above. They
are interaction adaptation and model building. The core of this
strategy of interaction adaptation is to detect chromosomal
interactions while optimizing the sequential evolution of genes.
The variables involved in the function also need to be optimized.
The main approaches in this category include the Linkage
Evolving Genetic Operator (LEGO), proposed by Jim Smith in
1993. The focus of this algorithm is to exploit the recombination
mechanism of genes. Combined with real-world problems, a new
individual is the result of the free combination of genetic material
from the parents. And the amount of genetic material that makes
up the new individual is uncountable. Therefore, in the process of
evolutionary optimization, the individuals in the population are
also the result of the combination of genetic arrangements from
the parents. If the genes of the parents are marked using a special
linkage before the creation of new individuals, then the genes in
the offspring will also have this special marker. There is a high
probability that the linkage has changed position compared to the
parent when generating the offspring. Individuals with more
linkage position changes are considered to be more closely
interacting. In the following evolutionary process, the more
closely linked individuals can have a higher probability of
reproduction (Cheng et al., 2022; Zhu et al., 2022).

The core idea of this strategy of model construction is to build
a probabilistic model. This model is constructed based on the
potential solutions of the population. This probabilistic model is
also continuously optimized in the optimization process. New
individuals are also generated from this model. Most of the more
popular model building algorithms were proposed many years
ago. They include mainly the compact Genetic Algorithm (cGA)

proposed by Harik in 1999 and the Bayesian Optimization
Algorithm (BOA) proposed by Pelikan and the Hierarchical
Bayesian Optimization Algorithm (Hierarchical BOA)
proposed by Pelikan in 2002. In addition to this, Griewank
proposed partitioned quasi-Newton algorithms to handle
certain LSGO challenges. The key point of this work is the
partitioning of the matrix by approximating the quasi-Newton
formulation. Specifically, they used the idea of decomposition to
divide the matrix into blocks. The blocks are not connected to
each other in any way. Let the component functions that use the
quasi-Newton formula gradually approximate the decomposed
blocks of the matrix. The sum of several matrix blocks constitutes
the objective function value.

Jacquard Similarity Coefficient
Data mining tasks involve the similarity calculation of massive
data, such as the similarity of retrieved documents, the similarity
between users, and so on. These data are usually of high
dimensionality, and the dimensionality of the document data
encoded with one-hot is equal to the size of a dictionary. In the
case of large data volume and high data dimensionality, it takes so
much time to compute the similarity between two objects.

Min hash approximation algorithm can greatly improve the
operation efficiency with similar accuracy. Before introducing the
minimum hash, the Jaccard similarity coefficient is introduced.
The Jaccard similarity coefficient is often utilized to compute out
the similarity degree between individuals with symbolic or
Boolean measures, since the feature attributes of these
individuals are detected by symbolic or Boolean measures.
Therefore, it is not possible to estimate the magnitude of the
specific value of the difference, but only to obtain the result of
“similarity or not”. Therefore, the Jaccard coefficient is only
concerned with the consistency of the characteristics shared
between individuals.

For two data sets A and B, the Jaccard coefficient is regarded as
the quotient of the size of the intersection of the two data sets to
the size of the union, defined as follows:

J(A, B) � |A ∩ B|
|A ∪ B| �

|A ∩ B|
|A| + |B| − |A ∩ B| (4)

J (A, B) [0,1], if both A and B are sets that do not contain
elements, J (A, B) is denoted as 1.

The metric associated with the Jaccard coefficient is called
Jaccard distance. It expresses the dissimilarity of sets. The larger

TABLE 1 | Document data vectors.

D1 D2

1 (Year) 1 0
2 (Month) 1 0
3 (Day) 1 1
4 (Hours) 0 0
5 (Minutes) 0 1
6 (Seconds) 0 0
7 (You) 1 1
8 (Me) 0 0
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the Jaccard distance, the less similar the samples are. The
expression of this formula is followed:

dj(A, B) � 1 − J(A, B) � |A ∪ B| − |A ∩ B|
|A ∪ B| � AΔB

|A ∪ B| (5)

A Δ B = |A ∪ B|-|A ∩ B| is symmetric difference. Therefore, the
higher the Jaccard similarity coefficient, the greater the overlap of
the samples.

Suppose D1 and D2 are given two documents whose feature
vectors are encoded in one-hot. If the position is 1, the document
has the corresponding word, as shown in Table 1.

