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Deep learning-based transient stability assessment has achieved big success in

power system analyses. However, it is still unclear how much of the data is

superfluous and which samples are important for training. In this work, we

introduce the latest technique from the artificial intelligence community to

evaluate the significance of the samples used in deep learning model for the

transient stability assessment. From empirical experiments, it is found that

nearly 50% of the low-significance samples can be pruned without affecting

the testing performance at the early training stages, thus saving much

computational time and effort. We also observe that the samples with the

fault-clearing time close to the critical clearing time often have higher

significance indexes, indicating that the decision boundary learned by the

deep network is highly related to the transient stability boundary. This is

intuitive, but to the best of our knowledge, this work is the first to analyze

the connection from sample significance aspects. In addition, we combine the

stability scores with the significance index to provide an auxiliary criterion for

the degree of stability, indicating the distance between a sample and the stability

boundary. The ultimate goal of the study is to create a tool to generate and

evaluate some benchmark datasets for the power system transient stability

assessment analysis, so that various algorithms can be tested in a unified and

standard platform like computer vision or natural language-processing fields.
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1 Introduction

Transient stability assessment (TSA) has always been an active research topic since

transient instability is one of the major threats to a power system. Prior research on TSA

can be roughly categorized into two aspects, i.e. the time-domain simulation and the

direct method (Kundur, 1994). Time-domain simulation computes the state trajectories

through numerical integration. With the increasing penetration of the converter-

interfaced generation (CIG), it has become infeasible and time consuming to carry

out scalable electro-magnetic transient simulations. The direct methods for TSA utilize

the Lyapunov theory to analyze the geometric properties and determine the region of

attraction of the power system. The core task of the direct methods is to find the Lyapunov
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function, which is only known for a limited class of power system

models and has no general methods to construct.

During the past decade, inspired by the tremendous success

in computer vision and the natural language-processing field,

researchers started to apply the deep learning techniques in

power system TSA. Various network structures and

algorithms have been applied in the TSA analysis, including

the deep belief network (DBN) (Zheng et al., 2018; Wu et al.,

2020), the convolutional neural network (CNN) (Azman et al.,

2020; Shi et al., 2020; Zhu et al., 2020), the long short-term

memory (LSTM) network (Azman et al., 2020; Sun et al., 2020;

Hagmar et al., 2021), the generative adversarial network (GAN)

(Yang et al., 2021), the feature-separated neural network (Zhou

et al., 2021), etc. In all these research studies, the first step is to

create a dataset by time-domain simulations considering various

operating conditions and transient faults. The deep learning

model has multiple layers and is often over-parameterized, so

it is preferred to train the models on ever larger datasets to avoid

over-fitting. Since time-domain simulations are very time-

consuming for large power systems, this trend poses much

larger computational burden and hardware resource

requirement. Days and even months are needed to prepare

the dataset for training TSA models. It is of theoretical and

practical interest to understand how an individual sample

influences the learning process, so as to prune less important

training data and shrink the dataset.

The artificial intelligence (AI) community has made some

interesting attempts in this direction (Campbell and Broderick,

2018; Toneva et al., 2019; Hwang et al., 2020; Paul et al., 2021).

The basic idea is to identify certain subsets that allows training

and maintaining almost the same accuracy with the original full

dataset (Campbell and Broderick, 2018; Hwang et al., 2020).

However, due to the non-convex nature of machine learning

algorithms and a huge number of samples, random search is less

effective in practice and lacks theoretical guarantees. Toneva et al.

(2019) propose a very different approach. They track the number

of flippings that a sample is classified from one label to the other

or vice versa through the training process. It is observed that the

samples that rarely flip have little impact on the test accuracy

after removing. On the contrary, the samples flipping many times

are important to the test. Therefore, the number of flippings is

taken as the significance criteria for the samples. The idea is very

intuitive, indicating that the contribution of a sample to the

decrease of loss is highly related to the significance of the sample.

Considering that deep learning models are usually trained with

the stochastic gradient decent (SGD) algorithm, Paul et al. (2021)

prove that the expected change in loss of any individual sample is

bounded by the expected loss gradient norm, which can be

approximated by the norm of the error vector.

Following the technique proposed by Paul et al., 2021, an

empirical study of the sample significance index in TSA is

proposed. To the best of our knowledge, this article is the first

to study the significance of samples in the deep learning-based

TSA analysis, which will lead to new methodologies that could

dramatically reduce dataset generation time and training efforts.

In addition, it offers important insights into the training

dynamics of deep neural networks and potential interpretable

capability for the deep learning-based TSA. The rest of the article

is organized as follows. Firstly, the article describes the

preliminaries on the expected loss gradient norm and how to

compute the Sample Significance Index (SSI) and the stability

score. An illustrative example using the single-machine infinite-

bus (SMIB) system will be presented in the next section. The case

study gives more results on the effect of dataset pruning with

various deep learning models, subset sizes, SSI thresholds, and

noisy levels. The last section concludes the article and points out

future directions.

2 The sample significance index and
the stability score

2.1 Dataset generation in TSA

In the machine learning-based TSA analysis, it is often

formulated as a supervised classification problem. The first

step is to generate the dataset used for training and testing,

denoted by S � {(xi, yi)}Ni�1, with the input features x ∈ Rd and

the one-hot encoded labels y ∈ {0, 1}K. Given a specific system, a

multitude of operating conditions and transient faults are pre-

defined. Then, thorough time-domain simulations are carried to

generate the samples. The most frequently used label y is the

stability status after the transient faults, and K = 2 since the

system will be either stable or unstable. The input features x are

various in different studies, including the angle and magnitude of

the bus voltage, the active and reactive power in the transmission

line, the power angle and rotor speed of the generator, etc.

To reliably determine the stability status, the simulation

duration is often set to 10 s or more. And the input feature is

also high- dimensional. Therefore, the dataset generation stage

is the most time- and computational resource-consuming step

if the dataset size is large. It is necessary to seek the answer to

the question of what is the nature of samples that can be

removed from the training dataset without hurting the

accuracy.

2.2 The expected gradient norm score

The following definition and derivation are mainly taken

from (Paul et al., 2021). For fixed neural network architecture, let

p(w, x) ∈ R2 be the outputs of the neural network in the form of

a probability vector and w represents the weights of the network.

Suppose the loss function is the cross-entropy loss:

ℓ(p, y) � ∑2

k�1y
(k) logp(k) (1)
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Let w0,w1,w2,/,wT be the iterates of weights through the SGD,

and by definition we have:

wt � wt−1 − η∑(x,y)∈Sgt−1(x, y)
� wt−1 − η∑(x,y)∈S∇wt−1ℓ(p(wt−1, x), y) (2)

where t � 1, 2,/, T denotes the index of the training iteration, η

is the learning rate, and gt−1(x, y) is the gradient of the loss

function to the weights:

gt−1(x, y) � ∇wt−1ℓ(p(wt−1, x), y) (3)

In order to simplify the analysis, the discrete training

iterations are approximated as continuous training dynamics.

The loss change along the training iterations can then be

represented as the time derivative of the loss function:

Δt((x, y), S) � − d

dt
ℓ(p(wt, x), y) (4)

Following the chain rule, we can get

Δt((x, y), S) � −dℓ(p(wt, x), y)
dwt

· dwt

dt

≈ − dℓ(p(wt, x), y)
dwt

· (wt+1 − wt)

� dℓ(p(wt, x), y)
dwt

· η∑(x,y)∈Sgt(x, y)
(5)

Then, if we remove any sample (xj, yj) from the training set

S at iteration step t, the contribution of the training sample to the

loss change can be derived as:

�����Δt((x, y), S) − Δt((x, y), S−j)�����
�
��������η

dℓ

dwt
∑(x,y)∈Sgt(x, y) − η

dℓ′
dwt

∑(x,y)∈S−jgt(x, y)
��������

≤ η
������� dℓdwt

������� ·
�����gt(xj, yj)����� � c

�����gt(xj, yj)�����
(6)

Therefore, the contribution of a training sample to the loss

change is bounded by Eq. 6. Since the constant c does not

depend on (xj, yj), the gradient norm term ‖gt(xj, yj)‖ is of
more interest. Since the weights are initialized with

random variables, we define the expected value of the

gradient norm, which is called the GraNd score in Paul

et al., 2021.