We can use the Jaccard coefficient to compute out the
similarity of two vectors. The Jaccard coefficient is the
specifications of elements in the intersection of A and B
divided by the specifications of elements in the concatenation
of A and B. Therefore, the similarity of documents D1 and D2
above is 2/5.

If p represents the number of dimensions in which both
samples D1 and D2 are 1. q represents the dimension size or
dimension number in which sample D1 is one and sample D2 is 0.
r is the dimension size where sample D1 is 0 and sample D2 is 1. s
denotes the number of dimensions in which both samples D1 and

D2 are 0. Hence the Jaccard similarity coefficients of samples D1
and D2 can be rewritten as:

J � p

p + q + r
(6)

(p + q + r) is denoted as the number of elements of the union of
D1 and D2, while p is the number of elements of the intersection
of D1 and D2.

Min Hash
Min hash, in short, is to randomly draw n items from all the items
that the user likes. The few users for whom all the n items drawn
are the same are considered to be users with similar interests and
belong to the same cluster. The initial application of min hash
includes clustering and eliminating near duplicates in Web
documents, which is described by the set of words that appear
in those documents. min hash in this case belongs to a clustering
algorithm that clusters users based on them and their favorite
goods, and clusters users who have the same favorite goods into
one cluster. The advantages of the min hash clustering algorithm
are: 1) it is relatively simple to compute and has a greater
efficiency than comparing two users with each other; 2) it can

FIGURE 1 | Example of min hash process.
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quickly identify users with the same goods; 3) it can simply cluster
the users.

Min hash is a method for approximating the Jaccard
coefficient, and the main steps are as follows: a. Randomize

the dimensions of vectors D1 and D2 m times; b. Find the
index of the first non-zero row of D1 and D2 after
rearrangement, which is represented by the functions h (D1),
h (D2) (Function h () refers to the min hash function). After
performing m random permutations, the new eigenvectors of D1
and D2 can be obtained as follows:

Sig(D1) � [h1(D1), h2(D1), ..., hm(D1)] (7)
Sig(D2) � [h2(D2), h2(D2), ..., hm(D2)] (8)

This process is shown in Figure 1, where m = 3.
After obtaining the new feature vectors Sig (D1) and Sig (D2),

we can calculate the probability p = 1/3 that each position is
identical (i.e., the first non-zero row has the same index), which is
an approximation of the Jaccard coefficient. This conclusion is
based mainly on the following principle.

P [h(D1) �� h(D2)] � J(D1, D2) (9)
The proof is as follows:

After rearranging the two vectors D1, D2, three possibilities
exist in each dimension. 1) D1 and D2 are both one in this one
dimension, which corresponds to p in Jaccard’s formula. 2) D1,
D2 only one vector in this dimension is 1, which corresponds to
(q + r) in Jaccard’s formula. 3) D1 and D2 are both 0 in this
dimension.

The new vector Sig (D1) obtained by Min hash is the first non-
zero row index of D1. Then the probability that Sig (D1) and Sig
(D2) have the same index in the first non-zero row is p/(p + q + r),
which is the Jaccard similarity coefficient formula.

If the full permutation is used (i.e., all permutations are
considered), Min hash gives the exact Jaccard value. However, in
practice,m permutations are usually used to improve efficiency, and
the original vector can be transformed into a new vector of lengthm.

THE PROPOSED METHOD

Framework of MHD
The framework of MHD includes the following procedures:

1) Initialization. First, the population best is initialized randomly
(Line 1). The times of function evaluations Fes is the same to
the population size. Next, the crossover rate is initialized for
the optimization engine (Line 2), and the detailed parameter
setting refers to the algorithm SaNSDE (Yang, 2008).

2) Min hash determination of decision variable interactions. In
determining the interaction of decision variables, we use the
minimum hash strategy, as shown in Figure 1. Before
determining the interaction relationship, we normalize the
decision vector to facilitate the minimum hashing (Line 3).
We use Min-Max Normalization. It is also known as also
known as outlier normalization. It makes the result map
between 0 and 1. It has two major advantages such as
improving the performance of the model. We obtain the
similarity between the decision variables according to the
process shown in Figure 1. The obtained data is stored
and prepared for the next steps.

TABLE 2 | The results of MHD, SaNSDE, CBCC3-DG2 and DECC-G run on CEC
2013 benchmarks. The best algorithm(s) are highlighted.

Function Stats MHD SaNSDE CBCC3-DG2 DECC-G

f1 min 1.03E+04 1.12E+03 1.94E+04 7.69E-07
mean 1.17E+05 3.44E+04 1.59E+05 3.43E-06
std 1.18E+05 2.74E+04 2.60E+05 3.28E-06

f2 min 7.69E+03 8.23E+03 8.36E+03 1.26E+03
mean 9.39E+03 8.90E+03 9.52E+03 1.30E+03
std 1.23E+03 4.68E+02 8.21E+02 3.95E+01

f3 min 2.08E+01 2.08E+01 2.08E+01 2.02E+01
mean 2.08E+01 2.08E+01 2.08E+01 2.02E+01
std 1.04E-02 9.09E-03 4.40E-03 4.28E-03

f4 min 1.74E+07 3.16E+09 3.44E+07 3.50E+10
mean 2.73E+07 4.00E+09 6.85E+07 9.22E+10
std 9.58E+06 5.15E+08 3.54E+07 5.52E+10

f5 min 1.81E+06 2.28E+06 1.43E+06 5.33E+06
mean 1.96E+06 3.27E+06 1.61E+06 7.56E+06
std 1.15E+05 7.14E+05 1.75E+05 1.59E+06

f6 min 1.05E+06 1.05E+06 1.05E+06 1.05E+06
mean 1.05E+06 1.05E+06 1.05E+06 1.06E+06
std 1.96E+03 4.44E+03 2.09E+03 3.19E+03

f7 min 5.29E+01 2.27E+06 1.29E+04 1.67E+08
mean 2.70E+02 2.96E+06 3.89E+04 2.14E+08
std 3.27E+02 7.02E+05 3.50E+04 5.95E+07

f8 min 4.12E+09 1.18E+12 7.35E+09 1.06E+15
mean 9.21E+10 2.55E+12 4.21E+10 2.18E+15
std 8.94E+10 1.21E+12 3.60E+10 1.08E+15

f9 min 1.23E+08 2.52E+08 1.01E+08 3.94E+08
mean 1.44E+08 2.60E+08 1.45E+08 5.50E+08
std 1.65E+07 1.45E+07 3.08E+07 9.52E+07

f10 min 9.32E+07 9.28E+07 9.27E+07 9.26E+07
mean 9.34E+07 9.30E+07 9.36E+07 9.27E+07
std 2.29E+05 2.13E+05 8.92E+05 1.87E+05

f11 min 5.92E+05 1.04E+08 1.06E+07 1.27E+10
mean 3.08E+06 1.87E+08 6.98E+07 5.35E+10
std 3.31E+06 6.89E+07 1.95E+08 2.93E+10

f12 min 1.32E+05 1.07E+04 1.37E+05 3.26E+03
mean 3.72E+05 7.87E+04 5.73E+05 4.77E+03
std 2.71E+05 9.85E+04 4.52E+05 2.72E+03

f13 min 9.86E+08 6.81E+07 2.62E+08 4.72E+09
mean 2.13E+09 1.59E+08 3.56E+08 6.94E+09
std 1.27E+09 6.97E+07 9.31E+07 1.69E+09

f14 min 9.29E+06 7.03E+07 1.08E+08 3.33E+10
mean 1.36E+07 1.54E+08 1.87E+08 8.59E+10
std 3.71E+06 1.22E+08 4.45E+07 3.64E+10

f15 min 4.88E+06 3.07E+06 4.23E+06 7.59E+06
mean 7.04E+06 3.67E+06 4.45E+06 1.66E+07
std 3.32E+06 6.18E+05 3.69E+05 1.49E+07

Bold values represents the relative best value obtained in the test problem.
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3) Variable grouping. This work combines a decomposition-
based large-scale optimization strategy to find the global
optimal solution. In this process, the decision space is

decomposed into several subspaces. In this way, the
variables that exhibit explicit interactions are divided into
the same subgroups. In this critical step, we use a depth first

FIGURE 2 | The convergence curves of various algorithms on f1-f15 functions.
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search (DFS) strategy to cluster the decision variables with
interaction relations. In fact, depth first search is one of the
graph algorithms. The process is briefly described as going as
deep as possible into each possible branching path, and each
node can only be visited once. DG2 (Omidvar et al., 2017) uses
a depth-first search strategy to achieve grouping of decision
variables.

4) Population evolution. The contribution-based strategy is used
to optimize subgroups. And the optimizer is SaNSDE in
proposed method. First, it optimizes the initial value of the
population best according to the grouping result, and obtains
the new value (Line 7). Then, it calculates the contribution de
of the current subgroup, and stores in array Δ (Line 8). The
subgroup with the greatest impact on the fitness function (ie.,
largest contribution) is chosen as the optimization object
(Line 11). Line 12 has the same effect as (Line 7). Third,
the contribution of the current subgroup is updated (Sun et al.,
2018) (Line 13) to start a new round of optimization.