χt(x, y) � Ewt

����gt(x, y)����2 (7)

The GraNd score describes the contribution of a sample to

the change in the training loss. Specifically, samples with a small

GraNd score in expectation have a limited influence on the

training process. Note that the opposite is not necessarily true

since Eq. 6 only gives an upper bound.We will see some examples

in the case study section.

2.3 The norm of the error vector score

Let f(w, x) ∈ R2 be the neuron outputs of the second-last

layer of the neural network, and the last layer is a Softmax layer,

then the relation between f and p is

p(k)(w, x) � exp(f(k)(w, x))/∑2

i�1exp(f(i)(w, x)) (8)

Taking Eq. 3 and the chain rule, gt is converted to:

gt(x, y) � ∇fℓ(f(wt, x), y)T · ∇wtf(wt, x) (9)

Substitute Eq. 8 into Eq. 1, it is easy to get:

∇fℓ(f(wt, x), y)T � p(wt, x) − y (10)

Therefore, the GraNd score is:

χt(x, y) � E
����p(wt, x) − y

����2 · E����∇wtf(wt, x)
����2 (11)

The right part of Eq. 11 is of a similar size across the logits

and samples (Paul et al., 2021), so the GraNd score can be

approximated by the norm of the error vector, which is called the

Sample Significance Index (SSI) in this article Eq. 12.

SSI � E
����p(wt, x) − y

����2 (12)

Therefore, an easy-to-compute criteria SSI is proposed to

evaluate the upper bound of the contribution of any sample to the

loss change of the neural network during the training process.

2.4 The stability score

The stability degree of a given sample is usually measured by

the difference between the fault-clearing time (CT) and critical-

clearing time (CCT). However, there are some difficulties to get

the CCT of complex systems, such as the accuracy and fast

computation speed (Sulistiawati et al., 2016). In the experiment

of a single-machine infinite system, we find that the high Sample

Significance Index samples are concentrated on the stable

boundary, while the low index samples are far away from it,

which is tenable for complex systems as the follow-up

experiment shows. According to the SSI definition, the SSI of

the samples that is easy to distinguish is significantly lower than

those prone to misjudgment and far from the stability boundary

in the sample space. So, in the training process, combining the

distribution of SSI, we propose the stability score which could be

used to evaluate the degree of sample stability as a secondary

criterion for assessment.

We standardize the index at first as:

SSI norm � SSI−min(SSI)
max(SSI)−min(SSI) (13)

And we get the stability score:
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Stability Score � { (−1)astable lg(SSI norm) (0< SSI norm≤ 1)
(−1)astable(mscore − 1) (SSI norm � 0)

(14)
In Eq. 14, astable represents the model judgment result. If the

model judges the sample to be stable, the value of astable is 1.

Otherwise, it is 0. And, mscore is calculated by mscore �
min(lg(SSI norm)) in which 0< SSI norm≤ 1.

2.5 The procedure to evaluate the SSI and
stability score

The SSI and stability score could be calculated by the

following three steps, as Figure 1 shows:

Step 1: Input the training dataset into a neural network of

which the parameters of each epoch are recorded during the

training. Then, calculate the output error which is propagated

back and adjust the weights of the neuron. And the end of the

training is marked by the accuracy rate or the number of

iterations reaching the set standard.

Step 2: The neural network parameters of an iteration to

calculate SSI are imported to the network again and input the

samples to the neural network. The output and the labels of the

training sample are calculated by Eq. 12. And here we get the

Significance Index.

Step 3: The output of step 2’s neural network is used as the

input of the stability assessment of the sample. And parameter

astable is defined according to the stability of the sample. Finally

the stability score of the sample is calculated by using Eq. 14

together with SSI.

3 An illustrative example

In the power system TSA tasks, the knowledge learned from

machine learning algorithms is usually interpreted as the

stability boundary (Zheng et al., 2018). In this section, we

will evaluate the SSI generated from a SMIB system, and the

parameters are given in Supplementary Table S1. Since the real

stability boundary can be easily computed in a 2D plane, we can

evaluate the links between the SSI and the distance to the

stability boundary of an individual sample from the training

dataset in an intuitive way.