Computational Complexity
The time complexity of min hash determination of decision
variable interactions in Framework of MHD (Line 3) is O(N2),
where N represents the specification of the decision search space.
Time complexity of depth first search of graphs is O(N2). The
complexity of optimize population based on the CC (Lines 5–15) in
Framework ofMHD is aboutO(N). Summarize all of the above, the
computational complexity of MHD is O(N2) in the worst case.

EXPERIMENTAL VERIFICATION

To indicates the reasonableness of the proposed MHD algorithm,
this section conducts a set of comparative experiments with some
algorithms: 1) Accuracy comparison; 2) Convergence
comparison; 3) Stability comparison. The compared
algorithms include SaNSDE (Yang, 2008), which uses a
transformation of differential evolution (DE) as optimizer used
in CC framework; CBCC3-DG2 (Omidvar et al., 2017), which
uses an improved difference grouping strategy and combines the
grouping strategy with contribution-based CC approach; DECC-
G (Yang et al., 2008a), which uses random strategy to achieve
grouping and is also the most used comparison algorithm in other
papers.

The algorithms are implemented on CEC 2013 (Li, 2013) test
suit, where each test problem is invoked in 1000-dimensional test
instances. CEC 2013 test suits includes 15 functions: Fully
Separable Functions (f1-f3); Partially Separable Functions (f4-
f11); Overlapping Functions (f12-f14) and Fully Non-separable
Function (f15).

The performance metric is the widely used the mean
normalized scores (MNS) and standard normalized scores
(SNS) (Liu, 2019), which is defined as:

scorei(algo) � log(mean(fi(x))) (10)

FIGURE 3 | The mean normalized scores of the four algorithms. The lower the value indicates a better performance.
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mean normalized scorei(algo) � scorei(algo)
scorei(SaNSDE) (11)

scorei(algo) � log(std(fi(x))) (12)
std normalized scorei(algo) � scorei(algo)

scorei(SaNSDE) (13)

Both our proposed algorithm and the comparison algorithm
are run 25 times on each test problem. The maximum function
evaluations used by all algorithms is 3,000,000. The size of
population is also set to 100. Each algorithm uses simulated
binary crossovers and polynomial variants common in the field
(Molina, 2018). The crossover probabilities and variance
probabilities are set according to the well-known
optimization algorithm SaNSDE. The other parameters of
the comparison algorithm in the article are the same as
those set in the references (Yang et al., 2008a; Omidvar
et al., 2017; Molina, 2018; Zhu et al., 2022) for the sake of
fairness of comparison.

Results and Analysis on Accuracy
Comparison
Table 2 reports the statistical results of the algorithms. MHD can
still perform well in the first three test problem functions (f1-f3). In
fact, FCA-G defeats CBCC3-DG2 and SaNSDE in the fourth to
ninth test problem functions (f4-f9) and one-third of the overlapping
test problems (f14). On the last test function (f15), MHD performs
better than the compared algorithm. We can observe that MHD
performs the best outstanding on most test instances, while DECC-
G also obtains excellent performance on some test functions (f1-f3).
Specifically, MHD achieves the greatest results on functions (f4-f11)
and one overlapping functions (f14). Compared to CBCC3-DG2,
MHD performs very closely to SaNSDE. Compared to DECC-G,
MHD performs better and more efficiently especially on the
functions f4-f9. The above results validate the advantage of MHD
in dealing with various LSGO problems.

Compared to SaNSDE, CBCC3-DG2 and DECC-G, the
grouping strategy used in MHD is more effective to deal with
LSGO problems. The reason lies in that MHD uses a minimum
hash strategy to determine the interaction between decision
variables. It can further clarify the interaction relationship
between decision variables by intersection and concatenation
operations, and then decompose the variables with interactions
to a subcomponent. In the evolutionary process, decomposing the
decision variables facilitates the determination of the optimal
solution. Decomposing variables according to the interactions
between decision variables is a more convincing approach. There
are many current methods to complete the decomposition of
variables by analyzing the interactions of decision variables, and
then seek the global optimal solution. Although algorithms such
as SaNSDE, CBCC3-DG2 and DECC-G also use learning-based
decomposition strategies, the decomposition process of DECC-G
is too crude and ignores the interactions of decision variables.
DECC-G decomposes variables with interactions to different
subcomponents, and variables without interactions are forced
to the same subcomponent.

Result Analysis on Convergence
Comparison
Next, we make an extended experiment to show the convergence
ability of MHD, as shown in Figure 2. In this figure, Figure 2 (f1)
- Figure 2 (f15) denote the convergence process of MHD over
functions f1-f15, respectively. In this experiment, we get 30 points
at equal intervals to compare the convergence of each algorithm.
All the points along the convergence curve are averaged by 25
independent runs.

From Figure 2, we observe that MHD can converge quickly
to a small value in most test functions. To be specific, MHD,
SaNSDE and CBCC3-DG2 exhibit a similar convergence
performance on functions f1-f3 and f15. Since DECC-G
adopts the random grouping strategy and cooperative
coevolution, it fixes the size of the subgroup and

FIGURE 4 | The standard deviation normalized scores of the four algorithms. The lower the value indicates a better performance.
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implements an even distribution of computing resources.
DECC-G has excellence performance on the first three
functions (f1-f3). On the functions 4th to 11th (f4-f11), the
convergence ability of MHD is doing well than the comparison
algorithms. On the f12-f14 functions, each algorithm has its own
advantages. DECC-G obtains the fasted convergence rate and
the best values on function f12. On function f14, the three
compared algorithms fall into the premature convergence
dilemma. Although MHD does not perform well in the
early stage, it can maintain a good convergence trend
towards the optimum during the search. As a result, MHD
obtains better solutions, as shown in Figure 2(f14).

For the above excellent performance of MHD, we can give the
following explanations: MHD allows for better grouping with
accurate analysis of variable interactions. This approach can
improve the feasibility of decomposing decision variables in the
optimization process. In addition, we can conclude that the correct
analysis of the interaction between decision variables provides good
preconditions for the decomposition process and helps the search
of optimal solutions. In other words, the min hash strategy has
some effect in the problem of decision variable correlation analysis
in large-scale global optimization.

Result Analysis on Stability Comparison
To access the stability of the algorithm, MHD is compared with
SaNSDE, CBCC3-DG2 and DECC-G. Figure 3 shows the mean
normalized scores (MNS) obtained by the four algorithms, where
the vertical ordinate denotes mean normalized scores (the lower
value indicates a better performance). Figure 4 compares the
standard deviation normalized scores (SNS) results obtained by
the algorithms. In this figure, the vertical ordinate denotes
standard deviation normalized scores.

From these figures, we can observe that the MNS and SNS
results of MHD are better than its comparison algorithms on test
problems f4, f5, f7, f8, f9, f11 and f14. On test functions f3, f6 and f10,
the MNS of each algorithm are nearly the same. Functions f4-f11
are partially separable functions, which contain a variety of
interactive variables, which play a positive or negative role in
optimization results. MHD divides the variables that play an
active role in the evolution process into a subgroup. Such
Decomposition method is reasonable and helpful to determine
the optimal solution during the search, and also improve the
stability of the optimization.

The strategy used by MHD is effective in dealing with the
LSGO problem compared to the three algorithms in SaNSDE,
CBCC3-DG2 and DECC-G. The reason is that MHD uses the
min hash strategy to determine the interaction between decision
variables. It can further clarify the interaction relationship
between decision variables through intersection and
concatenation operations to draw more accurate conclusions.
The comparison algorithm is simpler than MHD in determining

the interaction relationships. Therefore, the algorithm achieves
some advantages in terms of stability.

CONCLUSION

In this paper, we proposed a large-scale variable relationship
analysis strategy called MHD to deal with the LSGO problems.
MHD introduces the min hash principle to analysis
interdependence between decision variables, and then group
them adaptively. Specifically, the wide range decision space is
decomposed into several small range search spaces according to
the characteristics of the decision variables, using the minimum
hash method to determine the interaction relationships between
the decision variables. In this critical step, we use a depth first
search (DFS) strategy to cluster the decision variables with
interaction relations. In fact, depth first search is one of the
graph algorithms. The process is briefly described as going as
deep as possible into each possible branching path, and each node
can only be visited once. DG2 uses a depth-first search strategy to
achieve grouping of decision variables. The results of
experimental proved that MHD shows significant advantages
over its compared algorithms, especially on partially separable
benchmark instances with up to 1,000 decision variables.

In the future work, we will combine MHD with more effective
optimization strategies to improve the capabilities in all aspects of
algorithms. In addition, applying the MHD algorithm to
solve practical engineering problems is also the next
research focus.
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