The input feature includes the power angle and the rotor

speed of the generator. 4,000 samples are randomly generated

from the state space. A 4-layer multiple layer perceptron (MLP)

is trained 200 epochs and the SSI are computed at each training

epoch. The results are shown in Figure 2A. The dashed red line

denotes the theoretical stability boundary of the SMIB system

whereas the Sample Significance Indexes from the epoch 90 are

marked by colors. It is easy to see the trend where the samples

FIGURE 1
The procedure to evaluate the significance and stability.
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away from the boundary have relatively low SSI, meaning that

those samples are less important to the training process. Then, we

sort the samples by SSI and eliminate 50% of the low-index

samples which are far from the stable boundary as shown in

Figure 2B. The remaining samples are distributed around the

stable boundary. The SSI change little from before, however, the

SSI of the samples closed to boundary increase, that is, they are

more prone to be misclassified. The slight change is also reflected

in the decrease of test accuracy.

Figure 3 shows the index distribution of different training

epochs. We observe that the SSI distribution becomes long-

tailed quickly during the training stage (Figures 3A–C). Then,

we categorize the samples into two groups. The low-index

group contains samples with SSI smaller than the 90%

FIGURE 2
SSI at epoch 90 of the SMIB system. (A) shows the SSI of the full dataset and (B) shows the SSI of the subset after pruning.

FIGURE 3
Sample Significance Index distribution along the training epochs. (A) SSI distribution at epoch 1. (B) SSI distribution at epoch 90. (C) SSI
distribution at epoch 200. (D) Median SSI curve for the low- and high-index groups. The light-colored area shows the 10–90% quantiles of the
indexes.
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quantile of all SSI at epoch 90, while the high-index group

contains all the other samples. From Figure 3D, it can be seen

that the low-index group becomes stable quickly after a few

epochs and the index variation is small. However, the SSI of the

high-index group has a relatively large vibration until around

epoch 90. This indicates that the sample significance can be

determined during the training stage, instead of at the end of

training as in Toneva et al., 2019. Considering that the training

process often has hundreds even thousands of iterations, it is

possible to prune the dataset very early, thus saving

computational effort and time.

The stability scores are calculated according to Eqs 12, 13. In

order to facilitate the study, scores of stable samples and unstable

samples are mapped to [−1, 0) and [0, 1], respectively, as shown
in Figure 4. The distribution of the stability scores is close to the

judgment result of the fault-clearing time. In addition, Figure 4

and Figure 2B are mutually verified. The samples with low SSI are

the ones with the highest stability or instability.

4 Case study

The IEEE New England test system is used as the base case of

the TSA task. The parameters of the test system are taken from

(Zheng et al., 2018). A three-phase short circuit to ground fault

happened at the start and end sides of the 36 transmission lines

used in the time- domain simulation. A total of 5,000 samples

were generated and 80% of the samples were used for training,

with 2,697 stable and 2,303 unstable. The input dataset contains

170 features, including the active and reactive power of the

transmission lines, as well as the magnitudes and angles of the

bus voltages. We would like to know if the Sample Significance

Index is suitable for a variety of deep neural network structures,

so, we compare the performance of the SSI in the three most

popular deep learning models used in TSA, including the MLP,

the convolutional neural networks (CNN), and the long short-

term memory (LSTM). The structures of the models mentioned

are given in Table 1.

4.1 Dataset pruning

The average SSI used to prune the dataset is calculated by

training the three networks on the full dataset for 10 training runs

which are performed with 200 epochs. By various experiments,

we find that the SSI becomes stable after 80 epochs, which is used

as the Sample Significance Index. Then, the samples with low

significance indexes are removed from the training, and a new

model is trained with the same network using random initializing

weights. The performance of the new model is computed using

the testing set, shown in the blue lines of Figure 5. The red dashed

line denotes the testing accuracy with random removal of the

training samples, which decreases quickly as the fraction of the

dataset pruning increases. However, with 50% of the low

significance index samples pruned, the accuracy of each

network is relatively stable, which is competitive with that

using the full dataset. The results could help us to find the

appropriate range of the dataset pruning without affecting the

test accuracy.

In the meantime, the performance in the accuracy of the

subsets pruned on epoch80 and epoch200 indexes is similar. To

investigate how early the SSI are effective in training, Figure 5D

shows the training on a fixed number of samples (40%) selected

by the SSI of early periods. Though the accuracy fluctuates at the

first few epochs, the results suggest that early in the training, the

average Sample Significance Index can identify samples that the

deep network heavily uses to shape the decision boundary

throughout the whole training process.

The loss is recorded when training the CNN using the full

dataset and the subset pruned 50% samples based on SSI to

explore the influence of pruning samples on the training dynamic

process. And the loss surface called loss landscape is drawn along

two directions from a center point, as shown in Figure 6. The

surface figures and contour maps on the top and bottom rows

show that the loss landscape of the subset is flatter than the full

dataset. The flatter the loss landscape, the better the performance

and generalization (Li et al., 2018).

Table 2 records the time training subsets with different sizes

take and the efficiency measured by the accuracy divided by the

time. On one hand, with the size of a batch fixed, the number of

mini-batches and total training time decreases, however, there is

no significant decline in accuracy. On the other hand, the subsets

selected by SSI at the early training period could get high

accuracy, so the using of early period SSI is time-saving and

reliable. On the whole, the use of SSI reduces dataset generation

time and training time.

FIGURE 4
Stability Scores of the SIMB system samples.
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4.2 Samples with high SSI

In the study of 4.1, the samples with high SSI played an

important role in TSA. In order to study the influence of the

range of the Sample Significance Index on stability assessment

accuracy, the key is to analyze whether the samples with the

highest indexes have the highest accuracy. We first sort the

samples by ascending SSI. Then, we perform a sliding window

analysis on these samples by training on a subset of which the SSI

of the samples within the window is from percentile p to

percentile p+40%. And the step of window sliding to higher

SSI is 10% of the full dataset. In three networks, the results

indicate that the performance increases as the window slides to

higher percentiles, as shown in Figure 7.

TABLE 1 Network structure and hyperparameters.

Network structure Batch
size

Learning_rate Activation
function

Loss
function

Optimizer

MLP Dense (150) 64 Initial learning_rate =
0.01 decay_rate = 0.9

Relu Cross entropy SGD

Dense (60)

Dense (2)

CNN Con(kernel_size (3,3),
out_channel = 16)

64

Average_pooling

Dense (128)

Dense (10)

Dense (2)

LSTM Lstm (hidden_size = 64) 128

Dense (2)

FIGURE 5
The influence of the pruning fraction and SSI of different training periods on the final accuracy. (A) to (C) show the test accuracy with different
fractions of datasets pruned and pruning strategies using MLP, CNN, and LSTM. (D) shows the test accuracy of MLP using different SSI from different
training epochs.
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Since the sliding window contains 40% samples of the

dataset, as shown in Figure 7, the samples with the highest SSI

only account for 10% of the dataset. Rarely appearing in

practical applications except for studying extreme cases, we

use the sliding window which includes 10% of the total

samples. The accuracy of the subsets increases as the

sliding window moves to the high SSI region as shown in

Figure 8. Not until the large part of the sliding window is in the

highest index region will the MLP classification performance

drop sharply. As the definition of SSI, the subset of the

highest indexes includes the samples which are most prone

to be misjudged in the process of TSA. Only using these

samples, it is detrimental to integrally describe the decision

boundary.

FIGURE 6
Loss landscape visualizations of CNN trained with the full dataset (A1,A2) and the subset with 50% samples of the full dataset (B1,B2). Left: The
surface of the loss landscape. Right: The contour map of the loss landscape, loss = 10.

TABLE 2 Time and Efficiency of subsets with different sizes.

MLP CNN LSTM

Subset/FULL Time (t/s) Efficiency (acc/time) Time (t/s) Efficiency (acc/time) Time (t/s) Efficiency (acc/time)

100% 83.12 0.012 137.9 0.007 44.64 0.022

90% 74.8 0.013 121.91 0.008 39.24 0.025

80% 65.12 0.015 110.34 0.009 36.74 0.027

70% 58.18 0.017 96.6 0.010 32.22 0.030

60% 50.51 0.019 89.92 0.011 28.01 0.035

50% 42.91 0.023 72.45 0.013 24.51 0.040

40% 34.03 0.029 63.1 0.016 20.06 0.049
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In the process of training dataset generation, the stability

labels of some samples are generated incorrectly due to the

selection of transient stability criteria or errors in the

calculation. These labels can be regarded as noisy labels which

could affect the accuracy of the networks and sample SSI

calculation. Therefore, 10% sample labels of the dataset are

randomly selected for randomization. Subsets containing 40%

samples of this dataset are generated for training. As Figures

7B1–B3 show, in the same way, the accuracy drops sharply after

reaching a peak. Furthermore, Figure 9 shows the distribution of

the stability labels sorted by SSI from small to large along the axis

which explains the sharp drop. The samples with randomized

labels congregate in the highest SSI region, which greatly

interferes with the accuracy of the model training.

This part indicates that a set number of samples with higher

SSI do not necessarily mean higher accuracy. And it may

influence the formation of the decision boundary in the

opposite way. And a fixed-length sliding window of the

samples along the SSI provides us with an intuitive way to

generate datasets which will be discussed in the next part.

4.3 Implications for dataset generation

In addition to the samples with high SSI that we care about,

an interesting phenomenon, as shown in Figure 9, is that

regardless of the existence of the noise, unstable samples make

up a larger proportion in low SSI regions than stable samples.

Mainly because the input features such as the voltage and power

angles are prone to oscillation and divergence after the instability

FIGURE 7
Test accuracy of MLP, CNN, and LSTM trained on the full dataset (No pruning) and a 40% subset pruned randomly or by SSI calculated at epoch
50 or epoch 80. When using SSI, the sample window slides along the samples in the ascending order of SSI. Training of the first row (A1–A3) uses the
original dataset. In the second row (B1–B3), the dataset contains 10% randomized labels.

FIGURE 8
Test accuracy of MLP trained on only 10% subset which slides
along the samples in the ascending order of SSI.
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of the power system. So, the unstable samples could be accurately

identified by a network than stable samples in the TSA task. In

other words, samples with high or even medium SSI participating

in the formation of the stability boundary is beneficial to get the

higher accuracy and better generalization performance.

What’s more inspired by the results of the SMIB system, we

evaluate the relations between the SSI and the critical-clearing

time, as shown in Figure 10. The CCT is computed by a binary

search method numerically for each fault. Each point indicates a

sample used in the training set. The trend is clear that the closer

the clearing time is to the CCT, the larger the SSI is. Since the

relative clearing time is highly related to the stability boundary

and the sample significance is related to the decision boundary, it

is straightforward to conclude that the physical interpretation of

the decision learned is the stability boundary of the system.

Figure 10 also implies that generating the samples close to the

stability boundary is a more efficient dataset-construction

method.

5 Conclusion

In summary, this article evaluates the significance of the

samples for the deep learning-based TSA. It is observed that a

large amount of samples can be pruned at an early training stage

without sacrificing test accuracy using the Sample Significance

Index. In addition, we find that the samples with high

significance scores tend to have a borderline fault-clearing

time. This is intuitive. The samples with short or long fault-

clearing times can be regarded as the white and black samples. It

is always easy to separate the whites from the blacks. But the

samples with borderline fault clearing times are “gray” samples,

which are more important for learning the stability boundary and

improving the training accuracy. Therefore, this article proposes

a method to generate and prune the dataset based on the Sample

Significance Index for TSA which provides some relief to data

generation and training. And combining the stability score and

the classification results of the networks, we get a more intuitive

method to assess the transient stability of samples.

Future work includes how we can use SSI to understand the

dynamic training process of models since we have already known

the early training period and final results. More tests on datasets

and power system topologies are also preferred to show the

properties of the significance index. Ultimately, we want the SSI

to be a part of the tool to generate and evaluate some benchmark

datasets for power system TSA analyses so that various

algorithms can be tested in a unified and standard platform

like computer vision or natural language-processing fields.

FIGURE 9
Distribution of stability labels and SSI. The dataset of (A) is the original full dataset and (B) contains 10% noisy labels. All samples are arranged in
the ascending order of SSI. The minimum scale on the x-axis is 100 and the average SSI is calculated from 100 samples.

FIGURE 10
Sample Significance Index distribution with relative clearing
time.
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